Skip to content

Commit

Permalink
Merge pull request #53 from IGNF/mobj0
Browse files Browse the repository at this point in the history
Mobj0
  • Loading branch information
yoann-apel authored Feb 2, 2024
2 parents 0d427b8 + 1952346 commit 62fd354
Show file tree
Hide file tree
Showing 38 changed files with 1,443 additions and 65 deletions.
3 changes: 3 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
# Dev
- ajout d'une 4e métrique : MOBJ0

# 0.5.1
- correctif MALT0 quand il n'y a pas de points dans la référence (+ test sur les autres métriques)

Expand Down
3 changes: 2 additions & 1 deletion coclico/metrics/listing.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
from coclico.malt0.malt0 import MALT0
from coclico.mobj0.mobj0 import MOBJ0
from coclico.mpap0.mpap0 import MPAP0
from coclico.mpla0.mpla0 import MPLA0

METRICS = {"mpap0": MPAP0, "mpla0": MPLA0, "malt0": MALT0}
METRICS = {"mpap0": MPAP0, "mpla0": MPLA0, "malt0": MALT0, "mobj0": MOBJ0}
39 changes: 26 additions & 13 deletions coclico/metrics/occupancy_map.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import logging
from pathlib import Path
from typing import Tuple

import laspy
Expand Down Expand Up @@ -44,22 +45,18 @@ def _create_2d_occupancy_array(
return grid


def create_occupancy_map(las_file, class_weights, output_tif, pixel_size):
"""Create 2d occupancy map for each class that is in class_weights keys, and save result in a single output_tif
file with one layer per class (the classes are sorted alphabetically).
Args:
las_file (Path): path to the las file on which to generate occupancy map
class_weights (Dict): class weights dict (to know for which classes to generate the binary map)
output_tif (Path): path to output
pixel_size (float): size of the output raster pixels
"""
def read_las(las_file: Path):
with laspy.open(las_file) as f:
las = f.read()
xs, ys = las.x, las.y
classifs = las.classification
crs = las.header.parse_crs()

xs, ys = las.x, las.y
classifs = las.classification
crs = las.header.parse_crs()

return xs, ys, classifs, crs


def create_occupancy_map_array(xs: np.array, ys: np.array, classifs: np.array, pixel_size: float, class_weights: dict):
las_bounds = (np.min(xs), np.min(ys), np.max(xs), np.max(ys))

top_left, nb_pixels = get_raster_geometry_from_las_bounds(las_bounds, pixel_size)
Expand Down Expand Up @@ -87,6 +84,22 @@ def create_binary_map_from_class(class_key):

logging.debug(f"Creating binary maps with shape {binary_maps.shape}")
logging.debug(f"The binary maps order is {sorted(class_weights.keys())}")
return binary_maps, x_min, y_max


def create_occupancy_map(las_file, class_weights, output_tif, pixel_size):
"""Create 2d occupancy map for each class that is in class_weights keys, and save result in a single output_tif
file with one layer per class (the classes are sorted alphabetically).
Args:
las_file (Path): path to the las file on which to generate occupancy map
class_weights (Dict): class weights dict (to know for which classes to generate the binary map)
output_tif (Path): path to output
pixel_size (float): size of the output raster pixels
"""
xs, ys, classifs, crs = read_las(las_file)

binary_maps, x_min, y_max = create_occupancy_map_array(xs, ys, classifs, pixel_size, class_weights)

output_tif.parent.mkdir(parents=True, exist_ok=True)

Expand Down
Empty file added coclico/mobj0/__init__.py
Empty file.
116 changes: 116 additions & 0 deletions coclico/mobj0/mobj0.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
from pathlib import Path
from typing import Dict, List

import numpy as np
import pandas as pd
from gpao.job import Job

from coclico.metrics.commons import bounded_affine_function
from coclico.metrics.metric import Metric
from coclico.version import __version__


class MOBJ0(Metric):
"""Metric MOBJ0 (for "Métrique par objet 0")
Comparison of detected objects (distinct blobs in the occupancy map) each class between the classification and the
reference
See doc/mobj0.md
"""

