-
Notifications
You must be signed in to change notification settings - Fork 17
/
broad.c
337 lines (241 loc) · 10.3 KB
/
broad.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/* ------- file: -------------------------- broad.c -----------------
Version: rh2.0
Author: Han Uitenbroek (huitenbroek@nso.edu)
-------------------------- ----------RH-- */
/* --- Routines for line broadening, including van der Waals and
Stark broadening by electronic collisions. -- -------------- */
#include <ctype.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "rh.h"
#include "atom.h"
#include "atmos.h"
#include "constant.h"
#include "error.h"
/* --- Function prototypes -- -------------- */
/* --- Global variables -- -------------- */
extern Atmosphere atmos;
extern char messageStr[];
/* ------- begin -------------------------- VanderWaals.c ----------- */
void VanderWaals(AtomicLine *line, double *GvdW)
{
/* --- Compute van der Waals broadening in Lindholm theory with
Unsold's approximation for the interaction coefficient C_6.
See: Traving 1960, "Uber die Theorie der Druckverbreiterung
von Spektrallinien", p 91-97
-- Mihalas 1978, p. 282ff, and Table 9-1.
Gamma = 8.08 * vrel^3/5 * C_6^2/5 * atmos.H.ntotal_neutral
Or with parametrization using Smirnov-Roueff potential.
See: DeRidder & van Rensbergen 1976, A&A Suppl. 23, 147-165
Gamma = alpha * T^{beta} * atmos.H.ntotal_neutral
Or with the Anstee, Barklem & O'Mara formalism.
See: Anstee & O'Mara 1995, MNRAS 276, 859-866
Barklem & O'Mara 1998, MNRAS 300, 863-871
Gamma =
(4/pi)^(alpha/2) Gam((4-alpha)/2) v_0 sigma(v_0)(vmean/v_0)^(1-alpha)
-- ------- */
const char routineName[] = "VanderWaals";
register int k;
int i, j, ic, Z;
double vrel35_H, vrel35_He, fourPIeps0, deltaR, cross, gammaCorrH,
gammaCorrHe, *T = atmos.T, C625;
Atom *atom = line->atom;
Element *He = &atmos.elements[1];
j = line->j;
i = line->i;
if (line->vdWaals == UNSOLD || line->vdWaals == BARKLEM) {
fourPIeps0 = 4.0 * PI * EPSILON_0;
vrel35_He = pow(8.0*KBOLTZMANN/(PI * AMU * atom->weight) *
(1.0 + atom->weight/He->weight), 0.3);
Z = atom->stage[j] + 1;
for (ic = j + 1; atom->stage[ic] < atom->stage[j]+1; ic++);
deltaR = SQ(E_RYDBERG/(atom->E[ic] - atom->E[j])) -
SQ(E_RYDBERG/(atom->E[ic] - atom->E[i]));
C625 = pow(2.5 * (SQ(Q_ELECTRON)/fourPIeps0) * (ABARH/fourPIeps0) *
2*PI * SQ(Z*RBOHR)/HPLANCK * deltaR, 0.4);
}
switch (line->vdWaals) {
case UNSOLD:
/* --- Relative velocity of radiator and perturber with Maxwellian
velocity distributions -- -------------- */
vrel35_H = pow(8.0*KBOLTZMANN/(PI * AMU * atom->weight) *
(1.0 + atom->weight/atmos.H->weight), 0.3);
cross = 8.08 * (line->cvdWaals[0]*vrel35_H +
line->cvdWaals[2]*He->abund*vrel35_He) * C625;
for (k = 0; k < atmos.Nspace; k++)
GvdW[k] = cross * pow(T[k], 0.3);
break;
case RIDDER_RENSBERGEN:
/* --- alpha = 1.0E-8 * cvdW[0] (Hydrogen broadening)
= 1.0E-9 * cvdW[1] (Helium broadening) -- --------- */
gammaCorrH = 1.0E-8 * CUBE(CM_TO_M) *
pow(1.0 + atmos.H->weight/atom->weight, line->cvdWaals[1]);
gammaCorrHe = 1.0E-9 * CUBE(CM_TO_M) *
pow(1.0 + He->weight/atom->weight, line->cvdWaals[3]);
for (k = 0; k < atmos.Nspace; k++)
GvdW[k] = gammaCorrH*line->cvdWaals[0] *
pow(T[k], line->cvdWaals[1]) +
gammaCorrHe*line->cvdWaals[2] *
pow(T[k], line->cvdWaals[3]) * He->abund;
