Skip to content

Commit

Permalink
update config
Browse files Browse the repository at this point in the history
  • Loading branch information
hhaAndroid committed Jun 21, 2024
1 parent b6457fc commit 58f7ad4
Show file tree
Hide file tree
Showing 11 changed files with 720 additions and 258 deletions.
170 changes: 170 additions & 0 deletions xtuner/configs/internvl/v1_5/internvl_v1_5_internlm2_1_8b_finetune.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from torch.optim import AdamW

from xtuner.dataset import InternVL_V1_5_Dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.samplers import LengthGroupedSampler
from xtuner.engine.hooks import DatasetInfoHook
from xtuner.engine.runner import TrainLoop
from xtuner.model import InternVL_V1_5
from xtuner.utils import PROMPT_TEMPLATE
from transformers import AutoTokenizer
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
path = "/mnt/hwfile/xtuner/huanghaian/model/Mini-InternVL-Chat-2B-V1-5"
prompt_template = PROMPT_TEMPLATE.internlm2_chat

# Data
data_root = '/mnt/hwfile/xtuner/linzhihao/dataset/llava_data/'
data_path = data_root + 'LLaVA-Instruct-150K/llava_v1_5_mix665k.json'
image_folder = data_root + 'llava_images'
max_length = 8192

# Scheduler & Optimizer
batch_size = 4 # per_device
accumulative_counts = 4
dataloader_num_workers = 4
max_epochs = 1
optim_type = AdamW
# 1024 -> 4e-5
# 128 -> 5e-6
lr = 1e-6
betas = (0.9, 0.999)
weight_decay = 0.05
max_norm = 1 # grad clip
warmup_ratio = 0.03

# Save
save_steps = 1000
save_total_limit = 1 # Maximum checkpoints to keep (-1 means unlimited)

#######################################################################
# PART 2 Model & Tokenizer & Image Processor #
#######################################################################
model = dict(
type=InternVL_V1_5,
model_path=path,
freeze_llm=False,
freeze_visual_encoder=True # or False
)

#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
llava_dataset = dict(
type=InternVL_V1_5_Dataset,
model_path=path,
data_path=data_path,
image_folder=image_folder,
template=prompt_template,
max_length=max_length)

train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=llava_dataset,
sampler=dict(
type=LengthGroupedSampler,
length_property='modality_length',
per_device_batch_size=batch_size * accumulative_counts),
collate_fn=dict(type=default_collate_fn))

#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='float16')

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
end=max_epochs,
convert_to_iter_based=True)
]

# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)

#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=path,
trust_remote_code=True)

custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
]

# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 10 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
save_optimizer=False,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)

# set visualizer
visualizer = None

# set log level
log_level = 'INFO'

# load from which checkpoint
load_from = None

# whether to resume training from the loaded checkpoint
resume = False

# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

# set log processor
log_processor = dict(by_epoch=False)
Original file line number Diff line number Diff line change
@@ -0,0 +1,183 @@
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from torch.optim import AdamW

from xtuner.dataset import InternVL_V1_5_Dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.samplers import LengthGroupedSampler
from xtuner.engine.hooks import DatasetInfoHook
from xtuner.engine.runner import TrainLoop
from xtuner.model import InternVL_V1_5
from xtuner.utils import PROMPT_TEMPLATE
from transformers import AutoTokenizer
from peft import LoraConfig
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
path = "/mnt/hwfile/xtuner/huanghaian/model/Mini-InternVL-Chat-2B-V1-5"
prompt_template = PROMPT_TEMPLATE.internlm2_chat

# Data
data_root = '/mnt/hwfile/xtuner/linzhihao/dataset/llava_data/'
data_path = data_root + 'LLaVA-Instruct-150K/llava_v1_5_mix665k.json'
image_folder = data_root + 'llava_images'
max_length = 8192

# Scheduler & Optimizer
batch_size = 8 # per_device
accumulative_counts = 2
dataloader_num_workers = 4
max_epochs = 1
optim_type = AdamW
# 1024 -> 4e-5
# 128 -> 5e-6
lr = 1e-6
betas = (0.9, 0.999)
weight_decay = 0.05
max_norm = 1 # grad clip
warmup_ratio = 0.03

# Save
save_steps = 1000
save_total_limit = 1 # Maximum checkpoints to keep (-1 means unlimited)

#######################################################################
# PART 2 Model & Tokenizer & Image Processor #
#######################################################################
model = dict(
type=InternVL_V1_5,
model_path=path,
freeze_llm=True,
freeze_visual_encoder=True,
# comment the following lines if you don't want to use Lora in llm
llm_lora=dict(
type=LoraConfig,
r=128,
lora_alpha=256,
lora_dropout=0.05,
target_modules=None,
task_type='CAUSAL_LM'),
# uncomment the following lines if you don't want to use Lora in visual encoder
# visual_encoder_lora=dict(
# type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.05,
# target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'])
)

#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
llava_dataset = dict(
type=InternVL_V1_5_Dataset,
model_path=path,
data_path=data_path,
image_folder=image_folder,
template=prompt_template,
max_length=max_length)

train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=llava_dataset,
sampler=dict(
type=LengthGroupedSampler,
length_property='modality_length',
per_device_batch_size=batch_size * accumulative_counts),
collate_fn=dict(type=default_collate_fn))

#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(
type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale='dynamic',
dtype='float16')

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
end=max_epochs,
convert_to_iter_based=True)
]

# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)

#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=path,
trust_remote_code=True)

custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
]

# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 10 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
save_optimizer=False,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend='nccl'),
)

# set visualizer
visualizer = None

# set log level
log_level = 'INFO'

# load from which checkpoint
load_from = None

# whether to resume training from the loaded checkpoint
resume = False

# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

# set log processor
log_processor = dict(by_epoch=False)
Loading

0 comments on commit 58f7ad4

Please sign in to comment.