-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsound.c
executable file
·1364 lines (1277 loc) · 43.5 KB
/
sound.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Sound modules that do not depend on alsa or portaudio
*/
#include <Python.h>
#include <complex.h>
#include <math.h>
#include <sys/time.h>
#include <time.h>
#ifdef MS_WINDOWS
#include <Winsock2.h>
#else
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#endif
#include "quisk.h"
#include "filter.h"
// Thanks to Franco Spinelli for this fix:
// The H101 hardware using the PCM2904 chip has a one-sample delay between
// channels that must be fixed in software. If you have this problem,
// set channel_delay in your config file. The FIX_H101 #define is obsolete
// but still works. It is equivalent to channel_delay = channel_q.
// The structure sound_dev represents a sound device to open. If portaudio_index
// is -1, it is an ALSA sound device; otherwise it is a portaudio device with that
// index. Portaudio devices have names that start with "portaudio". A device name
// can be the null string, meaning the device should not be opened. The sound_dev
// "handle" is either an alsa handle or a portaudio stream if the stream is open;
// otherwise it is NULL for a closed device.
// Set DEBUG_MIC (in quisk.h) to send the microphone samples to the FFT instead of the radio samples.
// The sample rate and mic sample rate must be 48000. Use -c n2adr/conf4.py.
// 0: Normal operation.
// 1: Send filtered mic output to the FFT.
// 2: Send mic playback to the FFT and to the radio sound playback device "Playback".
// 3: Send unfiltered mic output to the FFT.
#if DEBUG_IO
static int debug_timer = 1; // count up number of samples
#endif
static struct sound_dev Capture, Playback, MicCapture, MicPlayback, DigitalInput, DigitalOutput, RawSamplePlayback;
struct sound_dev quisk_DigitalRx1Output;
// These are arrays of all capture and playback devices, and MUST end with NULL:
static struct sound_dev * CaptureDevices[] = {&Capture, &MicCapture, &DigitalInput, NULL};
static struct sound_dev * PlaybackDevices[] = {&Playback, &MicPlayback, &DigitalOutput, &RawSamplePlayback, &quisk_DigitalRx1Output, NULL};
static SOCKET radio_sound_socket = INVALID_SOCKET; // send radio sound samples to a socket
static SOCKET radio_sound_mic_socket = INVALID_SOCKET; // receive mic samples from a socket
static int radio_sound_nshorts; // number of shorts (two bytes) to send
static int radio_sound_mic_nshorts; // number of shorts (two bytes) to receive
struct sound_conf quisk_sound_state; // Current sound status
struct wav_file {
FILE * fp;
char file_name[QUISK_PATH_SIZE];
int enable;
unsigned long samples;
};
static struct wav_file file_rec_audio, file_rec_samples, file_rec_mic;
static int file_record_button; // the file record button is down
static double digital_output_level = 0.7;
static int dc_remove_bw=100; // bandwidth of DC removal filter
static ty_sample_start pt_sample_start;
static ty_sample_stop pt_sample_stop;
static ty_sample_read pt_sample_read;
ty_sample_write quisk_pt_sample_write;
static complex double cSamples[SAMP_BUFFER_SIZE]; // Complex buffer for samples
#if 0
void quisk_sample_level(const char * msg, complex double * cSamples, int nSamples, double scale)
{
static double time0 = 0;
static double level = 0;
static int count = 0;
double d;
int i;
count += nSamples;
for (i = 0; i < nSamples; i++) {
d = cabs(cSamples[i]);
if (level < d)
level = d;
}
if (QuiskTimeSec() - time0 > 0.1) {
printf ("sample_level %s: %10.6lf count %8d\n", msg, level / scale, count);
level = 0;
count = 0;
time0 = QuiskTimeSec();
}
}
#endif
void ptimer(int counts) // used for debugging
{ // print the number of counts per second
static unsigned int calls=0, total=0;
static time_t time0=0;
time_t dt;
if (time0 == 0) {
time0 = (int)(QuiskTimeSec() * 1.e6);
return;
}
total += counts;
calls++;
if (calls % 1000 == 0) {
dt = (int)(QuiskTimeSec() * 1.e6) - time0;
printf("ptimer: %d counts in %d microseconds %.3f counts/sec\n",
total, (unsigned)dt, (double)total * 1E6 / dt);
}
}
static void delay_sample (struct sound_dev * dev, double * dSamp, int nSamples)
{ // Delay the I or Q data stream by one sample.
