From 0a0dcb5c3f10bca7d1c6a23e39e88111d0d63965 Mon Sep 17 00:00:00 2001 From: HIT-cwh <2892770585@qq.com> Date: Wed, 30 Aug 2023 15:28:58 +0800 Subject: [PATCH] update readme --- README.md | 13 +++++++------ README_zh-CN.md | 13 +++++++------ 2 files changed, 14 insertions(+), 12 deletions(-) diff --git a/README.md b/README.md index aad0aa251..f364c4206 100644 --- a/README.md +++ b/README.md @@ -14,14 +14,14 @@ English | [简体中文](README_zh-CN.md) ## 🎉 News -- **\[2023.08.xx\]** XTuner is released, with multiple fine-tuned adapters on [HuggingFace](https://huggingface.co/xtuner). +- **\[2023.08.30\]** XTuner is released, with multiple fine-tuned adapters on [HuggingFace](https://huggingface.co/xtuner). ## 📖 Introduction XTuner is a toolkit for efficiently fine-tuning LLM, developed by the [MMRazor](https://github.com/open-mmlab/mmrazor) and [MMDeploy](https://github.com/open-mmlab/mmdeploy) teams. - **Efficiency**: Support LLM fine-tuning on consumer-grade GPUs. The minimum GPU memory required for 7B LLM fine-tuning is only **8GB**, indicating that users can use nearly any GPU (even the free resource, *e.g.*, Colab) to fine-tune custom LLMs. -- **Versatile**: Support various **LLMs** ([InternLM](https://github.com/InternLM/InternLM), [Llama2](https://github.com/facebookresearch/llama), [ChatGLM2](https://huggingface.co/THUDM/chatglm2-6b), [Qwen](https://github.com/QwenLM/Qwen-7B), [Baichuan](https://github.com/baichuan-inc), ...), **datasets** ([MOSS_003_SFT](https://huggingface.co/datasets/fnlp/moss-003-sft-data), [Colorist](https://huggingface.co/datasets/burkelibbey/colors), [Code Alpaca](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K), [Arxiv GenTitle](https://github.com/WangRongsheng/ChatGenTitle), [Chinese Law](https://github.com/LiuHC0428/LAW-GPT), [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca), [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus), ...) and **algorithms** ([QLoRA](http://arxiv.org/abs/2305.14314), [LoRA](http://arxiv.org/abs/2106.09685)), allowing users to choose the most suitable solution for their requirements. +- **Versatile**: Support various **LLMs** ([InternLM](https://github.com/InternLM/InternLM), [Llama2](https://github.com/facebookresearch/llama), [ChatGLM2](https://huggingface.co/THUDM/chatglm2-6b), [Qwen](https://github.com/QwenLM/Qwen-7B), [Baichuan](https://github.com/baichuan-inc), ...), **datasets** ([MOSS_003_SFT](https://huggingface.co/datasets/fnlp/moss-003-sft-data), [Alpaca](https://huggingface.co/datasets/tatsu-lab/alpaca), [WizardLM](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k), [oasst1](https://huggingface.co/datasets/timdettmers/openassistant-guanaco), [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus), [Code Alpaca](https://huggingface.co/datasets/HuggingFaceH4/CodeAlpaca_20K), [Colorist](https://huggingface.co/datasets/burkelibbey/colors), ...) and **algorithms** ([QLoRA](http://arxiv.org/abs/2305.14314), [LoRA](http://arxiv.org/abs/2106.09685)), allowing users to choose the most suitable solution for their requirements. - **Compatibility**: Compatible with [DeepSpeed](https://github.com/microsoft/DeepSpeed) 🚀 and [HuggingFace](https://huggingface.co) 🤗 training pipeline, enabling effortless integration and utilization. ## 🌟 Demos @@ -68,15 +68,16 @@ XTuner is a toolkit for efficiently fine-tuning LLM, developed by the [MMRazor](