Skip to content

IDMNYU/p5.js-func

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Function Generators for p5.js

R. Luke DuBois (dubois@nyu.edu)
Integrated Digital Media / Brooklyn Experimental Media Center
NYU Tandon School of Engineering

Shiffman, it's pronounced funk.

p5.func is a p5 extension that provides new objects and utilities for function generation in the time, frequency, and spatial domains. You might find this module useful for everything from plotting animation paths to generating procedural graphics to designing signal processing algorithms.

p5.func contains five new objects:

  • p5.Gen() : function generators (waveforms, curves, window functions, noise, etc.)
  • p5.Ease() : easing / interpolation functions
  • p5.ArrayEval() : equation evaluator to generate pre-computed arrays
  • p5.Filt() : biquadratic filter object
  • p5.FastFourierTransform() : signal neutral FFT implementation

The library also contains a number of utility functions for p5:

  • imap() : constrainted integer mapping function
  • wrap() : wrapping function
  • fold() : folding function
  • createArray() / normalizeArray() / resizeArray() / multiplyArray() / addArray() / subtractArray() / divideArray() / moduloArray() / sumArray() : array utility functions
  • f2ib() / ib2f() : int<->float coercion with bit parity
  • sinc() : sinc (sinus cardinalis) function
  • besselI0() : Bessel function
  • fplot() : formattable console plot of any array

Quite a bit of this code is adapted from other sources, notably:

Download

Examples

p5.Gen Example (direct evaluation)

var g = new p5.Gen(); // function generator object

// evaluate the value 20% (0.2) into a wavetable
// defined by harmonic strengths 1., 0.5, and 0.3:
g.harmonics(0.2, [1.0, 0.5, 0.3]); // 1.0686135667536483

// evaluate the value halfway (0.5) into a breakpoint function
// rising from 0 to 1 then falling to 0:
g.bpf(0.5, [0, 0, 1, 1, 2, 0]); // 1.

// evaluate the value 3/4ths (0.75) into a hamming window function:
g.window(0.75, "hamming"); // 0.5400000000000001

p5.Gen Example (array filling)

var g = new p5.Gen(); // function generator object

// assign 'foo' to a 512-point Array containing the wavetable
// defined by harmonic strengths 1., 0.5, and 0.3:
var foo = g.fillArray("harmonics", 512, [1.0, 0.5, 0.3]);

// assign 'bar' to a 1000-point Float32Array containing a
// single sine wave:
var bar = g.fillFloat32Array("waveform", 1000, "sine");

// assign 100 points of low-weighted random numbers to
// the Float64Array 'biz':
var biz = g.fillFloat64Array("random", 100, "low");

console.log(foo); // print
fplot(foo, "color: red; font-size:9px;"); // plot
console.log(bar); // print
fplot(bar, "color: green; font-size:9px;"); // plot
console.log(biz); // print
fplot(biz, "color: blue; font-size:9px;"); // plot

p5.Ease Example (direct evaluation)

var e = new p5.Ease(); // easing function object
e.listAlgos(); // return an array listing all the algorithms

// calculate the value halfway (0.5) through
// the 'circularIn' easing function:
e.circularIn(0.5); // 0.1339745962155614

// calculate the value a quarter (0.25) through
// the 'doubleCircularOgee' function with a coefficient of 0.5:
e.doubleCircularOgee(0.25, 0.5); // 0.4330127018922193

p5.Ease Example (array filling)

var e = new p5.Ease(); // easing function object

// assign 'foo' to a 10-point Array filled with
// a "doubleQuadraticBezie" easing function:
var foo = e.fillArray("doubleQuadraticBezier", 10);

// assign 'bar' to a 100-point Float32Array filled with
// a "smoothStep" easing function:
var bar = e.fillFloat32Array("smoothStep", 100);

// assign a 1000-point "doubleCircularSigmoid" with
// a coefficient of 0.8 to the Float64Array 'biz':
var biz = e.fillFloat64Array("doubleCircularSigmoid", 1000, 0.8);

console.log(foo); // print
fplot(foo, "color: red; font-size:9px;"); // plot
console.log(bar); // print
fplot(bar, "color: green; font-size:9px;"); // plot
console.log(biz); // print
fplot(biz, "color: blue; font-size:9px;"); // plot

p5.ArrayEval Example

var a = new p5.ArrayEval(); // array evaluation object

// 10-point 'normal map' (0 to 1):
var foo = a.eval('u', 10);

// 20x20 two-dimensional signed normal map (-1 to 1):
var bar = a.eval2d(['su', 'sv'], 20, 20);