break;
case BARKLEM:
/* --- Use UNSOLD for the Helium contribution -- -------------- */
cross = 8.08 * line->cvdWaals[2]*He->abund*vrel35_He * C625;
for (k = 0; k < atmos.Nspace; k++)
GvdW[k] = line->cvdWaals[0] *
pow(atmos.T[k], (1.0 - line->cvdWaals[1])/2.0) +
cross * pow(T[k], 0.3);
break;
default:
sprintf(messageStr,
"Unknown method for van der Waals broadening %d, line %d -> %d",
line->vdWaals, line->j, line->i);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
/* --- Multiply with the Hydrogen ground level population -- ------ */
for (k = 0; k < atmos.Nspace; k++) GvdW[k] *= atmos.H->n[0][k];
}
/* ------- end ---------------------------- VanderWaals.c ----------- */
/* ------- begin -------------------------- Stark.c ----------------- */
#define AVERAGE_ATOMIC_WEIGHT 28.0
void Stark(AtomicLine *line, double *GStark)
{
/* --- Quadratic Stark broadening by electrons and singly charged
ions.
Gamma = 11.37 * vrel^1/3 * C_4^2/3 * (ne + nion)
Use estimate for C_4 from Traving.
See: Traving 1960, "Uber die Theorie der Druckverbreiterung
von Spektrallinien", p 93
-- Mihalas 1978, p. 282ff, and Table 9-1.
-- David F. Gray, Observation and Analysis of Stellar
Photospheres (1992), 2nd ed., p. 216, eq. 11.33
if line->cStark < 0 then Gamma = abs(line->cStark) * ne
-- -------------- */
const char routineName[] = "Stark";
register int k, ic;
int Z;
double C4, C, Cm, m_electron = M_ELECTRON/AMU, cStark23, cStark,
neff_u, neff_l, m_atom_avg = AVERAGE_ATOMIC_WEIGHT, vrel,
E_Rydberg;
Atom *atom = line->atom;
if (line->cStark < 0.0) {
cStark = fabs(line->cStark);
for (k = 0; k < atmos.Nspace; k++)
GStark[k] = cStark * atmos.ne[k];
} else {
/* --- Constants for relative velocity. We assume that nion = ne
(see Gray), and that the average atomic weight of ionic
perturbers is given by AVERAGE_ATOMIC_WEIGHT. -- --------- */
C = 8.0 * KBOLTZMANN / (PI * AMU * atom->weight);
Cm = pow(1.0 + atom->weight/m_electron, 0.16666667) +
pow(1.0 + atom->weight/m_atom_avg, 0.16666667);
/* --- Find core charge Z and effective quantum numbers neff_u
and neff_l for upper and lower level -- -------------- */
Z = atom->stage[line->i] + 1;
for (ic = line->i + 1;
((atom->stage[ic] < atom->stage[line->i]+1) &&
(ic < atom->Nlevel)); ic++);
if (atom->stage[ic] == atom->stage[line->i]) {
sprintf(messageStr, "Cannot find overlying continuum for level %d",
line->i);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
E_Rydberg = E_RYDBERG / (1.0 + M_ELECTRON / (atom->weight * AMU));
neff_l = Z * sqrt(E_Rydberg / (atom->E[ic] - atom->E[line->i]));
neff_u = Z * sqrt(E_Rydberg / (atom->E[ic] - atom->E[line->j]));
C4 = (SQ(Q_ELECTRON) / (4.0 * PI * EPSILON_0)) * RBOHR *
(2.0*PI * SQ(RBOHR) / HPLANCK) / (18.0 * SQ(Z)*SQ(Z)) *
(SQ(neff_u*(5.0*SQ(neff_u) + 1.0)) -
SQ(neff_l*(5.0*SQ(neff_l) + 1.0)));
cStark23 = 11.37 * pow(line->cStark * C4, 0.66666667);
for (k = 0; k < atmos.Nspace; k++) {
vrel = pow(C * atmos.T[k], 0.16666667) * Cm;
GStark[k] = cStark23 * vrel * atmos.ne[k];
}
}
}
/* ------- end ---------------------------- Stark.c ----------------- */
/* ------- begin -------------------------- StarkLinear.c ----------- */
void StarkLinear(AtomicLine *line, double *GStark)
{
/* --- Linear Stark broadening by electrons for hydrogen lines.