// cSamples is double D[nSamples][2]
double d;
double * first, * last;
if (nSamples < 1)
return;
if (dev->channel_Delay == dev->channel_I) {
first = dSamp;
last = dSamp + nSamples * 2 - 2;
}
else if (dev->channel_Delay == dev->channel_Q) {
first = dSamp + 1;
last = dSamp + nSamples * 2 - 1;
}
else {
return;
}
d = dev->save_sample;
dev->save_sample = *last;
while (--nSamples) {
*last = *(last - 2);
last -= 2;
}
*first = d;
}
static void correct_sample (struct sound_dev * dev, complex double * cSamples, int nSamples)
{ // Correct the amplitude and phase
int i;
double re, im;
if (dev->doAmplPhase) { // amplitude and phase corrections
for (i = 0; i < nSamples; i++) {
re = creal(cSamples[i]);
im = cimag(cSamples[i]);
re = re * dev->AmPhAAAA;
im = re * dev->AmPhCCCC + im * dev->AmPhDDDD;
cSamples[i] = re + I * im;
}
}
}
static void DCremove(complex double * cSamples, int nSamples, int sample_rate, int key_state)
{
int i;
double omega, Qsin, Qcos, H0, x;
complex double c;
static int old_sample_rate = 0;
static int old_bandwidth = 0;
static double alpha = 0.95;
static complex double dc_remove = 0;
static complex double dc_average = 0; // Average DC component in samples
static complex double dc_sum = 0;
static int dc_count = 0;
static int dc_key_delay = 0;
if (sample_rate != old_sample_rate || dc_remove_bw != old_bandwidth) {
old_sample_rate = sample_rate; // calculate a new alpha
old_bandwidth = dc_remove_bw;
if (old_bandwidth > 0) {
omega = M_PI * old_bandwidth / (old_sample_rate / 2.0);
Qsin = sin(omega);
Qcos = cos(omega);
H0 = 1.0 / sqrt(2.0);
x = ((Qcos - 1) * (Qcos - 1) + Qsin * Qsin) / (H0 * H0) - Qsin * Qsin;
x = sqrt(x);
alpha = Qcos - x;
//printf ("DC remove: alpha %.3f rate %i bw %i\n", alpha, old_sample_rate, old_bandwidth);
}
else {
//printf("DC remove: disable\n");
}
}
if (quisk_is_vna || old_bandwidth == 0) {
}
else if (old_bandwidth == 1) {
if (key_state) {
dc_key_delay = 0;
dc_sum = 0;
dc_count = 0;
}
else if (dc_key_delay < old_sample_rate) {
dc_key_delay += nSamples;
}
else {
dc_count += nSamples;
for (i = 0; i < nSamples; i++) // Correction for DC offset in samples
dc_sum += cSamples[i];
if (dc_count > old_sample_rate * 2) {
dc_average = dc_sum / dc_count;
//printf("dc average %lf %lf %d\n", creal(dc_average), cimag(dc_average), dc_count);
//printf("dc polar %.0lf %d\n", cabs(dc_average),
// (int)(360.0 / 2 / M_PI * atan2(cimag(dc_average), creal(dc_average))));
dc_sum = 0;
dc_count = 0;
}
}
for (i = 0; i < nSamples; i++) // Correction for DC offset in samples
cSamples[i] -= dc_average;
}
else if (old_bandwidth > 1) {
for (i = 0; i < nSamples; i++) { // DC removal; R.G. Lyons page 553; 3rd Ed. p 762
c = cSamples[i] + dc_remove * alpha;
cSamples[i] = c - dc_remove;
dc_remove = c;
}
}
}
static void record_audio(struct wav_file * wavfile, complex double * cSamples, int nSamples)
{ // Record the speaker audio to a WAV file, PCM, 16 bits, one channel
// TODO: correct for big-endian byte order
FILE * fp;
int j;
short samp; // must be 2 bytes
unsigned int u; // must be 4 bytes
unsigned short s; // must be 2 bytes
switch (nSamples) {
case -1: // Open the file
if (wavfile->fp)
fclose(wavfile->fp);
wavfile->fp = fp = fopen(wavfile->file_name, "wb");
if ( ! fp) {
wavfile->enable = 0;
return;
}
if (fwrite("RIFF", 1, 4, fp) != 4) {
fclose(fp);
wavfile->fp = NULL;
wavfile->enable = 0;
return;
}
// pcm data, 16-bit samples, one channel
u = 36;
fwrite(&u, 4, 1, fp);
fwrite("WAVE", 1, 4, fp);
fwrite("fmt ", 1, 4, fp);
u = 16;
fwrite(&u, 4, 1, fp);