// 8x8x8 array with a volumetric distance function:
var biz = a.eval3d('sqrt(su*su+sv*sv+sw*sw)', 8, 8, 8);

console.log(foo); // print
console.log(bar); // print
console.log(biz); // print

p5.Filt Example

// filter object with math calibrated to a 60Hz sampling rate:
var f = new p5.Filt(60);
// lowpass filter with a cutoff frequency of 3Hz and a Q of 0.7:
f.set("lowpass", 3, 0.7);

var ip = new Array(100); // input array
var op = new Array(100); // output array

for(let i = 0;i<100;i++)
{
 ip[i] = random(-1, 1); // random input
 op[i] = f.tick(ip[i]); // smoothed (lowpassed) output
}

console.log(ip); // print
fplot(ip, "color: red; font-size:9px;"); // plot
console.log(op); // print
fplot(op, "color: blue; font-size:9px;"); // plot

p5.FastFourierTransform Example

// 512-point FFT calibrated to a 60Hz sampling rate:
var fft = new p5.FastFourierTransform(512, 60);
var g = new p5.Gen(); // function generator object

var ip = g.fillArray("waveform", 512, "saw"); // input array
fft.forward(ip); // compute FFT

var op = fft.magnitude; // output array (256 points of magnitude)
console.log(op); // print
fplot(op, "color: green; font-size:9px;"); // plot

More Examples

Reference

p5.Gen

methods

  • harmonics(x, [h1... hn]): periodic function of harmonic strengths defined by an Array passed as the second argument. x is 0 to 1. Returns f(x).
  • triples(x, [f1, a1, p1... fn, an, pn): function of summed sines. The second argument is an Array of triples of frequency multiplier, amplitude, phase. x is 0 to 1. Returns f(x).
  • chebyshev(x, [t1... tn]): function of chebyshev polynomials of the first kind. These polynomials will waveshape a sinusoid into a pre-defined spectrum, determined by values in the Array passed as the second argument. x is 0 to 1. Returns f(x).
  • bpf(x, [t1, a1... tn, an]): breakpoint function of line segments defined in time, amplitude pairs in the Array passed as the second argument. x is 0 to 1. returns f(x).
  • random(seed, type): generates random numbers according to type. seed is the random number seed. A missing seed value (or a seed of -1) will use the millis() function to generate a seed. Returns values are in the range of 0 to 1. Supported random functions are:
    • "linear" / "even"
    • "low"
    • "high"
    • "triangle"
    • "gaussian"
    • "cauchy"
  • window(x, type, args): generates window functions by type. Some functions have optional args. x is 0 to 1. Returns f(x). Supported window functions are:
    • "hamming"
    • "hanning" / "vonhann"
    • "bartlett" / "fejer" / "triangle"
    • "bartlett-hann"
    • "blackman"
    • "generalizedblackman" (args defines center; defaults to 0.5)
    • "blackman-harris"
    • "blackman-nuttal"
    • "nuttal"
    • "gaussian" (args defines sigma; defaults to 0.4)
    • "kaiser"
    • "rectangle" / "boxcar" / "dirichlet"
    • "cosine"
    • "sinc" / "lanczos"
    • "flattop"
    • "tukey" (args defines center; defaults to 0.5)
    • "slidinggaussian" (args defines [center, sigma]; defaults to [0.5, 0.4])
    • "adjustablecosine" (args defines center; defaults to 0.5)
    • "elliptic" (args defines center; defaults to 0.5)
    • "hyperelliptic" (args defines [center, order]; defaults to [0.5, 3])
    • "squircular" (args defines [center, order]; defaults to [0.5, 3])
    • "poisson" (args defines center; defaults to 0.5)
    • "hann-poisson" (args defines center; defaults to 0.5)
    • "slidinghann-poisson" (args defines [center, sigma]; defaults to [0.5, 0.5])
  • waveform(x, type): generates simple waveform functions according to type. x is 0 to 1. Returns f(x). Supported waveforms are:
    • "sine"
    • "cosine"
    • "sawtooth"
    • "sawdown"
    • "phasor"
    • "square"
    • "rectangle"
    • "pulse"
    • "triangle"
    • "buzz"
  • listAlgos(): lists available top-level algorithms.
  • fillArray(algo, len, args, seed): evaluates one of the above algorithms on an Array of numbers where x is set to a normal map of the function range (0 to 1). algo sets the algorithm ("harmonics", "window", etc.); len is the length of the Array to return; args are the arguments for the generator algorithm; the seed argument sets a base seed for the "random" generator.
  • fillFloat32Array(algo, len, args, seed): evaluates one of the above algorithms on a Float32Array of numbers where x is set to a normal map of the function range (0 to 1). algo sets the algorithm ("harmonics", "window", etc.); len is the length of the Float32Array to return; args are the arguments for the generator algorithm; the seed argument sets a base seed for the "random" generator.
  • fillFloat64Array(algo, len, args, seed): evaluates one of the above algorithms on a Float64Array of numbers where x is set to a normal map of the function range (0 to 1). algo sets the algorithm ("harmonics", "window", etc.); len is the length of the Float64Array to return; args are the arguments for the generator algorithm; the seed argument sets a base seed for the "random" generator.

p5.Ease

methods

For all easing functions, x is 0 to 1. Method returns f(x). Some methods have optional arguments: n is order for exponential / stepping functions; a, b, c, and d are coefficients.

  • linear(x) / doubleLinear(x, a, b) / tripleLinear(x, a, b, c, d) / generalizedLinearMap(x, a, b, c, d) / quadraticIn(x) / quadraticOut(x) / quadraticInOut(x) / doubleQuadraticBezier(x, a, b, c, d) / doubleQuadraticSigmoid(x) / quadraticBezier(x, a, b) / quadraticBezierStaircase(x, a, n) / cubicIn(x) / cubicOut(x) / cubicInOut(x) / brycesCubic(x, n) / cubicBezier(x, a, b, c, d) / cubicBezierThrough2Points(x, a, b, c, d) / doubleCubicOgee(x, a, b) / doubleCubicOgeeSimplified(x, a, b) / quarticIn(x) / quarticOut(x) / quarticInOut(x) / generalizedQuartic(x, a, b) / quinticIn(x) / quinticOut(x) / quinticInOut(x) / sineIn(x) / sineOut(x) / sineInOut(x) / dampedSinusoid(x, a) / dampedSinusoidReverse(x, a) / circularIn(x) / circularOut(x) / circularInOut(x) / doubleCircularOgee(x, a) / doubleCircularSigmoid(x, a) / circularArcThroughAPoint(x, a, b) / circularFillet(x, a, b, c) / exponentialIn(x) / exponentialOut(x) / exponentialInOut(x) / exponentialEmphasis(x, a) / exponentialSmoothedStaircase(x, a, n) / elasticIn(x) / elasticOut(x) / elasticInOut(x) / backIn(x) / backOut(x) / backInOut(x) / bounceIn(x) / bounceOut(x) / bounceInOut(x) / doubleExponentialOgee(x, a) / doubleExponentialSigmoid(x, a) / adjustableCenterDoubleExponentialSigmoid(x, a, b) / doubleOddPolynomialOgee(x, a, b, n) / doublePolynomialSigmoid(x, n) / doubleEllipticOgee(x, a, b) / doubleEllipticSigmoid(x, a, b) / doubleSquircularOgee(x, a, n) / doubleSquircularSigmoid(x, a, n) / boxcar(x) / gompertz(x, a) / catmullRomInterpolate(x, a, b) / parabolaThroughAPoint(x, a, b) / hermite(x, a, b, c, d) / hermite2(x, a, b, c, d) / fastSquareRoot(x) / iterativeSquareRoot(x) / cosineApproximation(x) / raisedInvertedCosine(x) / generalSigmoidLogitCombo(x, a, b) / normalizedLogitSigmoid(x, a) / normalizedLogit(x, a) / staircase(x, n) / variableStaircase(x, a, n) / smoothStep(x) / smootherStep(x) / cheapStep(x) / maclaurinCosine(x) / normalizedErf(x) / normalizedInverseErf(x)
  • listAlgos(): lists available easing functions.
  • fillArray(algo, len, args): evaluates an easing function on an Array of numbers where x is set to a normal map of the function range (0 to 1). algo sets the algorithm ("doubleLinear", "sineOut", etc.); len is the length of the Array to return; args are the arguments to the algorithm, if needed.
  • fillFloat32Array(algo, len, args): evaluates an easing function on a Float32Array of numbers where x is set to a normal map of the function range (0 to 1). algo sets the algorithm ("doubleLinear", "sineOut", etc.); len is the length of the Float32Array to return; args are the arguments to the algorithm, if needed.
  • fillFloat64Array(algo, len, args): evaluates an easing function on an Float64Array of numbers where x is set to a normal map of the function range (0 to 1). algo sets the algorithm ("doubleLinear", "sineOut", etc.); len is the length of the Float64Array to return; args are the arguments to the algorithm, if needed.

p5.ArrayEval

methods

  • eval(evalstr, l1), eval1d(evalstr, l1): evaluate a evalstr into a one-dimensional Array. If evalstr is an Array, each element in the Array will fill with more than one value. l1 is the length of the Array to return. The keywords u, su, cu, and du will be expanded to a normal map, a signed normal map, a cell position (0 to l1-1), and the length of the array (l1).
  • eval2d(evalstr, l1, l2): evaluate a evalstr into a two-dimensional Array. If evalstr is an Array, each element in the Array will fill with more than one value. l1 and l2) are the width and height of the Array to return. The keywords u/v, su/sv, cu/cv, and du/dv will be expanded to a normal map, a signed normal map, a cell position (0 to l1/l2-1), and the length of the array (l1/l2) on the two axes.
  • eval3d(evalstr, l1, l2, l3): evaluate a evalstr into a three-dimensional Array. If evalstr is an Array, each element in the Array will fill with more than one value. l1, l2, and l3) are the width, height, and depth of the Array to return. The keywords u/v/w, su/sv/sw, cu/cv/cw, and du/dv/dw will be expanded to a normal map, a signed normal map, a cell position (0 to l1/l2/l3-1), and the length of the array (l1/l2/l3) on the three axes.

