-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Buyout Model Implementation * Update CHANGELOG.md * Suggested fixes * add to sphinx doc and pep8 reformat --------- Co-authored-by: Chen Wang <cwang138@illinois.edu>
- Loading branch information
1 parent
5fe7f6a
commit 16932f8
Showing
5 changed files
with
236 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
# Copyright (c) 2024 University of Illinois and others. All rights reserved. | ||
# | ||
# This program and the accompanying materials are made available under the | ||
# terms of the Mozilla Public License v2.0 which accompanies this distribution, | ||
# and is available at https://www.mozilla.org/en-US/MPL/2.0/ | ||
|
||
from pyincore.analyses.buyoutdecision.buyoutdecision import BuyoutDecision |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
# Copyright (c) 2024 University of Illinois and others. All rights reserved. | ||
|
||
# This program and the accompanying materials are made available under the | ||
# terms of the Mozilla Public License v2.0 which accompanies this distribution, | ||
# and is available at https://www.mozilla.org/en-US/MPL/2.0/ | ||
|
||
import pandas as pd | ||
from pyincore import BaseAnalysis | ||
from pyincore.utils.dataprocessutil import DataProcessUtil | ||
|
||
|
||
class BuyoutDecision(BaseAnalysis): | ||
"""A framework to select households for buyout based on past and future flood damaged. | ||
Args: | ||
incore_client(IncoreClient): Service authentication. | ||
""" | ||
|
||
def __init__(self, incore_client): | ||
super(BuyoutDecision, self).__init__(incore_client) | ||
|
||
def run(self): | ||
# Get input parameters | ||
fema_buyout_cap = self.get_parameter('fema_buyout_cap') | ||
residential_archetypes = self.get_parameter('residential_archetypes') | ||
|
||
# Get input datasets | ||
past_building_damage = self.get_input_dataset('past_building_damage').get_dataframe_from_csv(low_memory=False) | ||
future_building_damage = self.get_input_dataset('future_building_damage').get_dataframe_from_csv( | ||
low_memory=False) | ||
|
||
building_inventory = self.get_input_dataset('buildings').get_dataframe_from_shapefile() | ||
|
||
hua = (self.get_input_dataset('housing_unit_allocation').get_dataframe_from_csv(low_memory=False)) | ||
pop_dislocation = self.get_input_dataset('population_dislocation').get_dataframe_from_csv(low_memory=False) | ||
|
||
buyout_decision_df = self.buyout_decision(past_building_damage, future_building_damage, building_inventory, hua, | ||
pop_dislocation, fema_buyout_cap, residential_archetypes) | ||
# Create the result dataset | ||
self.set_result_csv_data("result", buyout_decision_df, self.get_parameter("result_name") + "_loss", | ||
"dataframe") | ||
|
||
def buyout_decision(self, past_building_damage, future_building_damage, building_inventory, hua, pop_dislocation, | ||
fema_buyout_cap, residential_archetpyes): | ||
"""Select households for buyout based on past and future flood damaged. | ||
Args: | ||
past_building_damage (DataFrame): Past building damage. | ||
future_building_damage (DataFrame): Future event building damage. | ||
building_inventory (DataFrame): Building inventory. | ||
hua (DataFrame): Housing unit allocation. | ||
pop_dislocation (DataFrame): Population dislocation from past hazard event. | ||
fema_buyout_cap (float): FEMA buyout cap. | ||
residential_archetpyes (list): Residential archetypes. | ||
Returns: | ||
buyout_decision_df (DataFrame): A dataframe with buyout decision for each household. | ||