s = 1; // wave_format_pcm
fwrite(&s, 2, 1, fp);
s = 1; // number of channels
fwrite(&s, 2, 1, fp);
u = Playback.sample_rate; // sample rate
fwrite(&u, 4, 1, fp);
u *= 2;
fwrite(&u, 4, 1, fp);
s = 2;
fwrite(&s, 2, 1, fp);
s = 16;
fwrite(&s, 2, 1, fp);
fwrite("data", 1, 4, fp);
u = 0;
fwrite(&u, 4, 1, fp);
wavfile->samples = 0;
break;
case -2: // close the file
if (wavfile->fp)
fclose(wavfile->fp);
wavfile->fp = NULL;
break;
default: // write the sound data to the file
fp = wavfile->fp;
u = (unsigned int)nSamples;
if (wavfile->samples >= 2147483629 - u) { // limit size to 2**32 - 1
wavfile->samples = ~0;
u = ~0;
fseek(fp, 40, SEEK_SET); // seek from the beginning
fwrite(&u, 4, 1, fp);
fseek(fp, 4, SEEK_SET);
fwrite(&u, 4, 1, fp);
}
else {
wavfile->samples += u;
fseek(fp, 40, SEEK_SET);
u = 2 * wavfile->samples;
fwrite(&u, 4, 1, fp);
fseek(fp, 4, SEEK_SET);
u += 36;
fwrite(&u, 4, 1, fp);
}
fseek(fp, 0, SEEK_END); // seek to the end
for (j = 0; j < nSamples; j++) {
samp = (short)(creal(cSamples[j]) / 65536.0);
fwrite(&samp, 2, 1, fp);
}
break;
}
}
static int record_samples(struct wav_file * wavfile, complex double * cSamples, int nSamples)
{ // Record the samples to a WAV file, two float samples I/Q
FILE * fp; // TODO: correct for big-endian byte order
int j;
float samp; // must be 4 bytes
unsigned int u; // must be 4 bytes
unsigned short s; // must be 2 bytes
switch (nSamples) {
case -1: // Open the file
if (wavfile->fp)
fclose(wavfile->fp);
wavfile->fp = fp = fopen(wavfile->file_name, "wb");
if ( ! fp) {
wavfile->enable = 0;
return 0;
}
if (fwrite("RIFF", 1, 4, fp) != 4) {
fclose(fp);
wavfile->fp = NULL;
wavfile->enable = 0;
return 0;
}
// IEEE float data, two channels
u = 36;
fwrite(&u, 4, 1, fp);
fwrite("WAVE", 1, 4, fp);
fwrite("fmt ", 1, 4, fp);
u = 16;
fwrite(&u, 4, 1, fp);
s = 3; // wave_format_ieee_float
fwrite(&s, 2, 1, fp);
s = 2; // number of channels
fwrite(&s, 2, 1, fp);
u = quisk_sound_state.sample_rate; // sample rate
fwrite(&u, 4, 1, fp);
u *= 8;
fwrite(&u, 4, 1, fp);
s = 8;
fwrite(&s, 2, 1, fp);
s = 32;
fwrite(&s, 2, 1, fp);
// Add a LIST chunk of type INFO for further metadata
fwrite("data", 1, 4, fp);
u = 0;
fwrite(&u, 4, 1, fp);
wavfile->samples = 0;
break;
case -2: // close the file
if (wavfile->fp)
fclose(wavfile->fp);
wavfile->fp = NULL;
wavfile->enable = 0;
break;
default: // write the sound data to the file
fp = wavfile->fp;
if ( ! fp)
return 0;
u = (unsigned int)nSamples;
if (wavfile->samples >= 536870907 - u) { // limit size to 2**32 - 1
wavfile->samples = ~0;
u = ~0;
fseek(fp, 40, SEEK_SET); // seek from the beginning
fwrite(&u, 4, 1, fp);
fseek(fp, 4, SEEK_SET); // seek from the beginning
fwrite(&u, 4, 1, fp);
}
else {
wavfile->samples += u;
fseek(fp, 40, SEEK_SET); // seek from the beginning
u = 8 * wavfile->samples;
fwrite(&u, 4, 1, fp);
fseek(fp, 4, SEEK_SET); // seek from the beginning
u += 36 ;
fwrite(&u, 4, 1, fp);
}
fseek(fp, 0, SEEK_END); // seek to the end
for (j = 0; j < nSamples; j++) {
samp = creal(cSamples[j]) / CLIP32;
fwrite(&samp, 4, 1, fp);
samp = cimag(cSamples[j]) / CLIP32;
fwrite(&samp, 4, 1, fp);
}
break;
}
return 1;
}
void quisk_sample_source(ty_sample_start start, ty_sample_stop stop, ty_sample_read read)
{
pt_sample_start = start;
pt_sample_stop = stop;
pt_sample_read = read;
}
void quisk_sample_source4(ty_sample_start start, ty_sample_stop stop, ty_sample_read read, ty_sample_write write)
{
pt_sample_start = start;
pt_sample_stop = stop;
pt_sample_read = read;
quisk_pt_sample_write = write;
}
/*!