metric_name = "mobj0"
pixel_size = 0.5 # Pixel size for occupancy map
kernel = 3 # parameter for morphological operations on rasters
tolerance_shp = 0.05 # parameter for simplification on geometries of the shapefile

def create_metric_intrinsic_one_job(self, name: str, input: Path, output: Path, is_ref: bool):
job_name = f"{self.metric_name}_intrinsic_{name}_{input.stem}"
command = f"""
docker run -t --rm --userns=host --shm-size=2gb
-v {self.store.to_unix(input)}:/input
-v {self.store.to_unix(output)}:/output
-v {self.store.to_unix(self.config_file.parent)}:/config
ignimagelidar/coclico:{__version__}
python -m coclico.mobj0.mobj0_intrinsic \
--input-file /input \
--output-geojson /output/{input.stem}.json \
--config-file /config/{self.config_file.name} \
--pixel-size {self.pixel_size} \
--kernel {self.kernel} \
--tolerance-shp {self.tolerance_shp}
"""
job = Job(job_name, command, tags=["docker"])
return job

def create_metric_relative_to_ref_jobs(
self, name: str, out_c1: Path, out_ref: Path, output: Path, c1_jobs: List[Job], ref_jobs: List[Job]
) -> Job:
job_name = f"{self.metric_name}_{name}_relative_to_ref"
command = f"""
docker run -t --rm --userns=host --shm-size=2gb
-v {self.store.to_unix(out_c1)}:/input
-v {self.store.to_unix(out_ref)}:/ref
-v {self.store.to_unix(output)}:/output
-v {self.store.to_unix(self.config_file.parent)}:/config
ignimagelidar/coclico:{__version__}
python -m coclico.mobj0.mobj0_relative \
--input-dir /input
--ref-dir /ref
--output-csv-tile /output/result_tile.csv \
--output-csv /output/result.csv \
--config-file /config/{self.config_file.name}
"""

job = Job(job_name, command, tags=["docker"])
for c1_job in c1_jobs:
job.add_dependency(c1_job)
for ref_job in ref_jobs:
job.add_dependency(ref_job)

return [job]

@staticmethod
def compute_note(metric_df: pd.DataFrame, note_config: Dict):
"""Compute mobj0 note from mobj0_relative results.
This method expects a pandas dataframe with columns:
- ref_object_count
- paired_count
- not_paired_count
(these columns are described in the mobj0_relative function docstring)
Args:
metric_df (pd.DataFrame): mobj0 relative results as a pandas dataframe
Returns:
metric_df: the updated metric_df input with notes instead of metrics
"""

metric_df[MOBJ0.metric_name] = np.where(
metric_df["ref_object_count"] >= note_config["ref_object_count_threshold"],
bounded_affine_function(
(
note_config["above_threshold"]["min_point"]["metric"],
note_config["above_threshold"]["min_point"]["note"],
),
(
note_config["above_threshold"]["max_point"]["metric"],
note_config["above_threshold"]["max_point"]["note"],
),
metric_df["paired_count"] / (metric_df["paired_count"] + metric_df["not_paired_count"]),
),
bounded_affine_function(
(
note_config["under_threshold"]["min_point"]["metric"],
note_config["under_threshold"]["min_point"]["note"],
),
(
note_config["under_threshold"]["max_point"]["metric"],
note_config["under_threshold"]["max_point"]["note"],
),
metric_df["not_paired_count"],
),
)

metric_df.drop(columns=["ref_object_count", "paired_count", "not_paired_count"], inplace=True)

return metric_df
127 changes: 127 additions & 0 deletions coclico/mobj0/mobj0_intrinsic.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
import argparse
import logging
from pathlib import Path

import cv2
import geopandas as gpd
import numpy as np
import pandas as pd
import rasterio
from osgeo import gdal
from rasterio.features import shapes as rasterio_shapes
from shapely.geometry import shape as shapely_shape

import coclico.io
from coclico.metrics.occupancy_map import create_occupancy_map_array, read_las
from coclico.mobj0.mobj0 import MOBJ0

gdal.UseExceptions()


