This repository has been archived by the owner on Apr 7, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathFreqCountTimers.h
605 lines (501 loc) · 16.1 KB
/
FreqCountTimers.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/* FreqCount Library, for measuring frequencies
* http://www.pjrc.com/teensy/td_libs_FreqCount.html
* Copyright (c) 2014 PJRC.COM, LLC - Paul Stoffregen <paul@pjrc.com>
*
* Version 1.1
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef FreqCount_timers_h_
#define FreqCount_timers_h_
// Arduino Mega
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// #define COUNTER_USE_TIMER1 // T1 is not connected
// #define COUNTER_USE_TIMER3 // T3 is not connected
// #define COUNTER_USE_TIMER4 // T4 is not connected
#define COUNTER_USE_TIMER5 // T5 is pin 47
#define TIMER_USE_TIMER2
// Teensy 3.0 & 3.1
#elif defined(__MK20DX128__) || defined(__MK20DX256__)
#define COUNTER_USE_LPTMR // LPTMR is pin 13 (has LED connected)
#define TIMER_USE_INTERVALTIMER
// Teensy 2.0
#elif defined(__AVR_ATmega32U4__)
#define COUNTER_USE_TIMER1 // T1 is pin 11 (has LED connected)
#define TIMER_USE_TIMER4H
// Teensy++ 1.0 & 2.0
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
#define COUNTER_USE_TIMER1 // T1 is pin 6 (has LED connected)
//#define COUNTER_USE_TIMER3 // T3 is pin 13
#define TIMER_USE_TIMER2
// Sanguino
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
#define COUNTER_USE_TIMER1 // T1 is pin 1
#define TIMER_USE_TIMER2
// Arduino Duemilanove, Diecimila, LilyPad, Mini, Fio, etc
#elif defined(__AVR_ATmega328P__) || defined(__AVR_ATmega168__)
#define COUNTER_USE_TIMER1 // T1 is pin 5
#define TIMER_USE_TIMER2
#else
#error "Unknown chip, please edit me with timer+counter definitions"
#endif
/**********************************************/
/* Counter Hardware Abstraction */
/**********************************************/
#if defined(COUNTER_USE_LPTMR) // 16 bit LPTMR on Freescale Kinetis
static inline void counter_init(void)
{
SIM_SCGC5 |= SIM_SCGC5_LPTIMER;
LPTMR0_CSR = 0;
LPTMR0_PSR = 0b00000100; // bypass prescaler/filter
LPTMR0_CMR = 0xFFFF;
LPTMR0_CSR = 0b00100110; // counter, input=alt2, free running mode
CORE_PIN13_CONFIG = PORT_PCR_MUX(3);
}
static inline void counter_start(void)
{
LPTMR0_CSR = 0b00100111; // enable
}
static inline void counter_shutdown(void)
{
LPTMR0_CSR = 0;
}
static inline uint16_t counter_read(void)
{
LPTMR0_CNR = 0; // writing cause sync with hardware
return LPTMR0_CNR;
}
static inline uint8_t counter_overflow(void)
{
return (LPTMR0_CSR & 0x80) ? 1 : 0;
}
static inline void counter_overflow_reset(void)
{
LPTMR0_CSR = 0b10100111;
}
#elif defined(COUNTER_USE_TIMER1) // 16 bit Timer 1 on Atmel AVR
static uint8_t saveTCCR1A, saveTCCR1B;
static inline void counter_init(void)
{
saveTCCR1A = TCCR1A;
saveTCCR1B = TCCR1B;
TCCR1B = 0;
TCCR1A = 0;
TCNT1 = 0;
TIFR1 = (1<<TOV1);
TIMSK1 = 0;
}
