-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathinput_data.py
267 lines (213 loc) · 8.47 KB
/
input_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import tensorflow as tf
from tensorflow.contrib.framework.python.ops import audio_ops as contrib_audio
import pandas as pd
import os
import time
SILENCE_LABEL = '_silence_'
UNKNOWN_WORD_LABEL = '_unknown_'
BACKGROUND_DIR = '_background_noise_'
def _gen_random_from_zero(maxval, dtype=tf.float32):
return tf.random.uniform([], maxval=maxval, dtype=dtype)
def _gen_empty_audio(desired_samples):
return tf.zeros([desired_samples, 1], dtype=tf.float32)
def _mix_background(
audio,
desired_samples,
background_data,
is_silent,
is_training,
background_frequency,
background_max_volume,
**kwargs
):
foreground_wav = tf.cond(
is_silent,
true_fn=lambda: _gen_empty_audio(desired_samples),
false_fn=lambda: tf.identity(audio)
)
# sampling background
random_background_data_idx = _gen_random_from_zero(
len(background_data),
dtype=tf.int32
)
background_wav = tf.case({
tf.equal(background_data_idx, random_background_data_idx):
lambda tensor=wav: tensor
for background_data_idx, wav in enumerate(background_data)
}, exclusive=True)
background_wav = tf.image.random_crop(background_wav, [desired_samples, 1])
if is_training:
background_volume = tf.cond(
tf.less(_gen_random_from_zero(1.0), background_frequency),
true_fn=lambda: _gen_random_from_zero(background_max_volume),
false_fn=lambda: 0.0,
)
else:
background_volume = 0.0
background_wav = tf.multiply(background_wav, background_volume)
background_added = tf.add(background_wav, foreground_wav)
augmented_audio = tf.clip_by_value(background_added, -1.0, 1.0)
return augmented_audio
def _shift_audio(audio, desired_samples, shift_ratio):
time_shift = int(desired_samples * shift_ratio)
time_shift_amount = tf.random.uniform(
[],
minval=-time_shift,
maxval=time_shift,
dtype=tf.int32
)
time_shift_abs = tf.abs(time_shift_amount)
def _pos_padding():
return [[time_shift_amount, 0], [0, 0]]
def _pos_offset():
return [0, 0]
def _neg_padding():
return [[0, time_shift_abs], [0, 0]]
def _neg_offset():
return [time_shift_abs, 0]
padded_audio = tf.pad(
audio,
tf.cond(tf.greater_equal(time_shift_amount, 0),
true_fn=_pos_padding,
false_fn=_neg_padding),
mode="CONSTANT",
)
sliced_audio = tf.slice(
padded_audio,
tf.cond(tf.greater_equal(time_shift_amount, 0),
true_fn=_pos_offset,
false_fn=_neg_offset),
[desired_samples, 1],
)
return sliced_audio
def _load_wav_file(filename, desired_samples=-1):
wav_decoder = contrib_audio.decode_wav(
tf.read_file(filename),
desired_channels=1,
desired_samples=desired_samples,
)
return wav_decoder.audio
def anchored_slice_or_pad(
filename,
desired_samples,
sample_rate,
**kwargs,
):
is_silent = tf.equal(tf.strings.length(filename), 0)
audio = tf.cond(
is_silent,
true_fn=lambda: _gen_empty_audio(desired_samples),
false_fn=lambda: _load_wav_file(filename, desired_samples)
)
if "background_data" in kwargs:
audio = _mix_background(audio, desired_samples,
is_silent=is_silent, **kwargs)
return audio
def anchored_slice_or_pad_with_shift(
filename,
desired_samples,
sample_rate,
**kwargs
):
is_silent = tf.equal(tf.strings.length(filename), 0)
audio = tf.cond(
is_silent,
true_fn=lambda: _gen_empty_audio(desired_samples),
false_fn=lambda: _load_wav_file(filename, desired_samples)
)
audio = _shift_audio(audio, desired_samples, shift_ratio=0.1)
if "background_data" in kwargs:
audio = _mix_background(audio, desired_samples,
is_silent=is_silent, **kwargs)
return audio
class AudioWrapper:
def __init__(self, args, mod, is_training, session):