""" | ||
|
||
past_building_max_damage = DataProcessUtil.get_max_damage_state(past_building_damage) | ||
future_building_max_damage = DataProcessUtil.get_max_damage_state(future_building_damage) | ||
|
||
# Criterion 1: Filter only residential buildings with damage state DS3 from past building damage | ||
buyout_inventory = pd.merge(building_inventory, past_building_max_damage, on='guid', how='outer') | ||
buyout_inventory = buyout_inventory[buyout_inventory['arch_wind'].isin(residential_archetpyes) | ||
& (buyout_inventory['max_state'] == 'DS_3')] | ||
buyout_inventory.rename(columns={'max_state': 'max_state_past_damage'}, inplace=True) | ||
|
||
# Criterion 2: Filter only residential buildings with damage state DS3 from predicted future building damage | ||
buyout_inventory = pd.merge(buyout_inventory, future_building_max_damage, on='guid', how='inner') | ||
buyout_inventory = buyout_inventory[buyout_inventory['max_state'] == 'DS_3'] | ||
buyout_inventory.rename(columns={'max_state': 'max_state_future_damage'}, inplace=True) | ||
|
||
# Criterion 3: Fall within the FEMA buyout cap | ||
buyout_inventory = buyout_inventory[buyout_inventory['appr_bldg'] <= fema_buyout_cap] | ||
buyout_inventory = buyout_inventory[ | ||
["guid", "appr_bldg", "max_state_future_damage", "max_state_past_damage", "geometry"]] | ||
|
||
# Criterion 4: Use HUA to filter out buildings with 0 occupants | ||
buyout_inventory = pd.merge(buyout_inventory, hua, on='guid', how='left') | ||
buyout_inventory = buyout_inventory[(buyout_inventory['numprec'] != 0) & (~buyout_inventory['numprec'].isna())] | ||
|
||
# Removing any rows with NAN values in column "Race" | ||
buyout_inventory = buyout_inventory.dropna(subset=['race']) | ||
|
||
# Merging with population dislocation | ||
buyout_inventory = pd.merge(buyout_inventory, pop_dislocation[['huid', 'dislocated']], on='huid', how='left') | ||
|
||
# Create a new column showing the appraisal value of each building ('appr_bldg' divided by the number of times | ||
# a guid is repeated) | ||
# For the instances that a structure has more than one housing units. | ||
buyout_inventory['count'] = buyout_inventory.groupby('guid')['guid'].transform('count') | ||
buyout_inventory['housing_unit_appraisal_value'] = buyout_inventory['appr_bldg'] / buyout_inventory['count'] | ||
|
||
# Cleaning the dataframe | ||
buyout_inventory.drop(['blockid', 'bgid', 'tractid', 'FIPScounty', | ||
'gqtype', 'BLOCKID10_str', 'placeNAME10', 'geometry_y'], axis=1, inplace=True) | ||
buyout_inventory.rename(columns={'appr_bldg': 'building_appraisal_value', 'ownershp': 'ownership', | ||
'dislocated_combined_dmg': 'dislocated', 'count': 'number_of_housing_units', | ||
'geometry_x': 'geometry'}, | ||
inplace=True) | ||
buyout_inventory = buyout_inventory[ | ||
['guid', 'huid', 'building_appraisal_value', 'housing_unit_appraisal_value', 'geometry', | ||
'number_of_housing_units', 'numprec', 'ownership', 'race', 'hispan', 'family', 'vacancy', 'incomegroup', | ||
'hhinc', 'randincome', 'poverty', 'huestimate', 'dislocated', 'max_state_future_damage', | ||
'max_state_past_damage', 'x', 'y', ]] | ||
|
||
return buyout_inventory | ||
|
||
def get_spec(self): | ||
return { | ||
"name": "buyout-decision", | ||
"description": "Buyout decision framework", | ||
"input_parameters": [ | ||
{ | ||
'id': 'fema_buyout_cap', | ||
'required': True, | ||
'description': 'FEMA buyout cap', | ||
'type': float, | ||
}, | ||
{ | ||
'id': 'residential_archetypes', | ||