* \brief Driver interface for reading samples from a device
*
* \param dev Input. Device to read from
* \param cSamples Output. Read samples.
* \returns number of samples read
*/
int read_sound_interface(
struct sound_dev* dev,
complex double * cSamples
)
{
int i, nSamples;
double avg, samp, re, im, frac, diff;
// Read using correct driver.
switch( dev->driver )
{
case DEV_DRIVER_PORTAUDIO:
#ifdef QUISK_NO_PORTAUDIO
nSamples = 0;
#else
nSamples = quisk_read_portaudio(dev, cSamples);
#endif
break;
case DEV_DRIVER_ALSA:
nSamples = quisk_read_alsa(dev, cSamples);
break;
case DEV_DRIVER_PULSEAUDIO:
nSamples = quisk_read_pulseaudio(dev, cSamples);
break;
case DEV_DRIVER_NONE:
default:
return 0;
}
if ( ! cSamples || nSamples <= 0 || dev->sample_rate <= 0) // cSamples can be NULL
return nSamples;
// Calculate average squared level
avg = dev->average_square;
frac = 1.0 / (0.2 * dev->sample_rate);
for (i = 0; i < nSamples; i++) {
re = creal(cSamples[i]);
im = cimag(cSamples[i]);
samp = re * re + im * im;
diff = samp - avg;
if (diff >= 0)
avg = samp; // set to peak value
else
avg = avg + frac * diff;
}
dev->average_square = avg;
return nSamples;
}
/*!
* \brief Driver interface for playing samples to a device
*
* \param dev Input. Device to play to
* \param nSamples Input. Number of samples to play
* \param cSamples Input. Samples to play
* \param report_latency Input. 1 to report latency, 0 otherwise.
* \param volume Input. [0,1] volume ratio
* \returns number of samples read
*/
void play_sound_interface(
struct sound_dev* dev,
int nSamples,
complex double * cSamples,
int report_latency,
double volume
)
{
int i;
double avg, samp, re, im, frac, diff;
if (cSamples && nSamples > 0 && dev->sample_rate > 0) {
// Calculate average squared level
avg = dev->average_square;
frac = 1.0 / (0.2 * dev->sample_rate);
for (i = 0; i < nSamples; i++) {
re = creal(cSamples[i]);
im = cimag(cSamples[i]);
samp = re * re + im * im;
diff = samp - avg;
if (diff >= 0)
avg = samp; // set to peak value
else
avg = avg + frac * diff;
}
dev->average_square = avg;
}
// Play using correct driver.
switch( dev->driver )
{
case DEV_DRIVER_PORTAUDIO:
#ifndef QUISK_NO_PORTAUDIO
quisk_play_portaudio(dev, nSamples, cSamples, report_latency, volume);
#endif
break;
case DEV_DRIVER_ALSA:
quisk_play_alsa(dev, nSamples, cSamples, report_latency, volume);
break;
case DEV_DRIVER_PULSEAUDIO:
quisk_play_pulseaudio(dev, nSamples, cSamples, report_latency, volume);
break;
case DEV_DRIVER_NONE:
default:
break;
}
}
static int read_radio_sound_socket(complex double * cSamples)
{
int i, bytes, nSamples;
short s;
double d;
struct timeval tm_wait;
char buf[1500];
fd_set fds;
static int started = 0;
nSamples = 0;
while (1) { // read all available blocks
if (nSamples > SAMP_BUFFER_SIZE / 2)
break;
tm_wait.tv_sec = 0;
tm_wait.tv_usec = 0;
FD_ZERO (&fds);
FD_SET (radio_sound_mic_socket, &fds);
if (select (radio_sound_mic_socket + 1, &fds, NULL, NULL, &tm_wait) != 1)
break;
bytes = recv(radio_sound_mic_socket, buf, 1500, 0);
if (bytes == radio_sound_mic_nshorts * 2) { // required block size
started = 1;
for (i = 2; i < bytes; i += 2) {
memcpy(&s, buf + i, 2);
d = (double)s / CLIP16 * CLIP32; // convert 16-bit samples to 32 bits
cSamples[nSamples++] = d + I * d;
}
}
}
if ( ! started && nSamples == 0) {
i = send(radio_sound_mic_socket, "rr", 2, 0);
if (i != 2)
printf("read_radio_sound_mic_socket returned %d\n", i);
}
return nSamples;
}
static void send_radio_sound_socket(complex double * cSamples, int count, double volume)
{ // Send count samples. Each sample is sent as two shorts (4 bytes) of I/Q data.
// Send an initial two bytes of zero for each block.