static inline void counter_start(void)
{
TCCR1B = (1<<CS12) | (1<<CS11) | (1<<CS10);
}
static inline void counter_shutdown(void)
{
TCCR1B = 0;
TCCR1A = saveTCCR1A;
TCCR1B = saveTCCR1B;
}
static inline uint16_t counter_read(void)
{
return TCNT1;
}
static inline uint8_t counter_overflow(void)
{
return TIFR1 & (1<<TOV1);
}
static inline void counter_overflow_reset(void)
{
TIFR1 = (1<<TOV1);
}
#elif defined(COUNTER_USE_TIMER3) // 16 bit Timer 3 on Atmel AVR
static uint8_t saveTCCR3A, saveTCCR3B;
static inline void counter_init(void)
{
saveTCCR3A = TCCR3A;
saveTCCR3B = TCCR3B;
TCCR3B = 0;
TCCR3A = 0;
TCNT3 = 0;
TIFR3 = (1<<TOV3);
TIMSK3 = 0;
}
static inline void counter_start(void)
{
TCCR3B = (1<<CS32) | (1<<CS31) | (1<<CS30);
}
static inline void counter_shutdown(void)
{
TCCR3B = 0;
TCCR3A = saveTCCR3A;
TCCR3B = saveTCCR3B;
}
static inline uint16_t counter_read(void)
{
return TCNT3;
}
static inline uint8_t counter_overflow(void)
{
return TIFR3 & (1<<TOV3);
}
static inline void counter_overflow_reset(void)
{
TIFR3 = (1<<TOV3);
}
#elif defined(COUNTER_USE_TIMER4) // 16 bit Timer 4 on Atmel AVR
static uint8_t saveTCCR4A, saveTCCR4B;
static inline void counter_init(void)
{
saveTCCR4A = TCCR4A;
saveTCCR4B = TCCR4B;
TCCR4B = 0;
TCCR4A = 0;
TCNT4 = 0;
TIFR4 = (1<<TOV4);
TIMSK4 = 0;
}
static inline void counter_start(void)
{
TCCR4B = (1<<CS42) | (1<<CS41) | (1<<CS40);
}
static inline void counter_shutdown(void)
{
TCCR4B = 0;
TCCR4A = saveTCCR4A;
TCCR4B = saveTCCR4B;
}
static inline uint16_t counter_read(void)
{
return TCNT4;
}
static inline uint8_t counter_overflow(void)
{
return TIFR4 & (1<<TOV4);
}
static inline void counter_overflow_reset(void)
{
TIFR4 = (1<<TOV4);
}
#elif defined(COUNTER_USE_TIMER5) // 16 bit Timer 5 on Atmel AVR
static uint8_t saveTCCR5A, saveTCCR5B;
static inline void counter_init(void)
{
saveTCCR5A = TCCR5A;
saveTCCR5B = TCCR5B;
TCCR5B = 0;
TCCR5A = 0;
TCNT5 = 0;
TIFR5 = (1<<TOV5);
TIMSK5 = 0;
}
static inline void counter_start(void)
{
TCCR5B = (1<<CS52) | (1<<CS51) | (1<<CS50);
}
static inline void counter_shutdown(void)
{
TCCR5B = 0;
TCCR5A = saveTCCR5A;
TCCR5B = saveTCCR5B;
}
static inline uint16_t counter_read(void)
{
return TCNT5;
}
static inline uint8_t counter_overflow(void)
{
return TIFR5 & (1<<TOV5);
}
static inline void counter_overflow_reset(void)
{
TIFR5 = (1<<TOV5);
}
#endif // COUNTER_USE_***
/**********************************************/
/* Timer Hardware Abstraction */
/**********************************************/
#if defined(TIMER_USE_INTERVALTIMER) // Teensyduino IntervalTimer
static IntervalTimer itimer;
static void timer_interrupt(void);
static inline uint16_t timer_init(uint16_t msec)
{
return msec;
}
static inline void timer_start(void)
{
// IntervalTimer is capable of longer intervals, but
// LPTMR can overflow. Limiting to 1 ms allows counting
// up to 65.535 MHz... LPTMR on Teensy 3.1 can do 65 MHz!