'required': True, | ||
'description': 'Residential archetypes', | ||
'type': list, | ||
}, | ||
{ | ||
'id': 'result_name', | ||
'required': True, | ||
'description': 'Result name', | ||
'type': str, | ||
} | ||
], | ||
"input_datasets": [ | ||
{ | ||
'id': 'past_building_damage', | ||
'required': True, | ||
'description': 'Building Damage Results', | ||
'type': ['ergo:buildingDamageVer6'], | ||
}, | ||
{ | ||
'id': 'future_building_damage', | ||
'required': True, | ||
'description': 'Building Damage Results', | ||
'type': ['ergo:buildingDamageVer6'], | ||
}, | ||
{ | ||
'id': 'buildings', | ||
'required': True, | ||
'description': 'Building Inventory', | ||
'type': ['ergo:buildingInventoryVer4', 'ergo:buildingInventoryVer5', | ||
'ergo:buildingInventoryVer6', 'ergo:buildingInventoryVer7'], | ||
}, | ||
{ | ||
'id': 'housing_unit_allocation', | ||
'required': True, | ||
'description': 'A csv file with the merged dataset of the inputs, aka Probabilistic' | ||
'House Unit Allocation', | ||
'type': ['incore:housingUnitAllocation'] | ||
}, | ||
{ | ||
'id': 'population_dislocation', | ||
'required': True, | ||
'description': 'Population Dislocation from past hazard event', | ||
'type': ['incore:popDislocation'] | ||
} | ||
], | ||
"output_datasets": [ | ||
{ | ||
'id': 'result', | ||
'label': 'Buyout Decision Results', | ||
'description': 'Buyout Decision Results', | ||
'type': ['incore:buyoutDecision'] | ||
} | ||
] | ||
} |
46 changes: 46 additions & 0 deletions
46
tests/pyincore/analyses/buyoutdecision/test_buyoutdecision.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
# This program and the accompanying materials are made available under the | ||
# terms of the Mozilla Public License v2.0 which accompanies this distribution, | ||
# and is available at https://www.mozilla.org/en-US/MPL/2.0/ | ||
|
||
|
||
from pyincore.analyses.buyoutdecision import BuyoutDecision | ||
from pyincore import IncoreClient, Dataset | ||
import pyincore.globals as pyglobals | ||
import pandas as pd | ||
|
||
|
||
def BuyoutDecisionTest(): | ||
client = IncoreClient(pyglobals.INCORE_API_DEV_URL) | ||
|
||
past_building_damage_id = "6632d2605da5fd22b268511f" | ||
future_building_damage_id = "6632d45b5da5fd22b2685136" | ||
past_pop_dislocation_id = "6632d5205da5fd22b26878bb" | ||
|
||
hua_id = "64227016b18d026e7c80d2bc" | ||
|
||
buildings_id = "63ff69a96d3b2a308baaca12" | ||
|
||
fema_buyout_cap = 321291.600 | ||
residential_archetypes = [1, 2, 3, 4, 5, 17] | ||
|
||
buyout_decision = BuyoutDecision(client) | ||
buyout_decision.set_parameter("fema_buyout_cap", fema_buyout_cap) | ||
buyout_decision.set_parameter("residential_archetypes", residential_archetypes) | ||
buyout_decision.set_parameter("result_name", "galveston_buyout") | ||
|
||
buyout_decision.load_remote_input_dataset("buildings", buildings_id) | ||
buyout_decision.load_remote_input_dataset("housing_unit_allocation", hua_id) | ||
buyout_decision.load_remote_input_dataset("past_building_damage", past_building_damage_id) | ||
buyout_decision.load_remote_input_dataset("future_building_damage", future_building_damage_id) | ||
buyout_decision.load_remote_input_dataset("population_dislocation", past_pop_dislocation_id) | ||
|
||
buyout_decision.run_analysis() | ||
|
||
result = buyout_decision.get_output_dataset("result") | ||
result_df = result.get_dataframe_from_csv() | ||
print(result_df.head()) | ||
print(len(result_df)) | ||
|
||
|
||
if __name__ == "__main__": | ||
BuyoutDecisionTest() |