From dad5a8d8fbbc3bea2a2ea29a0a06436a9a5570a1 Mon Sep 17 00:00:00 2001 From: Matthieu Ancellin <31126826+mancellin@users.noreply.github.com> Date: Mon, 14 Oct 2024 13:23:24 +0200 Subject: [PATCH 1/2] docs: consistency of variable names --- docs/src/tutorials/integral_operators.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/src/tutorials/integral_operators.md b/docs/src/tutorials/integral_operators.md index 1dd6b63f..d0825eed 100644 --- a/docs/src/tutorials/integral_operators.md +++ b/docs/src/tutorials/integral_operators.md @@ -59,7 +59,7 @@ nothing # hide Much goes on under the hood in the function above, and the sections on [correction](@ref "Correction methods") and [compression](@ref "Compression methods") methods will provide more details on the options available. The -important thing to keep in mind is that `S`, `D`, `K`, and `H` are discrete +important thing to keep in mind is that `S`, `D`, `K`, and `N` are discrete approximations of the following (linear) operators: ```math @@ -71,7 +71,7 @@ approximations of the following (linear) operators: \end{aligned} ``` -The actual type of `S`, `D`, `K`, and `H` depends on the `compression` and +The actual type of `S`, `D`, `K`, and `N` depends on the `compression` and `correction` methods. In the simple case above, these are simply matrices: ```@example integral_operators From f629bc22ae6c3d11532fc802f7e4373ee0d617b8 Mon Sep 17 00:00:00 2001 From: Matthieu Ancellin <31126826+mancellin@users.noreply.github.com> Date: Mon, 14 Oct 2024 16:58:29 +0200 Subject: [PATCH 2/2] Replace D' by K --- docs/src/tutorials/integral_operators.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/src/tutorials/integral_operators.md b/docs/src/tutorials/integral_operators.md index d0825eed..944e620c 100644 --- a/docs/src/tutorials/integral_operators.md +++ b/docs/src/tutorials/integral_operators.md @@ -66,7 +66,7 @@ approximations of the following (linear) operators: \begin{aligned} S[\sigma](\boldsymbol{x}) &:= \int_{\Gamma} G(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) \mathrm{d} s_{\boldsymbol{y}}, \quad &&D[\sigma](\boldsymbol{x}) := \mathrm{p.v.} \int_{\Gamma} \frac{\partial G}{\partial \nu_{\boldsymbol{y}}}(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) \mathrm{d} s_{\boldsymbol{y}} \\ - D'[\sigma](\boldsymbol{x}) &:= \mathrm{p.v.} \int_{\Gamma} \frac{\partial G}{\partial \nu_{\boldsymbol{x}}}(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) \mathrm{d} s_{\boldsymbol{y}}, \quad + K[\sigma](\boldsymbol{x}) &:= \mathrm{p.v.} \int_{\Gamma} \frac{\partial G}{\partial \nu_{\boldsymbol{x}}}(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) \mathrm{d} s_{\boldsymbol{y}}, \quad &&N[\sigma](\boldsymbol{x}) := \mathrm{f.p.} \int_{\Gamma} \frac{\partial^2 G}{\partial \nu_{\boldsymbol{x}} \partial \nu_{\boldsymbol{y}}}(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) \mathrm{d} s_{\boldsymbol{y}} \end{aligned} ``` @@ -133,7 +133,7 @@ Calderón projectors: \begin{aligned} H = \begin{bmatrix} -D & S \\ - -N & D' + -N & K \end{bmatrix} \end{aligned} ```