itimer.begin(timer_interrupt, 1000);
}
static inline void timer_shutdown(void)
{
itimer.end();
}
#define TIMER_ISR_VECTOR timer_interrupt
#ifdef ISR
#undef ISR
#endif
#define ISR(name) void name (void)
#elif defined(TIMER_USE_TIMER2) // 8 bit Timer 2 on Atmel AVR
/* 1ms 2ms 4ms 8ms
16 MHz 128x125 256x125 256x250 1024x125
8 MHz 64x125 128x125 256x125 256x250
4 MHz 32x125 64x125 128x125 256x125
2 MHz 8x250 32x125 64x125 128x125
1 MHz 8x125 8x250 32x125 64x125
*/
#if F_CPU == 16000000L
#define TIMER2_OCR2A_1MS_VAL 124 // div 125
#define TIMER2_TCCR2B_1MS_VAL (1<<CS22) | (1<<CS20) // div 128
#define TIMER2_OCR2A_2MS_VAL 124 // div 125
#define TIMER2_TCCR2B_2MS_VAL (1<<CS22) | (1<<CS21) // div 256
#define TIMER2_OCR2A_4MS_VAL 249 // div 250
#define TIMER2_TCCR2B_4MS_VAL (1<<CS22) | (1<<CS21) // div 256
#define TIMER2_OCR2A_8MS_VAL 124 // div 125
#define TIMER2_TCCR2B_8MS_VAL (1<<CS22) | (1<<CS21) | (1<<CS20) // div 1024
#elif F_CPU == 8000000L
#define TIMER2_OCR2A_1MS_VAL 124 // div 125
#define TIMER2_TCCR2B_1MS_VAL (1<<CS22) // div 64
#define TIMER2_OCR2A_2MS_VAL 124 // div 125
#define TIMER2_TCCR2B_2MS_VAL (1<<CS22) | (1<<CS20) // div 128
#define TIMER2_OCR2A_4MS_VAL 124 // div 125
#define TIMER2_TCCR2B_4MS_VAL (1<<CS22) | (1<<CS21) // div 256
#define TIMER2_OCR2A_8MS_VAL 249 // div 250
#define TIMER2_TCCR2B_8MS_VAL (1<<CS22) | (1<<CS21) // div 256
#elif F_CPU == 4000000L
#define TIMER2_OCR2A_1MS_VAL 124 // div 125
#define TIMER2_TCCR2B_1MS_VAL (1<<CS21) | (1<<CS20) // div 32
#define TIMER2_OCR2A_2MS_VAL 124 // div 125
#define TIMER2_TCCR2B_2MS_VAL (1<<CS22) // div 64
#define TIMER2_OCR2A_4MS_VAL 124 // div 125
#define TIMER2_TCCR2B_4MS_VAL (1<<CS22) | (1<<CS20) // div 128
#define TIMER2_OCR2A_8MS_VAL 124 // div 125
#define TIMER2_TCCR2B_8MS_VAL (1<<CS22) | (1<<CS21) // div 256
#elif F_CPU == 2000000L
#define TIMER2_OCR2A_1MS_VAL 249 // div 250
#define TIMER2_TCCR2B_1MS_VAL (1<<CS21) // div 8
#define TIMER2_OCR2A_2MS_VAL 124 // div 125
#define TIMER2_TCCR2B_2MS_VAL (1<<CS21) | (1<<CS20) // div 32
#define TIMER2_OCR2A_4MS_VAL 124 // div 125
#define TIMER2_TCCR2B_4MS_VAL (1<<CS22) // div 64
#define TIMER2_OCR2A_8MS_VAL 124 // div 125
#define TIMER2_TCCR2B_8MS_VAL (1<<CS22) | (1<<CS21) // div 128
#elif F_CPU == 1000000L
#define TIMER2_OCR2A_1MS_VAL 124 // div 125
#define TIMER2_TCCR2B_1MS_VAL (1<<CS21) // div 8
#define TIMER2_OCR2A_2MS_VAL 249 // div 250
#define TIMER2_TCCR2B_2MS_VAL (1<<CS21) // div 8
#define TIMER2_OCR2A_4MS_VAL 124 // div 125
#define TIMER2_TCCR2B_4MS_VAL (1<<CS21) | (1<<CS20) // div 32
#define TIMER2_OCR2A_8MS_VAL 124 // div 125
#define TIMER2_TCCR2B_8MS_VAL (1<<CS22) // div 64
#else
#error "Clock must be 16, 8, 4, 2 or 1 MHz"
#endif
/* 1ms 2ms 4ms 8ms
16 MHz 128x125 256x125 256x250 1024x125
8 MHz 64x125 128x125 256x125 256x250