// Transmission is delayed until a whole block of data is available.
int i, sent;
static short udp_iq[750] = {0}; // Documented maximum radio sound samples is 367
static int udp_size = 1;
for (i = 0; i < count; i++) {
udp_iq[udp_size++] = (short)(creal(cSamples[i]) * volume * (double)CLIP16 / CLIP32);
udp_iq[udp_size++] = (short)(cimag(cSamples[i]) * volume * (double)CLIP16 / CLIP32);
if (udp_size >= radio_sound_nshorts) { // check count
sent = send(radio_sound_socket, (char *)udp_iq, udp_size * 2, 0);
if (sent != udp_size * 2)
printf("Send audio socket returned %d\n", sent);
udp_size = 1;
}
}
}
int quisk_read_sound(void) // Called from sound thread
{ // called in an infinite loop by the main program
int i, nSamples, mic_count, mic_interp, retval, is_cw, mic_sample_rate;
double mic_play_volume;
complex double tx_mic_phase;
static double cwEnvelope=0;
static double cwCount=0;
static complex double tuneVector = (double)CLIP32 / CLIP16; // Convert 16-bit to 32-bit samples
static struct quisk_cFilter filtInterp={NULL};
int key_state, is_DGT;
#if DEBUG_MIC == 1
complex double tmpSamples[SAMP_BUFFER_SIZE];
#endif
quisk_sound_state.interupts++;
key_state = quisk_is_key_down(); //reading this once is important for predicable bevavior on cork/flush
#if DEBUG_IO > 1
QuiskPrintTime("Start read_sound", 0);
#endif
#ifndef MS_WINDOWS
if (quisk_sound_state.IQ_server[0] && ! (rxMode == CWL || rxMode == CWU)) {
if (Capture.handle && Capture.driver == DEV_DRIVER_PULSEAUDIO) {
if (key_state == 1 && !Capture.cork_status)
quisk_cork_pulseaudio(&Capture, 1);
else if (key_state == 0 && Capture.cork_status) {
quisk_cork_pulseaudio(&Capture, 0);
quisk_flush_pulseaudio(&Capture);
}
}
if (MicPlayback.handle && MicPlayback.driver == DEV_DRIVER_PULSEAUDIO) {
if (key_state == 0 && !MicPlayback.cork_status)
quisk_cork_pulseaudio(&MicPlayback, 1);
else if (key_state == 1 && MicPlayback.cork_status) {
quisk_cork_pulseaudio(&MicPlayback, 0);
quisk_flush_pulseaudio(&MicPlayback);
}
}
}
else if (quisk_sound_state.IQ_server[0]) {
if (Capture.handle && Capture.driver == DEV_DRIVER_PULSEAUDIO) {
if (Capture.cork_status)
quisk_cork_pulseaudio(&Capture, 0);
}
if (MicPlayback.handle && MicPlayback.driver == DEV_DRIVER_PULSEAUDIO) {
if (MicPlayback.cork_status)
quisk_cork_pulseaudio(&MicPlayback, 0);
}
}
#endif
if (pt_sample_read) { // read samples from SDR-IQ or UDP or SoapySDR
nSamples = (*pt_sample_read)(cSamples);
DCremove(cSamples, nSamples, quisk_sound_state.sample_rate, key_state);
if (nSamples <= 0)
QuiskSleepMicrosec(2000);
}
else if (Capture.handle) { // blocking read from soundcard
nSamples = read_sound_interface(&Capture, cSamples);
if (Capture.channel_Delay >= 0) // delay the I or Q channel by one sample
delay_sample(&Capture, (double *)cSamples, nSamples);
if (Capture.doAmplPhase) // amplitude and phase corrections
correct_sample(&Capture, cSamples, nSamples);
DCremove(cSamples, nSamples, quisk_sound_state.sample_rate, key_state);
if (nSamples <= 0)
QuiskSleepMicrosec(2000);
}
else {
QuiskSleepMicrosec(5000);
nSamples = QuiskDeltaMsec(1) * quisk_sound_state.sample_rate / 1000;
if (nSamples > SAMP_BUFFER_SIZE / 2)
nSamples = SAMP_BUFFER_SIZE / 2;
for (i = 0; i < nSamples; i++)
cSamples[i] = 0;
}
retval = nSamples; // retval remains the number of samples read
#if DEBUG_IO
debug_timer += nSamples;
if (debug_timer >= quisk_sound_state.sample_rate) // one second
debug_timer = 0;
#endif
#if DEBUG_IO > 2
ptimer (nSamples);
#endif
quisk_sound_state.latencyCapt = nSamples; // samples available
#if DEBUG_IO > 1
QuiskPrintTime(" read samples", 0);
#endif
// Perhaps record the Rx samples to a file
if ( ! key_state && file_rec_samples.fp)
record_samples(&file_rec_samples, cSamples, nSamples);
// Perhaps write samples to a loopback device for use by another program
if (RawSamplePlayback.handle)
play_sound_interface(&RawSamplePlayback, nSamples, cSamples, 0, 1.0);
// Perhaps replace the samples with samples from a file
if (quisk_record_state == PLAY_SAMPLES)
quisk_play_samples(cSamples, nSamples);
#if ! DEBUG_MIC
nSamples = quisk_process_samples(cSamples, nSamples);
#endif
#if DEBUG_IO > 1
QuiskPrintTime(" process samples", 0);
#endif
is_DGT = rxMode == DGT_U || rxMode == DGT_L || rxMode == DGT_IQ || rxMode == DGT_FM;
if (quisk_record_state == PLAYBACK)
quisk_tmp_playback(cSamples, nSamples, 1.0); // replace radio sound
else if (quisk_record_state == PLAY_FILE)
quisk_file_playback(cSamples, nSamples, 1.0); // replace radio sound
// Play the demodulated audio
#if DEBUG_MIC != 2
play_sound_interface(&Playback, nSamples, cSamples, 1, quisk_audioVolume);
#endif
if (radio_sound_socket != INVALID_SOCKET)
send_radio_sound_socket(cSamples, nSamples, quisk_audioVolume);
// Play digital if required
if (is_DGT)
play_sound_interface(&DigitalOutput, nSamples, cSamples, 1, digital_output_level);
// Perhaps record the speaker audio to a file
if ( ! key_state && file_rec_audio.fp)
record_audio(&file_rec_audio, cSamples, nSamples); // Record Rx samples
#if DEBUG_IO > 1
QuiskPrintTime(" play samples", 0);
#endif
// Read and process the microphone
mic_sample_rate = quisk_sound_state.mic_sample_rate;
if (MicCapture.handle)
mic_count = read_sound_interface(&MicCapture, cSamples);
else if (radio_sound_mic_socket != INVALID_SOCKET)
mic_count = read_radio_sound_socket(cSamples);
else { // No mic source; use zero samples
mic_count = QuiskDeltaMsec(0) * mic_sample_rate / 1000;
if (mic_count > SAMP_BUFFER_SIZE / 2)
mic_count = SAMP_BUFFER_SIZE / 2;
for (i = 0; i < mic_count; i++)
cSamples[i] = 0;
}
if (quisk_record_state == PLAYBACK) // Discard previous samples and replace with saved sound
quisk_tmp_microphone(cSamples, mic_count);
else if (quisk_record_state == PLAY_FILE) // Discard previous samples and replace with saved sound
quisk_file_microphone(cSamples, mic_count);
if (DigitalInput.handle) {
if (is_DGT) { // Discard previous mic samples and use digital samples
mic_sample_rate = DigitalInput.sample_rate;
mic_count = read_sound_interface(&DigitalInput, cSamples);
}
else { // Read and discard any digital samples
read_sound_interface(&DigitalInput, NULL);
}
}
else if (is_DGT) { // Use zero-valued samples
for (i = 0; i < mic_count; i++)
cSamples[i] = 0;
}
//quisk_sample_level("read mic or DGT", cSamples, mic_count, CLIP16);
// Perhaps record the microphone audio to the speaker audio file
if (key_state && file_rec_audio.fp)
record_audio(&file_rec_audio, cSamples, mic_count);
// Perhaps record the microphone audio to the microphone audio file
if (file_rec_mic.fp)
record_audio(&file_rec_mic, cSamples, mic_count);
if (mic_count > 0) {
#if DEBUG_IO > 1
QuiskPrintTime(" mic-read", 0);
#endif
#if DEBUG_MIC == 3
quisk_process_samples(cSamples, mic_count);
#endif
// quisk_process_microphone returns samples at the sample rate MIC_OUT_RATE
mic_count = quisk_process_microphone(mic_sample_rate, cSamples, mic_count);
#if DEBUG_MIC == 1
for (i = 0; i < mic_count; i++)
tmpSamples[i] = cSamples[i] * (double)CLIP32 / CLIP16; // convert 16-bit samples to 32 bits
quisk_process_samples(tmpSamples, mic_count);
#endif
#if DEBUG_IO > 1
QuiskPrintTime(" mic-proc", 0);
#endif
}
//quisk_sample_level("quisk_process_microphone", cSamples, mic_count, CLIP16);
// Mic playback without a mic is needed for CW
if (MicPlayback.handle) { // Mic playback: send mic I/Q samples to a sound card
//quisk_sample_level("MicPlayback.handle", cSamples, mic_count, CLIP16);
mic_play_volume = 1.0;
if (rxMode == CWL || rxMode == CWU) { // Transmit CW
is_cw = 1;
}
else {
is_cw = 0;
cwCount = 0;
cwEnvelope = 0.0;
}
tx_mic_phase = cexp(( -I * 2.0 * M_PI * quisk_tx_tune_freq) / MicPlayback.sample_rate);
if (is_cw) { // Transmit CW; use capture device for timing, not microphone