def create_objects_array(las_file: Path, pixel_size: float, class_weights: dict, kernel: int):
xs, ys, classifs, crs = read_las(las_file)

binary_maps, x_min, y_max = create_occupancy_map_array(xs, ys, classifs, pixel_size, class_weights)
object_maps = np.zeros_like(binary_maps)
for index in range(len(class_weights)):
object_maps[index, :, :] = operate_morphology_transformations(binary_maps[index, :, :], kernel)

return object_maps, crs, x_min, y_max


def vectorize_occupancy_map(binary_maps: np.ndarray, crs: str, x_min: float, y_max: float, pixel_size: float):
# Create empty dataframe
gdf_list = []

for ii, map_layer in enumerate(binary_maps):
shapes_layer = rasterio_shapes(
map_layer,
connectivity=8,
transform=rasterio.transform.from_origin(
x_min - pixel_size / 2, y_max + pixel_size / 2, pixel_size, pixel_size
),
)

geometries = [shapely_shape(shapedict) for shapedict, value in shapes_layer if value != 0]
nb_geometries = len(geometries)
gdf_list.append(
gpd.GeoDataFrame(
{"layer": ii * np.ones(nb_geometries), "geometry": geometries},
geometry="geometry",
crs=crs,
)
)

gdf = pd.concat(gdf_list)

return gdf


def operate_morphology_transformations(obj_array: np.ndarray, kernel: int):
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (kernel, kernel))

img = cv2.morphologyEx(obj_array, cv2.MORPH_CLOSE, kernel)
img = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)

return img


def compute_metric_intrinsic(
las_file: Path,
config_file: Path,
output_geojson: Path,
pixel_size: float = 0.5,
kernel: int = 3,
tolerance_shp: float = 0.05,
):
"""
Create a shapefile with geometries for all objects in each class contained in the config file:
- first by creating an occupancy map raster transformed by morphological operations
- then by vectorizing and simplifying all the rasters by classes into one final geojson
final output_geojson file is saved with one layer per class (the classes are sorted alphabetically).
Args:
las_file (Path): path to the las file on which to generate malt0 intrinsic metric
config_file (Path): path to the config file (to know for which classes to generate the rasters)
output_geojson (Path): path to output shapefile with geometries of objects
pixel_size (float, optional): size of the occupancy map rasters pixels. Defaults to 0.5.
kernel (int, optional): size of the convolution matrix for morphological operations. Defaults to 3.
tolerance_shp (float, optional): parameter for simplification of the shapefile geometries. Defaults to 0.05
"""
config_dict = coclico.io.read_config_file(config_file)
class_weights = config_dict[MOBJ0.metric_name]["weights"]
output_geojson.parent.mkdir(parents=True, exist_ok=True)
obj_array, crs, x_min, y_max = create_objects_array(las_file, pixel_size, class_weights, kernel)
polygons_gdf = vectorize_occupancy_map(obj_array, crs, x_min, y_max, pixel_size)
polygons_gdf.simplify(tolerance=tolerance_shp, preserve_topology=False)
polygons_gdf.to_file(output_geojson)


def parse_args():
parser = argparse.ArgumentParser("Run mobj0 intrinsic metric on one tile")
parser.add_argument("-i", "--input-file", type=Path, required=True, help="Path to the LAS file")
parser.add_argument("-o", "--output-geojson", type=Path, required=True, help="Path to the output geojson")
parser.add_argument(
"-c",
"--config-file",
type=Path,
required=True,
help="Coclico configuration file",
)
parser.add_argument(
"-p", "--pixel-size", type=float, required=True, help="Pixel size of the intermediate occupancy map"
)
parser.add_argument("-k", "--kernel", type=int, required=True, help="Path to the output geojson")
parser.add_argument("-t", "--tolerance-shp", type=float, required=True, help="Path to the output geojson")
return parser.parse_args()


if __name__ == "__main__":
args = parse_args()
logging.basicConfig(format="%(message)s", level=logging.DEBUG)
compute_metric_intrinsic(
las_file=Path(args.input_file),
config_file=args.config_file,
output_geojson=Path(args.output_geojson),
)
Loading

0 comments on commit 62fd354

Please sign in to comment.