assert mod in ['train', 'valid', 'test']
self.args = args
self.mod = mod
self.is_training = is_training
self.session = session
self.prepare_placeholders()
self.prepare_dataset()
self.init_iterator()
def prepare_placeholders(self):
# prepare args
self.dataset_path = self.args.dataset_path
self.split_file = os.path.join(self.args.split_dir, self.mod+'.txt')
self.desired_samples = self.args.desired_samples
self.sample_rate = self.args.sample_rate
self.num_classes = self.args.num_classes
# prepare words list
self.prepare_words_list = [SILENCE_LABEL,
UNKNOWN_WORD_LABEL] + self.args.wanted_words
self.word_to_index = {word: i for i,
word in enumerate(self.prepare_words_list)}
# prepare background data
self.background_max_volume = tf.constant(
self.args.background_max_volume)
self.background_frequency = tf.constant(self.args.background_frequency)
self.background_data = self.prepare_background_data()
# prepare filename and label
self.filenames, self.labels = self.get_filenames_labels()
self.data = (self.filenames, self.labels)
self.num_samples = len(self.filenames)
# prepare placeholder
self.filenames_placeholder = tf.compat.v1.placeholder(
tf.string, self.num_samples)
self.labels_placeholder = tf.compat.v1.placeholder(
tf.int64, self.num_samples)
self.placeholders = (self.filenames_placeholder,
self.labels_placeholder)
def prepare_background_data(self):
background_files = []
background_path = os.path.join(self.dataset_path, BACKGROUND_DIR)
filenames = os.listdir(background_path)
for name in filenames:
if not name.endswith('wav'):
continue
background_files.append(
_load_wav_file(os.path.join(background_path, name))
)
return background_files
def prepare_dataset(self):
dataset = tf.data.Dataset.from_tensor_slices(self.placeholders)
dataset = dataset.shuffle(self.num_samples)
dataset = dataset.map(self._parse_function,
num_parallel_calls=self.args.workers)
dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
dataset = dataset.batch(self.args.batch_size)
if self.is_training:
dataset = dataset.shuffle(
buffer_size=self.args.buffer_size, reshuffle_each_iteration=True).repeat(-1)
self.dataset = dataset
self.iterator = tf.compat.v1.data.make_initializable_iterator(dataset)
self.next_elem = self.iterator.get_next()
def init_iterator(self):
self.session.run(self.iterator.initializer,
feed_dict={placeholder: variable for placeholder, variable in zip(self.placeholders, self.data)})
def get_filenames_labels(self):
df = pd.read_csv(self.split_file, header=None, names=['file'])
df['label'] = df['file'].apply(lambda x: x.split(
'/')[0]).apply(lambda x: x if x in self.prepare_words_list else UNKNOWN_WORD_LABEL)
df['index_label'] = df['label'].apply(lambda x: self.word_to_index[x])
df['file'] = df['file'].apply(
lambda x: os.path.join(self.dataset_path, x))
df.loc[df['label'].str.startswith(SILENCE_LABEL), 'file'] = ''
return list(df['file']), list(df['index_label'])
def _parse_function(self, filename, label):
augmented_audio = self.augment_audio(
filename,
self.desired_samples,
self.sample_rate,
background_data=self.background_data,
is_training=self.is_training,
background_frequency=self.background_frequency,
background_max_volume=self.background_max_volume,
)
return augmented_audio, label
def augment_audio(self, filename, desired_samples, sample_rate, **kwargs):
if self.is_training:
return anchored_slice_or_pad_with_shift(filename, desired_samples, sample_rate, **kwargs)
return anchored_slice_or_pad(filename, desired_samples, sample_rate, **kwargs)
def get_input_and_output_op(self):
return self.next_elem