4 MHz 32x125 64x125 128x125 256x125
2 MHz 8x250 32x125 64x125 128x125
1 MHz 8x125 8x250 32x125 64x125
*/
static uint8_t saveTCCR2A, saveTCCR2B;
static uint8_t startTCCR2B;
static inline uint16_t timer_init(uint16_t msec)
{
uint16_t gate_len;
saveTCCR2A = TCCR2A;
saveTCCR2B = TCCR2B;
TCCR2B = 0;
TCCR2A = (1<<WGM21);
if ((msec & 7) == 0) {
gate_len = msec >> 3;
OCR2A = TIMER2_OCR2A_8MS_VAL;
startTCCR2B = TIMER2_TCCR2B_8MS_VAL;
} else if ((msec & 3) == 0) {
gate_len = msec >> 2;
OCR2A = TIMER2_OCR2A_4MS_VAL;
startTCCR2B = TIMER2_TCCR2B_4MS_VAL;
} else if ((msec & 1) == 0) {
gate_len = msec >> 1;
OCR2A = TIMER2_OCR2A_2MS_VAL;
startTCCR2B = TIMER2_TCCR2B_2MS_VAL;
} else {
gate_len = msec;
OCR2A = TIMER2_OCR2A_1MS_VAL;
startTCCR2B = TIMER2_TCCR2B_1MS_VAL;
}
TIFR2 = (1<<OCF2A);
TCNT2 = 0;
return gate_len;
}
static inline void timer_start(void)
{
GTCCR = (1<<PSRASY);
TCCR2B = startTCCR2B;
TIMSK2 = (1<<OCIE2A);
}
static inline void timer_shutdown(void)
{
TCCR2B = 0;
TIMSK2 = 0;
TCCR2A = saveTCCR2A;
TCCR2B = saveTCCR2B;
}
#define TIMER_ISR_VECTOR TIMER2_COMPA_vect
/*
There is a typical latency from the timer interrupt until the first
actual line of code executes. Here is a typical compiler output of
approximately 34 cycles. When starting, this same delay is used to
begin counting, so the first reading will not have 34 cycles of
extra measurement. Because each measurement period gates instantly
after the previous, this approximate correction only affects the
first measurement. If you do not define TIMER_LATENCY_CYCLES, this
extra delay is skipped (saving a tiny bit of code space), and the
only downside is a slight inaccuracy in the first measurement.
2 00000326 <__vector_13>:
2 326: 1f 92 push r1
2 328: 0f 92 push r0
1 32a: 0f b6 in r0, 0x3f ; 63
2 32c: 0f 92 push r0
1 32e: 11 24 eor r1, r1
2 330: ef 92 push r14
2 332: ff 92 push r15
2 334: 0f 93 push r16
2 336: 1f 93 push r17
2 338: 2f 93 push r18
2 33a: 3f 93 push r19
2 33c: 4f 93 push r20
2 33e: 5f 93 push r21
2 340: 8f 93 push r24
2 342: 9f 93 push r25
2 344: af 93 push r26
2 346: bf 93 push r27
*/
#define TIMER_LATENCY_CYCLES 34
#elif defined(TIMER_USE_TIMER4H) // 10 bit "high speed" Timer 4 on Atmel AVR
#define TIMER4H_OCR4C_VAL 124 // always div 125
#if F_CPU == 16000000L
#define TIMER4H_TCCR4B_1MS_VAL (1<<CS43) // div 128
#define TIMER4H_TCCR4B_2MS_VAL (1<<CS43) | (1<<CS40) // div 256
#define TIMER4H_TCCR4B_4MS_VAL (1<<CS43) | (1<<CS41) // div 512
#define TIMER4H_TCCR4B_8MS_VAL (1<<CS43) | (1<<CS41) | (1<<CS40) // div 1024
#elif F_CPU == 8000000L
#define TIMER4H_TCCR4B_1MS_VAL (1<<CS42) | (1<<CS41) | (1<<CS40) // div 64
#define TIMER4H_TCCR4B_2MS_VAL (1<<CS43) // div 128
#define TIMER4H_TCCR4B_4MS_VAL (1<<CS43) | (1<<CS40) // div 256