See: K. Sutton (1978), JQSRT 20, 333-343
GStark = a_1 * [0.60 * (n_u^2 - n_l^2) * (N_e)^(2/3) * CM_TO_M^2]
TMPD changed 2023.08.02:
Multiplied by 4 * pi * 0.425, to follow Sutton (1978) eq. (24) and
have result in full width half maximum in angular frequency (rad/s).
-- -------------- */
const char routineName[] = "StarkLinear";
register int k;
char config[4], *ptr;
int n_upper, n_lower;
double a1, C;
Atom *atom = line->atom;
if (strstr(atom->ID, "H ") == NULL) {
sprintf(messageStr, "Model is not a hydrogen atom: %s", atom->ID);
Error(ERROR_LEVEL_2, routineName, messageStr);
}
/* --- Find principal quantum number of lower and upper level -- -- */
sscanf(atom->label[line->i], "H I %s", config);
ptr = config; while (isdigit(*ptr)) ptr++; *ptr = ' ';
sscanf(config, "%d", &n_lower);
sscanf(atom->label[line->j], "H I %s", config);
ptr = config; while (isdigit(*ptr)) ptr++; *ptr = ' ';
sscanf(config, "%d", &n_upper);
if (n_upper - n_lower == 1)
a1 = 0.642;
else
a1 = 1.0;
C = 4.0 * PI * 0.425 * a1 * 0.6 * (SQ(n_upper) - SQ(n_lower)) * SQ(CM_TO_M);
for (k = 0; k < atmos.Nspace; k++)
GStark[k] = C * pow(atmos.ne[k], 0.66666667);
}
/* ------- end ---------------------------- StarkLinear.c ----------- */
/* ------- begin -------------------------- Damping.c --------------- */
void Damping(AtomicLine *line, double *adamp)
{
register int k;
double cDop, *Qelast;
Atom *atom;
cDop = (NM_TO_M * line->lambda0) / (4.0 * PI);
atom = line->atom;
Qelast = (double *) calloc(atmos.Nspace, sizeof(double));
/* --- Add van der Waals broadening -- -------------- */
if ((line->cvdWaals[0] > 0.0) || (line->cvdWaals[2] > 0.0)) {
VanderWaals(line, adamp);
for (k = 0; k < atmos.Nspace; k++) Qelast[k] += adamp[k];
}
/* --- Add Quadratic Stark broadening -- -------------- */
if (line->cStark != 0.0) {
Stark(line, adamp);
for (k = 0; k < atmos.Nspace; k++) Qelast[k] += adamp[k];
}
/* --- Add Linear Stark broadening for hydrogen only -- --------- */
if (strstr(atom->ID, "H ")) {
StarkLinear(line, adamp);
for (k = 0; k < atmos.Nspace; k++) Qelast[k] += adamp[k];
}
/* --- Store the total rate of elastic collisions in case of PRD */
if (line->PRD && line->Qelast != NULL) {
for (k = 0; k < atmos.Nspace; k++)
line->Qelast[k] = Qelast[k];
}
for (k = 0; k < atmos.Nspace; k++)
adamp[k] = (line->Grad + Qelast[k]) * cDop / atom->vbroad[k];
free(Qelast);
}
/* ------- end ---------------------------- Damping.c --------------- */
/* ------- begin -------------------------- MolecularDamping.c ------ */
void MolecularDamping(MolecularLine *mrt, double *adamp)
{
register int k;
double cDop;
Molecule *molecule;
cDop = (NM_TO_M * mrt->lambda0) / (4.0 * PI);
molecule = mrt->molecule;
/* --- For now only natural broadening due to the line itself. -- - */
for (k = 0; k < atmos.Nspace; k++)
adamp[k] = mrt->Aji * cDop / molecule->vbroad[k];
}
/* ------- end ---------------------------- MolecularDamping.c ------ */