-
Notifications
You must be signed in to change notification settings - Fork 305
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Support Baichuan2 models (#102)
* add baichuan2_7b_base * fix lm_head bug for Baichuan2 * Update README.md * Update README_zh-CN.md * Update README.md * remove infrequent configs * Update README.md * Update README_zh-CN.md * add baichuan2 chat template * Update README_zh-CN.md
- Loading branch information
Showing
16 changed files
with
2,314 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
180 changes: 180 additions & 0 deletions
180
xtuner/configs/baichuan/baichuan2_7b_base/baichuan2_7b_base_qlora_alpaca_e3.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import torch | ||
from bitsandbytes.optim import PagedAdamW32bit | ||
from datasets import load_dataset | ||
from mmengine.dataset import DefaultSampler | ||
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook, | ||
LoggerHook, ParamSchedulerHook) | ||
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR | ||
from peft import LoraConfig | ||
from transformers import (AutoModelForCausalLM, AutoTokenizer, | ||
BitsAndBytesConfig) | ||
|
||
from xtuner.dataset import process_hf_dataset | ||
from xtuner.dataset.collate_fns import default_collate_fn | ||
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory | ||
from xtuner.engine import DatasetInfoHook, EvaluateChatHook | ||
from xtuner.model import SupervisedFinetune | ||
from xtuner.utils import PROMPT_TEMPLATE | ||
|
||
####################################################################### | ||
# PART 1 Settings # | ||
####################################################################### | ||
# Model | ||
pretrained_model_name_or_path = 'baichuan-inc/Baichuan2-7B-Base' | ||
|
||
# Data | ||
alpaca_en_path = 'tatsu-lab/alpaca' | ||
prompt_template = PROMPT_TEMPLATE.alpaca | ||
max_length = 2048 | ||
pack_to_max_length = True | ||
|
||
# Scheduler & Optimizer | ||
batch_size = 1 # per_device | ||
accumulative_counts = 16 | ||
dataloader_num_workers = 0 | ||
max_epochs = 3 | ||
optim_type = PagedAdamW32bit | ||
lr = 2e-4 | ||
betas = (0.9, 0.999) | ||
weight_decay = 0 | ||
max_norm = 1 # grad clip | ||
|
||
# Evaluate the generation performance during the training | ||
evaluation_freq = 500 | ||
evaluation_inputs = [ | ||
'请给我介绍五个上海的景点', 'Please tell me five scenic spots in Shanghai' | ||
] | ||
|
||
####################################################################### | ||
# PART 2 Model & Tokenizer # | ||
####################################################################### | ||
tokenizer = dict( | ||
type=AutoTokenizer.from_pretrained, | ||
pretrained_model_name_or_path=pretrained_model_name_or_path, | ||
trust_remote_code=True, | ||
padding_side='right') | ||
|
||
model = dict( | ||
type=SupervisedFinetune, | ||
llm=dict( | ||
type=AutoModelForCausalLM.from_pretrained, | ||
pretrained_model_name_or_path=pretrained_model_name_or_path, | ||
trust_remote_code=True, | ||
torch_dtype=torch.float16, | ||
quantization_config=dict( | ||
type=BitsAndBytesConfig, | ||
load_in_4bit=True, | ||
load_in_8bit=False, | ||
llm_int8_threshold=6.0, | ||
llm_int8_has_fp16_weight=False, | ||
bnb_4bit_compute_dtype=torch.float16, | ||
bnb_4bit_use_double_quant=True, | ||
bnb_4bit_quant_type='nf4')), | ||
lora=dict( | ||
type=LoraConfig, | ||
r=64, | ||
lora_alpha=16, | ||
lora_dropout=0.1, | ||
bias='none', | ||
task_type='CAUSAL_LM')) | ||
|
||
####################################################################### | ||
# PART 3 Dataset & Dataloader # | ||
####################################################################### | ||
alpaca_en = dict( | ||
type=process_hf_dataset, | ||
dataset=dict(type=load_dataset, path=alpaca_en_path), | ||
tokenizer=tokenizer, | ||
max_length=max_length, | ||
dataset_map_fn=alpaca_map_fn, | ||
template_map_fn=dict( | ||
type=template_map_fn_factory, template=prompt_template), | ||
remove_unused_columns=True, | ||
shuffle_before_pack=True, | ||
pack_to_max_length=pack_to_max_length) | ||
|
||
train_dataloader = dict( | ||
batch_size=batch_size, | ||
num_workers=dataloader_num_workers, | ||
dataset=alpaca_en, | ||
sampler=dict(type=DefaultSampler, shuffle=True), | ||
collate_fn=dict(type=default_collate_fn)) | ||
|
||
####################################################################### | ||
# PART 4 Scheduler & Optimizer # | ||
####################################################################### | ||
# optimizer | ||
optim_wrapper = dict( | ||
type=AmpOptimWrapper, | ||
optimizer=dict( | ||
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay), | ||
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False), | ||
accumulative_counts=accumulative_counts, | ||
loss_scale='dynamic', | ||
dtype='float16') | ||
|
||
# learning policy | ||
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501 | ||
param_scheduler = dict( | ||
type=CosineAnnealingLR, | ||
eta_min=lr * 0.1, | ||
by_epoch=True, | ||
T_max=max_epochs, | ||
convert_to_iter_based=True) | ||
|
||
# train, val, test setting | ||
train_cfg = dict(by_epoch=True, max_epochs=max_epochs, val_interval=1) | ||
|
||
####################################################################### | ||
# PART 5 Runtime # | ||
####################################################################### | ||
# Log the dialogue periodically during the training process, optional | ||
custom_hooks = [ | ||
dict(type=DatasetInfoHook, tokenizer=tokenizer), | ||
dict( | ||
type=EvaluateChatHook, | ||
tokenizer=tokenizer, | ||
every_n_iters=evaluation_freq, | ||
evaluation_inputs=evaluation_inputs, | ||
instruction=prompt_template.INSTRUCTION_START) | ||
] | ||
|
||
# configure default hooks | ||
default_hooks = dict( | ||
# record the time of every iteration. | ||
timer=dict(type=IterTimerHook), | ||
# print log every 100 iterations. | ||
logger=dict(type=LoggerHook, interval=10), | ||
# enable the parameter scheduler. | ||
param_scheduler=dict(type=ParamSchedulerHook), | ||
# save checkpoint per epoch. | ||
checkpoint=dict(type=CheckpointHook, interval=1), | ||
# set sampler seed in distributed evrionment. | ||
sampler_seed=dict(type=DistSamplerSeedHook), | ||
) | ||
|
||
# configure environment | ||
env_cfg = dict( | ||
# whether to enable cudnn benchmark | ||
cudnn_benchmark=False, | ||
# set multi process parameters | ||
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), | ||
# set distributed parameters | ||
dist_cfg=dict(backend='nccl'), | ||
) | ||
|
||
# set visualizer | ||
visualizer = None | ||
|
||
# set log level | ||
log_level = 'INFO' | ||
|
||
# load from which checkpoint | ||
load_from = None | ||
|
||
# whether to resume training from the loaded checkpoint | ||
resume = False | ||
|
||
# Defaults to use random seed and disable `deterministic` | ||
randomness = dict(seed=None, deterministic=False) |
Oops, something went wrong.