-
Notifications
You must be signed in to change notification settings - Fork 0
/
entailment_inference.py
122 lines (105 loc) · 4.99 KB
/
entailment_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import csv
import json
import torch
import argparse
import pandas as pd
import torch.nn as nn
from tqdm import tqdm
from collections import defaultdict
from transformers.models.llama.tokenization_llama import LlamaTokenizer
from torch.utils.data import DataLoader
from mplug_owl_video.modeling_mplug_owl import MplugOwlForConditionalGeneration
from mplug_owl_video.processing_mplug_owl import MplugOwlImageProcessor, MplugOwlProcessor
from peft import LoraConfig, get_peft_model
from data_utils.xgpt3_dataset import MultiModalDataset
from utils import batchify
parser = argparse.ArgumentParser()
parser.add_argument('--input_csv', type = str, required = True, help = 'input json file')
parser.add_argument('--output_csv', type = str, help = 'output csv with scores')
parser.add_argument('--pretrained_ckpt', type = str, required = True, help = 'pretrained ckpt')
parser.add_argument('--trained_ckpt', type = str, help = 'trained ckpt')
parser.add_argument('--lora_r', type = int, default = 32)
parser.add_argument('--use_lora', action = 'store_true', help = 'lora model')
parser.add_argument('--all-params', action = 'store_true', help = 'use all params of the model')
parser.add_argument('--batch_size', type = int, default = 32)
args = parser.parse_args()
softmax = nn.Softmax(dim=2)
def get_entail(logits, input_ids, tokenizer):
logits = softmax(logits)
token_id_yes = tokenizer.encode('Yes', add_special_tokens = False)[0]
token_id_no = tokenizer.encode('No', add_special_tokens = False)[0]
entailment = []
for j in range(len(logits)):
for i in range(len(input_ids[j])):
if input_ids[j][i] == tokenizer.pad_token_id: # pad token if the answer is not present
i = i - 1
break
elif i == len(input_ids[j]) - 1:
break
score = logits[j][i][token_id_yes] / (logits[j][i][token_id_yes] + logits[j][i][token_id_no])
entailment.append(score)
entailment = torch.stack(entailment)
return entailment
def get_scores(model, tokenizer, dataloader):
with torch.no_grad():
for index, inputs in tqdm(enumerate(dataloader)):
for k, v in inputs.items():
if torch.is_tensor(v):
if v.dtype == torch.float:
inputs[k] = v.bfloat16()
inputs[k] = inputs[k].to(model.device)
outputs = model(pixel_values = inputs['pixel_values'], video_pixel_values = inputs['video_pixel_values'], labels = None, \
num_images = inputs['num_images'], num_videos = inputs['num_videos'], input_ids = inputs['input_ids'], non_padding_mask = inputs['non_padding_mask'], \
non_media_mask = inputs['non_media_mask'], prompt_mask = inputs['prompt_mask'])
logits = outputs['logits']
entail_scores = get_entail(logits, inputs['input_ids'], tokenizer)
for m in range(len(entail_scores)):
with open(args.output_csv, 'a') as f:
writer = csv.writer(f)
writer.writerow([inputs['videopaths'][m], inputs['captions'][m], entail_scores[m].item()])
print(f"Batch {index} Done")
def main():
pretrained_ckpt = args.pretrained_ckpt
# Processors
tokenizer = LlamaTokenizer.from_pretrained(pretrained_ckpt)
image_processor = MplugOwlImageProcessor.from_pretrained(pretrained_ckpt)
processor = MplugOwlProcessor(image_processor, tokenizer)
valid_data = MultiModalDataset(args.input_csv, tokenizer, processor, max_length = 256, loss_objective = 'sequential')
dataloader = DataLoader(valid_data, batch_size=args.batch_size, pin_memory=True, collate_fn=batchify)
# Instantiate model
model = MplugOwlForConditionalGeneration.from_pretrained(
pretrained_ckpt,
torch_dtype=torch.bfloat16,
device_map={'':0}
)
if args.use_lora:
for name, param in model.named_parameters():
param.requires_grad = False
if args.all_params:
peft_config = LoraConfig(
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj|gate_proj|down_proj|up_proj)',
inference_mode=True,
r=args.lora_r,
lora_alpha=32,
lora_dropout=0.05
)
else:
peft_config = LoraConfig(
target_modules=r'.*language_model.*\.(q_proj|v_proj|k_proj|o_proj)',
inference_mode=True,
r=args.lora_r,
lora_alpha=32,
lora_dropout=0.05
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
with open(args.trained_ckpt, 'rb') as f:
ckpt = torch.load(f, map_location = torch.device(f"cuda:0"))
model.load_state_dict(ckpt)
model = model.to(torch.bfloat16)
print('Model Loaded')
model.eval()
get_scores(model, tokenizer, dataloader)
if __name__ == "__main__":
main()