diff --git a/src/dmrg.jl b/src/dmrg.jl index 39ca7a2..bda53a7 100644 --- a/src/dmrg.jl +++ b/src/dmrg.jl @@ -1,5 +1,5 @@ using Adapt: adapt -using KrylovKit: eigsolve +using KrylovKit: eigsolve, Arnoldi, KrylovDefaults, realeigsolve using NDTensors: scalartype, timer using Printf: @printf using TupleTools: TupleTools @@ -131,10 +131,18 @@ Optional keyword arguments: - `eigsolve_tol::Number = 1e-14` - Krylov eigensolver tolerance. [^krylovkit] - `eigsolve_maxiter::Int = 1` - number of times the Krylov subspace can be rebuilt. [^krylovkit] + - `eigsolve_eager=false` - if true, eagerly compute the eigenvalue or Schur decomposition + after every expansion of the Krylov subspace to test for convergence, otherwise wait + until the Krylov subspace has dimension `krylovdim`. This can result in a faster return, + for example if the initial guess is very good, but also has some overhead, as many more + dense Schur factorizations need to be computed. [^krylovkit] - `eigsolve_verbosity::Int = 0` - verbosity level of the Krylov solver. Warning: enabling this will lead to a lot of outputs to the terminal. [^krylovkit] - `ishermitian=true` - boolean specifying if dmrg should assume the MPO (or more general linear operator) represents a Hermitian matrix. [^krylovkit] + - `realeigenvalues=ishermitian` = boolean specifying if the operator has real eigenvalues. + Primarily used to avoid using complex numbers if the operator is not Hermitian and both + the operator and initial MPS are real valued. - `noise` - float or array of floats specifying strength of the "noise term" to use to aid convergence. - `mindim` - integer or array of integers specifying the minimum size of the @@ -172,6 +180,8 @@ function dmrg( eigsolve_verbosity=0, eigsolve_which_eigenvalue=:SR, ishermitian=true, + realeigenvalues=ishermitian, + eigsolve_eager=false ) if length(psi0) == 1 error( @@ -236,16 +246,37 @@ function dmrg( end @timeit_debug timer "dmrg: eigsolve" begin - vals, vecs = eigsolve( - PH, - phi, - 1, - eigsolve_which_eigenvalue; - ishermitian, - tol=eigsolve_tol, - krylovdim=eigsolve_krylovdim, - maxiter=eigsolve_maxiter, - ) + if ishermitian || !realeigenvalues + vals, vecs = eigsolve( + PH, + phi, + 1, + eigsolve_which_eigenvalue; + ishermitian, + tol=eigsolve_tol, + krylovdim=eigsolve_krylovdim, + maxiter=eigsolve_maxiter, + eager=eigsolve_eager, + verbosity=eigsolve_verbosity + ) + else + alg = Arnoldi(; + krylovdim=eigsolve_krylovdim, + maxiter=eigsolve_maxiter, + tol=eigsolve_tol, + orth=KrylovDefaults.orth, + eager=eigsolve_eager, + verbosity=eigsolve_verbosity + ) + + vals, vecs = realeigsolve( + PH, + phi, + 1, + eigsolve_which_eigenvalue, + alg + ) + end end energy = vals[1]