Skip to content

Robust Lane Detection via Expanded Self Attention (WACV 2022)

Notifications You must be signed in to change notification settings

Hydragon516/ESA-official

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Robust Lane Detection via Expanded Self Attention (WACV 2022)

Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee

Overview

This repository is the official PyTorch implementation of Robust Lane Detection via Expanded Self Attention (WACV 2022). Our paper can be found here.

Benchmark Results

PWC

Architecture

ESA Model

Results (CULane)

Model

Dataset

Download the CULane dataset.

└── Dataset root/
    ├── annotations_new
    ├── driver_23_30frame
    ├── driver_37_30frame
    ├── driver_100_30frame
    ├── driver_161_90frame
    ├── driver_182_30frame
    ├── driver_193_90frame
    ├── laneseg_label_w16
    ├── laneseg_label_w16_test
    └── list/
        ├── test_split/
        │   ├── test0_normal.txt
        │   ├── test1_crowd.txt
        │   └── ...
        ├── test.txt
        ├── test_gt.txt
        ├── train.txt
        ├── train_gt.txt
        ├── val.txt
        └── val_gt.txt

Training

Edit the config.py before training. Then start training with the following:

python train_mymodel.py

Testing

We provide test code for lane prediction visualization. Modify the best model in config.py Then start testing with the following:

python test.py

Video

result_night result_night

Citation

@article{lee2021robust,
  title={Robust lane detection via expanded self attention},
  author={Lee, Minhyeok and Lee, Junhyeop and Lee, Dogyoon and Kim, Woojin and Hwang, Sangwon and Lee, Sangyoun},
  journal={arXiv preprint arXiv:2102.07037},
  year={2021}
}

About

Robust Lane Detection via Expanded Self Attention (WACV 2022)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages