-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #9 from InfiniTensor/dev
Add support for calling Triton code from NineToothed and 0-dimensional tensors
- Loading branch information
Showing
4 changed files
with
143 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
import random | ||
|
||
import torch | ||
|
||
import ninetoothed | ||
import ninetoothed.language as ntl | ||
from ninetoothed import Symbol, Tensor | ||
from tests.skippers import skip_if_cuda_not_available, skip_if_float8_e5m2_not_supported | ||
|
||
|
||
def addmm(input, mat1, mat2, beta=1, alpha=1): | ||
BLOCK_SIZE_M = Symbol("BLOCK_SIZE_M", meta=True) | ||
BLOCK_SIZE_N = Symbol("BLOCK_SIZE_N", meta=True) | ||
BLOCK_SIZE_K = Symbol("BLOCK_SIZE_K", meta=True) | ||
|
||
input_tiled = Tensor(2).tile((BLOCK_SIZE_M, BLOCK_SIZE_N)) | ||
|
||
output_tiled = Tensor(2).tile((BLOCK_SIZE_M, BLOCK_SIZE_N)) | ||
|
||
mat1_tiled = ( | ||
Tensor(2) | ||
.tile((BLOCK_SIZE_M, BLOCK_SIZE_K)) | ||
.tile((1, -1)) | ||
.expand((-1, output_tiled.shape[1])) | ||
) | ||
mat1_tiled.dtype = mat1_tiled.dtype.squeeze(0) | ||
|
||
mat2_tiled = ( | ||
Tensor(2) | ||
.tile((BLOCK_SIZE_K, BLOCK_SIZE_N)) | ||
.tile((-1, 1)) | ||
.expand((output_tiled.shape[0], -1)) | ||
) | ||
mat2_tiled.dtype = mat2_tiled.dtype.squeeze(1) | ||
|
||
@ninetoothed.jit | ||
def addmm_kernel( | ||
input: input_tiled, | ||
mat1: mat1_tiled, | ||
mat2: mat2_tiled, | ||
beta: Tensor(0), | ||
alpha: Tensor(0), | ||
output: output_tiled, | ||
): | ||
accumulator = ntl.zeros(output.shape, dtype=ntl.float32) | ||
for k in range(mat1.shape[0]): | ||
accumulator += ntl.dot(mat1[k], mat2[k]) | ||
output = beta * input + alpha * accumulator.to(ntl.float16) | ||
|
||
output = torch.empty( | ||
(mat1.shape[0], mat2.shape[1]), device=mat1.device, dtype=torch.float16 | ||
) | ||
|
||
addmm_kernel(input, mat1, mat2, beta, alpha, output) | ||
|
||
return output | ||
|
||
|
||
@skip_if_cuda_not_available | ||
class TestCUDA: | ||
@classmethod | ||
def setup_class(cls): | ||
torch.manual_seed(0) | ||
|
||
shape = (512, 512) | ||
|
||
cls.input = torch.randn(shape, device="cuda") | ||
cls.mat1 = torch.randn(shape, device="cuda") | ||
cls.mat2 = torch.randn(shape, device="cuda") | ||
cls.beta = random.uniform(0, 1) | ||
cls.alpha = random.uniform(0, 1) | ||
|
||
def test_fp16(self): | ||
input = type(self).input.to(torch.float16) | ||
mat1 = type(self).mat1.to(torch.float16) | ||
mat2 = type(self).mat2.to(torch.float16) | ||
beta = type(self).beta | ||
alpha = type(self).alpha | ||
|
||
assert torch.allclose( | ||
addmm(input, mat1, mat2, beta=beta, alpha=alpha), | ||
torch.addmm(input, mat1, mat2, beta=beta, alpha=alpha), | ||
atol=0.075, | ||
) | ||
|
||
@skip_if_float8_e5m2_not_supported | ||
def test_fp8(self): | ||
input = type(self).input.to(torch.float8_e5m2) | ||
mat1 = type(self).mat1.to(torch.float8_e5m2) | ||
mat2 = type(self).mat2.T.to(torch.float8_e5m2) | ||
beta = type(self).beta | ||
alpha = type(self).alpha | ||
|
||
assert torch.allclose( | ||
addmm(input, mat1, mat2, beta=beta, alpha=alpha), | ||
torch.addmm( | ||
input.to(torch.float16), | ||
mat1.to(torch.float16), | ||
mat2.to(torch.float16), | ||
beta=beta, | ||
alpha=alpha, | ||
), | ||
atol=0.125, | ||
) |