Skip to content

Latest commit

 

History

History
167 lines (123 loc) · 5.79 KB

README.md

File metadata and controls

167 lines (123 loc) · 5.79 KB

🪐 Streamlit Survey Automation


Technologies Used 🔧

Data Cleaning and Analysis with Streamlit, FastAPI, and Docker

Streamlit Logo FastAPI Logo Docker Logo Python Logo

Streamlit FastAPI Docker Python

Open in Streamlit


📋 Table of Contents

  1. Overview
  2. Getting Started
  3. Project Structure
  4. Usage
  5. Contributing
  6. License

1. Overview 📖

The IVR Data Processing Suite is a comprehensive toolset designed for cleaning, processing, and analyzing IVR (Interactive Voice Response) campaign data. It utilizes a combination of Streamlit and FastAPI to provide an intuitive user interface for file uploads, data cleaning, questionnaire definition, keypress decoding, and data analysis. The suite is split into three main components: IVR Data Cleaner & Pre-Processor App, Questionnaire Definer, and Keypresses Decoder, which are built to work seamlessly together or as standalone modules.


2. Getting Started 🚀

Prerequisites

  • Docker
  • Python 3.8 or newer

Installation

  1. Clone the Repository

    Clone the repository to your local machine:

    git clone <repository-url>
    cd <project-directory>
  2. Build the Docker Container

    Navigate to the project directory and build the Docker container:

    docker build -t ivr-data-suite .
  3. Run the Docker Container

    Run the Docker container:

    docker run -p 8501:8501 ivr-data-suite

3. Project Structure 📂

.
├── .gitignore
├── Dockerfile
├── LICENSE
├── README.md
├── requirements.txt
├── .streamlit
│   └── secrets.toml
├── fastapiapp
│   ├── dockerfile
│   ├── security_utils.py
│   ├── test.db
│   ├── app
│   │   ├── main.py
│   │   └── modules
│   │       ├── aws_utils.py
│   │       ├── crud.py
│   │       ├── data_cleaner_utils_page1.py
│   │       ├── dependencies.py
│   │       ├── keypress_decoder_utils_page3.py
│   │       ├── questionnaire_utils_page2.py
│   │       ├── schemas.py
│   │       └── ...
│   ├── tests
│   │   └── tests_main.py
│   └── images
│       └── invoke_logo.png
└── mainapp
    ├── 1_IVR_Data_Cleaner_Pre_Processor_App.py
    ├── modules
    │   ├── data_cleaner_utils_page1.py
    │   ├── keypress_decoder_utils_page3.py
    │   ├── questionnaire_utils_page2.py
    │   └── security_utils.py
    └── pages
        ├── 2_Questionnaire_Definer.py
        └── 3_Keypresses_Decoder.py

This structure organizes the Streamlit apps and FastAPI backend, providing clear modularity and separation of concerns for different functionalities.


4. Usage 📊

IVR Data Cleaner & Pre-Processor App

  • Objective: To clean and preprocess IVR data for analysis.
  • Features: Upload IVR files, visualize basic statistics, download cleaned data, and manage phone numbers for future sampling.

Questionnaire Definer

  • Objective: To define and structure the questionnaire from IVR campaigns.
  • Features: Upload script files, parse questions and answers, rename data columns, and prepare data for further processing.

Keypresses Decoder

  • Objective: To decode and categorize keypress responses from IVR campaigns.
  • Features: Upload script or JSON files for decoding, classify responses, and download the decoded data for analysis.

FastAPI App Integration

  • Objective: To integrate the Streamlit apps with a FastAPI backend for advanced data processing and storage capabilities.
  • Setup: Refer to the fastapiapp directory and Dockerfile for setup and deployment instructions.

5. Contributing 🤝

Contributions are what make the open-source community such an amazing place to learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'feat: add AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

6. License 📜

This project is licensed under the MIT License. See the LICENSE file for details.