-
Notifications
You must be signed in to change notification settings - Fork 17
/
solvene.c
219 lines (159 loc) · 6.16 KB
/
solvene.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/* ------- file: -------------------------- solvene.c ---------------
Version: rh2.0
Author: Han Uitenbroek (huitenbroek@nso.edu)
Last modified: Wed Nov 17 16:29:32 2010 --
-------------------------- ----------RH-- */
/* --- Various routines to solve for the electron density, given:
T -- The kinetic electron temperature
nHtot -- The total hydrogen density
Assuming Saha - Boltzmann for the equilibrium between the
ionization stages, and using the NON-LTE values for atoms that
MLTEpops = TRUE.
See: D. Mihalas (1978), in "Stellar Atmospheres", pp. 114-119
When keyword fromscratch is set the electron density is
calculated from scratch, using pure Hydrogen ionization
as initial guess. Otherwise, the values passed in ne are used.
-- -------------- */
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "rh.h"
#include "atom.h"
#include "atmos.h"
#include "constant.h"
#include "error.h"
#include "statistics.h"
#define MAX_ELECTRON_ERROR 1.0E-2
#define N_MAX_ELECTRON_ITERATIONS 100
#define N_MAX_ELEMENT 20
/* --- Function prototypes -- -------------- */
double getKuruczpf(Element *element, int stage, int k);
/* --- Global variables -- -------------- */
extern Atmosphere atmos;
extern char messageStr[];
/* ------- begin -------------------------- Solve_ne.c -------------- */
void Solve_ne(double *ne, bool_t fromscratch)
{
const char routineName[] = "Solvene";
register int k, n, j;
int Nmaxstage, niter;
double *fjk, *dfjk, error, ne_old, akj, sum, PhiH, C1, Uk,
dne, dnemax, *np, PhiHmin;
getCPU(3, TIME_START, NULL);
C1 = (HPLANCK/(2.0*PI*M_ELECTRON)) * (HPLANCK/KBOLTZMANN);
/* --- Figure out the largest array size needed so that we do not
have to allocate and free memory all the time -- ----------- */
Nmaxstage = 0;
for (n = 0; n < atmos.Nelem; n++)
Nmaxstage = MAX(Nmaxstage, atmos.elements[n].Nstage);
fjk = (double *) malloc(Nmaxstage * sizeof(double));
dfjk = (double *) malloc(Nmaxstage * sizeof(double));
np = atmos.H->n[atmos.H->Nlevel-1];
for (k = 0; k < atmos.Nspace; k++) {
if (fromscratch) {
/* --- Get the initial solution from ionization of H only -- -- */
if (atmos.H_LTE) {
Uk = getKuruczpf(&atmos.elements[0], 0, k);
PhiH = 0.5 * pow(C1/atmos.T[k], 1.5) *
exp(Uk + atmos.elements[0].ionpot[0]/(KBOLTZMANN*atmos.T[k]));
ne_old = (sqrt(1.0 + 4.0*atmos.nHtot[k]*PhiH) - 1.0) / (2.0*PhiH);
} else
ne_old = np[k];
/* --- Copy into ne as well to calculate first fij and dfij - - */
ne[k] = ne_old;
} else {
/* --- Use original electron density as starting guess -- ----- */
ne_old = ne[k];
}
niter = 0;
while (niter < N_MAX_ELECTRON_ITERATIONS) {
error = ne_old / atmos.nHtot[k];
sum = 0.0;
for (n = 0; n < atmos.Nelem; n++) {
getfjk(&atmos.elements[n], ne_old, k, fjk, dfjk);
/* --- Contribution from Hminus -- -------------- */
if (n == 0) {
PhiHmin = 0.25*pow(C1/atmos.T[k], 1.5) *
exp(E_ION_HMIN / (KBOLTZMANN * atmos.T[k]));
error += ne_old * fjk[0] * PhiHmin;
sum -= (fjk[0] + ne_old * dfjk[0]) * PhiHmin;
}
for (j = 1; j < atmos.elements[n].Nstage; j++) {
akj = atmos.elements[n].abund * j;
error -= akj * fjk[j];
sum += akj * dfjk[j];
}
}
ne[k] = ne_old -
atmos.nHtot[k] * error / (1.0 - atmos.nHtot[k] * sum);
dne = fabs((ne[k] - ne_old)/ne_old);
ne_old = ne[k];
if (dne <= MAX_ELECTRON_ERROR) break;
niter++;
}
if (dne > MAX_ELECTRON_ERROR) {
sprintf(messageStr, "Electron density iteration not converged:\n"
" spatial location: %d, temperature: %6.1f [K], \n"
" density: %9.3E [m^-3],\n dnemax: %9.3E\n",
k, atmos.T[k], atmos.nHtot[k], dne);
Error(WARNING, routineName, messageStr);
}
}
free(fjk); free(dfjk);
getCPU(3, TIME_POLL, "Electron density");
}
/* ------- end ---------------------------- Solve_ne.c -------------- */
/* ------- begin -------------------------- getfjk.c ---------------- */
void getfjk(Element *element, double ne, int k, double *fjk, double *dfjk)
{
register int i, j;
double C1, sum1, sum2, CT_ne, Uk, Ukp1;
Atom *atom;
/* --- Get the fractional population f_j(ne, T) = N_j/N for element
element and its partial derivative with ne. -- ------------- */
if (element->model && element->model->NLTEpops) {
/* --- If element has NLTE populations then use these -- -------- */
atom = element->model;
for (j = 0; j < element->Nstage; j++) {
fjk[j] = 0.0;
dfjk[j] = 0.0;
}
for (i = 0; i < atom->Nlevel; i++)
fjk[atom->stage[i]] += atom->stage[i] * atom->n[i][k];
for (j = 0; j < element->Nstage; j++) fjk[j] /= atom->ntotal[k];
} else {
/* --- Else use estimate from LTE from Kurucz partition
functions -- -------------- */
C1 = (HPLANCK/(2.0*PI*M_ELECTRON)) * (HPLANCK/KBOLTZMANN);
CT_ne = 2.0 * pow(C1/atmos.T[k], -1.5) / ne;
sum1 = 1.0;
sum2 = 0.0;
fjk[0] = 1.0;
dfjk[0] = 0.0;
Uk = getKuruczpf(element, 0, k);
for (j = 1; j < element->Nstage; j++) {
Ukp1 = getKuruczpf(element, j, k);
fjk[j] = fjk[j-1] * CT_ne *
exp(Ukp1 - Uk - element->ionpot[j-1]/(KBOLTZMANN*atmos.T[k]));
dfjk[j] = -j * fjk[j] / ne;
sum1 += fjk[j];
sum2 += dfjk[j];
Uk = Ukp1;
}
for (j = 0; j < element->Nstage; j++) {
fjk[j] /= sum1;
dfjk[j] = (dfjk[j] - fjk[j] * sum2) / sum1;
}
}
}
/* ------- end ---------------------------- getfjk.c ---------------- */
/* ------- begin -------------------------- getKuruczpf.c ----------- */
double getKuruczpf(Element *element, int stage, int k)
{
bool_t hunt = TRUE;
double Uk;
Linear(atmos.Npf, atmos.Tpf, element->pf[stage],
1, &atmos.T[k], &Uk, hunt);
return Uk;
}
/* ------- end ---------------------------- getKuruczpf.c ----------- */