cwCount += (double)retval * MicPlayback.sample_rate / quisk_sound_state.sample_rate;
mic_count = 0;
if (quisk_is_key_down()) {
while (cwCount >= 1.0) {
if (cwEnvelope < 1.0) {
cwEnvelope += 1. / (MicPlayback.sample_rate * 5e-3); // 5 milliseconds
if (cwEnvelope > 1.0)
cwEnvelope = 1.0;
}
if (quiskSpotLevel >= 0)
cSamples[mic_count++] = (CLIP16 - 1) * cwEnvelope * quiskSpotLevel / 1000.0 * tuneVector * quisk_sound_state.mic_out_volume;
else
cSamples[mic_count++] = (CLIP16 - 1) * cwEnvelope * tuneVector * quisk_sound_state.mic_out_volume;
tuneVector *= tx_mic_phase;
cwCount -= 1;
}
}
else { // key is up
while (cwCount >= 1.0) {
if (cwEnvelope > 0.0) {
cwEnvelope -= 1.0 / (MicPlayback.sample_rate * 5e-3); // 5 milliseconds
if (cwEnvelope < 0.0)
cwEnvelope = 0.0;
}
cSamples[mic_count++] = (CLIP16 - 1) * cwEnvelope * tuneVector * quisk_sound_state.mic_out_volume;
tuneVector *= tx_mic_phase;
cwCount -= 1;
}
}
}
else if( ! DEBUG_MIC && ! quisk_is_key_down()) { // Not CW and key up: zero samples
mic_play_volume = 0.0;
for (i = 0; i < mic_count; i++)
cSamples[i] = 0.0;
}
// Perhaps interpolate the mic samples back to the mic play rate
mic_interp = MicPlayback.sample_rate / MIC_OUT_RATE;
if ( ! is_cw && mic_interp > 1) {
if (! filtInterp.dCoefs)
quisk_filt_cInit(&filtInterp, quiskFilt12_19Coefs, sizeof(quiskFilt12_19Coefs)/sizeof(double));
mic_count = quisk_cInterpolate(cSamples, mic_count, &filtInterp, mic_interp);
}
// Tune the samples to frequency and convert 16-bit samples to 32-bits (using tuneVector)
if ( ! is_cw) {
for (i = 0; i < mic_count; i++) {
cSamples[i] = conj(cSamples[i]) * tuneVector * quisk_sound_state.mic_out_volume;
tuneVector *= tx_mic_phase;
}
}
// delay the I or Q channel by one sample
if (MicPlayback.channel_Delay >= 0)
delay_sample(&MicPlayback, (double *)cSamples, mic_count);
// amplitude and phase corrections
if (MicPlayback.doAmplPhase)
correct_sample (&MicPlayback, cSamples, mic_count);
// play mic samples
//quisk_sample_level("play MicPlayback", cSamples, mic_count, CLIP32);
play_sound_interface(&MicPlayback, mic_count, cSamples, 1, mic_play_volume);
#if DEBUG_MIC == 2
play_sound_interface(&Playback, mic_count, cSamples, 1, quisk_audioVolume);
quisk_process_samples(cSamples, mic_count);
#endif
}
#if DEBUG_IO > 1
QuiskPrintTime(" finished", 0);
#endif
// Return negative number for error
return retval;
}
int quisk_get_overrange(void) // Called from GUI thread
{ // Return the overrange (ADC clip) counter, then zero it
int i;
i = quisk_sound_state.overrange + Capture.overrange;
quisk_sound_state.overrange = 0;
Capture.overrange = 0;
return i;
}
void quisk_close_sound(void) // Called from sound thread
{
#ifdef MS_WINDOWS
int cleanup = radio_sound_socket != INVALID_SOCKET || radio_sound_mic_socket != INVALID_SOCKET;
#endif
#ifndef QUISK_NO_PORTAUDIO
quisk_close_sound_portaudio();
#endif
quisk_close_sound_alsa(CaptureDevices, PlaybackDevices);
quisk_close_sound_pulseaudio();
if (pt_sample_stop)
(*pt_sample_stop)();
strncpy (quisk_sound_state.err_msg, CLOSED_TEXT, QUISK_SC_SIZE);
if (radio_sound_socket != INVALID_SOCKET) {
close(radio_sound_socket);
radio_sound_socket = INVALID_SOCKET;
}
if (radio_sound_mic_socket != INVALID_SOCKET) {
shutdown(radio_sound_mic_socket, QUISK_SHUT_RD);
send(radio_sound_mic_socket, "ss", 2, 0);
send(radio_sound_mic_socket, "ss", 2, 0);
QuiskSleepMicrosec(1000000);
close(radio_sound_mic_socket);
radio_sound_mic_socket = INVALID_SOCKET;
}
#ifdef MS_WINDOWS
if (cleanup)
WSACleanup();
#endif
}
static void set_num_channels(struct sound_dev * dev)
{ // Set num_channels to the maximum channel index plus one
dev->num_channels = dev->channel_I;
if (dev->num_channels < dev->channel_Q)
dev->num_channels = dev->channel_Q;
dev->num_channels++;
}
//! \brief Returns 1 if \c string starts with \c prefix. 0 otherwise.