p5.Filt

constructor

  • fs: sampling rate (default=60)

methods

  • tick(x): evaluate a single sample (x) through the filter. Method returns f(x).
  • process(x): evaluate a vector (an Array) through the filter. Returns an Array of the same length.
  • set(type, f0, Q, dB): sets the parameters of the filter:
    • type can be "lowpass", "highpass", "bandpass", "resonant", "notch", "allpass", "peaknotch", "lowshelf", and "highshelf".
    • f0 is the center / cutoff frequency of the filter.
    • Q is the "quality" of the filter (inverse of bandwidth). A higher Q is a narrower / more resonant filter.
    • dB is the boost/cut (in decibels) of the filter, when type is "peaknotch", "lowshelf", and "highshelf".
  • setType(type): set the type of the filter ("lowpass", etc.).
  • setFreq(f0): set the center / cutoff frequency of the filter.
  • setQ(Q): set the Q of the filter.
  • setBW(bw): set the bandwidth of the filter (computes the Q).
  • setGain(dB): sets the gain (in decibels) of the filter.
  • clear(): clears/resets the sample memory in the filter.
  • coeffs(a0, b0, b1, b2, a1, a2): sets the coefficients of the biquad "by hand".
  • precalc(): precompute the filter coefficients (a0, b0, etc.) based on the filter parameters (type, f0, Q, dB)
  • setFs(fs): resets the sampling rate of the filter. The sampling rate defines how the f0 of the filter will be interpreted when computing the coefficients.

p5.FastFourierTransform

constructor

  • bufsize: FFT buffer size (default=512).
  • fs: sampling rate (default=60).
  • hopsize: hop size (default=buffer size).

methods

  • forward(buffer): compute a forward transform (FFT) on the time-domain signal in the buffer. Fills the real, imaginary, spectrum, and phase Arrays in the object.
  • inverse(real, imag): compute an inverse transform (IFFT) on the frequency-domain data in the real and imag Arrays. If no arguments are supplied, it will use the real and imag data stored in the object from the last forward transform.
  • calculateSpectrum(): computes the amplitude (spectrum) and phase data from the real and imaginary.
  • calculateFrequency(): computes the instantaneous frequencies in the FFT analysis based on running phase.
  • getBandFrequency(index): returns the center frequency of an FFT band based on its index.

properties

  • doSpectrum: boolean to auto-calculate spectrum (mag/phase) (default=true).
  • doFrequency: boolean to auto-calculate instantaneous frequency from running phase (default=false).
  • magnitude: Array of current spectrum (amplitude) data.
  • phase: Array of current phase data.
  • real: Array containing real part of last FFT.
  • imaginary: Array containing imaginary part of last FFT.
  • frequency: Array of instantaneous frequencies.
  • runningphase: Array of phase deviation.

Misc. Functions

  • imap(x, a, b, c, d): constrained integer mapping function; great for Array index lookups originating from a continuous input. x is the input. a and b are the minimum and maximum range of the expected input. c and d are the range of the output. Syntactically equivalent to the map() function in p5.
  • wrap(x, min, max) : wrap value x between min and max. Similar to the modulo operator with offset, but works as expected with negative values.
  • fold(x, min, max) : fold (reflect) value x between min and max. Values out of range will be folded / reflected back in range, alternating between a wrapped and an inverted wrapped value.
  • createArray(len): return an n-dimensional Array of length len, where len can be a list of arguments.
  • normalizeArray(array): returns a normalized copy of an array (where the absolute maximum value is 1.0).
  • resizeArray(array, newlen): returns a copy of array resized to length newlen. Upsampling is done by linear interpolation.
  • multiplyArray(array1, array2): multiplies two arrays into a new array.
  • addArray(array1, array2): adds two arrays into a new array.
  • subtractArray(array1, array2): subtracts two arrays into a new array.
  • divideArray(array1, array2): divides two arrays into a new array.
  • moduloArray(array1, array2): returns the remainder of the division of two arrays into a new array.
  • sumArray(array): returns the sum of array.
  • f2ib(x): float->int coercion with bit parity.
  • ib2f(x): int->float coercion with bit parity.
  • sinc(x): sinc (sinus cardinalis) function. Returns f(x).
  • besselI0(x): Bessel function. Returns f(x).
  • fplot(array, css): formattable console plot of any array. css parameters are passed as a string to the Javascript console object.