#define TIMER4H_TCCR4B_8MS_VAL (1<<CS43) | (1<<CS41) // div 512
#elif F_CPU == 4000000L
#define TIMER4H_TCCR4B_1MS_VAL (1<<CS42) | (1<<CS41) // div 32
#define TIMER4H_TCCR4B_2MS_VAL (1<<CS42) | (1<<CS41) | (1<<CS40) // div 64
#define TIMER4H_TCCR4B_4MS_VAL (1<<CS43) // div 128
#define TIMER4H_TCCR4B_8MS_VAL (1<<CS43) | (1<<CS40) // div 256
#elif F_CPU == 2000000L
#define TIMER4H_TCCR4B_1MS_VAL (1<<CS42) | (1<<CS40) // div 16
#define TIMER4H_TCCR4B_2MS_VAL (1<<CS42) | (1<<CS41) // div 32
#define TIMER4H_TCCR4B_4MS_VAL (1<<CS42) | (1<<CS41) | (1<<CS40) // div 64
#define TIMER4H_TCCR4B_8MS_VAL (1<<CS43) // div 128
#elif F_CPU == 1000000L
#define TIMER4H_TCCR4B_1MS_VAL (1<<CS42) // div 8
#define TIMER4H_TCCR4B_2MS_VAL (1<<CS42) | (1<<CS40) // div 16
#define TIMER4H_TCCR4B_4MS_VAL (1<<CS42) | (1<<CS41) // div 32
#define TIMER4H_TCCR4B_8MS_VAL (1<<CS42) | (1<<CS41) | (1<<CS40) // div 64
#else
#error "Clock must be 16, 8, 4, 2 or 1 MHz"
#endif
static uint8_t saveTCCR4A, saveTCCR4B, saveTCCR4C, saveTCCR4D, saveTCCR4E, saveOCR4C;
static uint8_t startTCCR4B;
// input is the number of milliseconds required
// output is the number of interrupts needed for that number of milliseconds
static inline uint16_t timer_init(uint16_t msec)
{
uint16_t gate_len;
saveTCCR4A = TCCR4A;
saveTCCR4B = TCCR4B;
saveTCCR4C = TCCR4C;
saveTCCR4D = TCCR4D;
saveTCCR4E = TCCR4E;
saveOCR4C = OCR4C;
TCCR4B = 0;
TCCR4A = 0;
TCCR4C = 0;
TCCR4D = 0;
TCCR4E = 0;
OCR4C = TIMER4H_OCR4C_VAL;
if ((msec & 7) == 0) {
gate_len = msec >> 3;
startTCCR4B = TIMER4H_TCCR4B_8MS_VAL | (1<<PSR4);
} else if ((msec & 3) == 0) {
gate_len = msec >> 2;
startTCCR4B = TIMER4H_TCCR4B_4MS_VAL | (1<<PSR4);
} else if ((msec & 1) == 0) {
gate_len = msec >> 1;
startTCCR4B = TIMER4H_TCCR4B_2MS_VAL | (1<<PSR4);
} else {
gate_len = msec;
startTCCR4B = TIMER4H_TCCR4B_1MS_VAL | (1<<PSR4);
}
TIFR4 = (1<<TOV4);
TCNT4 = 0;
return gate_len;
}
static inline void timer_start(void)
{
TCCR4B = startTCCR4B;
TIMSK4 = (1<<TOIE4);
}
static inline void timer_shutdown(void)
{
TCCR2B = 0;
TIMSK4 = 0;
OCR4C = saveOCR4C;
TCCR4A = saveTCCR4A;
TCCR4C = saveTCCR4C;
TCCR4D = saveTCCR4D;
TCCR4E = saveTCCR4E;
TCCR4B = saveTCCR4B;
}
#define TIMER_ISR_VECTOR TIMER4_OVF_vect
#define TIMER_LATENCY_CYCLES 34
#endif // TIMER_USE_***
static inline void timer_isr_latency_delay(void)
{
#ifdef TIMER_LATENCY_CYCLES
#ifdef __AVR__
uint8_t cycles_times_3 = TIMER_LATENCY_CYCLES / 3;
asm volatile(
"L_%=_loop:"
"subi %0, 1" "\n\t"
"brne L_%=_loop" "\n\t"
: "+d" (cycles_times_3)
: "0" (cycles_times_3)
);
#endif
#endif
}
/**********************************************/
/* Board Specific Interrupts (to hog) */
/**********************************************/
static inline void disable_other_interrupts(void)
{
}
static inline void restore_other_interrupts(void)
{
}
#endif