int starts_with( const char* string, const char* prefix )
{
size_t plen = strlen(prefix);
if( strlen(string) < plen )
return 0;
else
return strncmp( string, prefix, plen ) == 0 ? 1 : 0;
}
/*!
* \brief From the sound_dev.name field, decide which driver to use for which device
*/
void decide_drivers(
struct sound_dev** pDevs
)
{
const char* name;
// No name means no driver.
// If name starts with 'portaudio', it's portaudio. Else, if it starts with
// 'pulse', it's PulseAudio. Else, if it starts with 'alsa', it's ALSA.
// Otherwise, just guess ALSA.
while(1)
{
struct sound_dev* dev = *pDevs++;
if( !dev )
break;
name = dev->name;
if( ! name || name[0] == '\0' )
dev->driver = DEV_DRIVER_NONE;
else if( starts_with(name, "portaudio") )
dev->driver = DEV_DRIVER_PORTAUDIO;
else if( starts_with(name, "pulse") )
dev->driver = DEV_DRIVER_PULSEAUDIO;
else if( starts_with(name, "alsa") )
dev->driver = DEV_DRIVER_ALSA;
else
dev->driver = DEV_DRIVER_ALSA;
}
}
static void open_radio_sound_socket(void)
{
struct sockaddr_in Addr;
int samples, port, sndsize = 48000;
char radio_sound_ip[QUISK_SC_SIZE];
char radio_sound_mic_ip[QUISK_SC_SIZE];
#ifdef MS_WINDOWS
WORD wVersionRequested;
WSADATA wsaData;
#endif
dc_remove_bw = QuiskGetConfigInt ("dc_remove_bw", 100);
strncpy(radio_sound_ip, QuiskGetConfigString ("radio_sound_ip", ""), QUISK_SC_SIZE);
strncpy(radio_sound_mic_ip, QuiskGetConfigString ("radio_sound_mic_ip", ""), QUISK_SC_SIZE);
if (radio_sound_ip[0] == 0 && radio_sound_mic_ip[0] == 0)
return;
#ifdef MS_WINDOWS
wVersionRequested = MAKEWORD(2, 2);
if (WSAStartup(wVersionRequested, &wsaData) != 0) {
printf("open_radio_sound_socket: Failure to start WinSock\n");
return; // failure to start winsock
}
#endif
if (radio_sound_ip[0]) {
port = QuiskGetConfigInt ("radio_sound_port", 0);
samples = QuiskGetConfigInt ("radio_sound_nsamples", 360);
if (samples > 367)
samples = 367;
radio_sound_nshorts = samples * 2 + 1;
radio_sound_socket = socket(PF_INET, SOCK_DGRAM, 0);
if (radio_sound_socket != INVALID_SOCKET) {
setsockopt(radio_sound_socket, SOL_SOCKET, SO_SNDBUF, (char *)&sndsize, sizeof(sndsize));
Addr.sin_family = AF_INET;
Addr.sin_port = htons(port);
#ifdef MS_WINDOWS
Addr.sin_addr.S_un.S_addr = inet_addr(radio_sound_ip);
#else
inet_aton(radio_sound_ip, &Addr.sin_addr);
#endif
if (connect(radio_sound_socket, (const struct sockaddr *)&Addr, sizeof(Addr)) != 0) {
close(radio_sound_socket);
radio_sound_socket = INVALID_SOCKET;
}
}
if (radio_sound_socket == INVALID_SOCKET) {
printf("open_radio_sound_socket: Failure to open socket\n");
}
else {
#if DEBUG_IO
printf("open_radio_sound_socket: opened socket %s\n", radio_sound_ip);
#endif
}
}
if (radio_sound_mic_ip[0]) {
port = QuiskGetConfigInt ("radio_sound_mic_port", 0);