-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathMath.ahk
1100 lines (914 loc) · 28 KB
/
Math.ahk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Scientific MATHS LIBRARY ( Filename = Maths.ahk )
by Avi Aryan
v3.43
Thanks to hd0202, smorgasbord, Uberi and sinkfaze
Special thanks to smorgasbord for the factorial function
------------------------------------------------------------------------------
DOCUMENTATION - http://avi-aryan.github.io/ahk/functions/smaths.html
Math-Functions.ahk - https://github.com/avi-aryan/Avis-Autohotkey-Repo/blob/master/Functions/Math-Functions.ahk
##############################################################################
FUNCTIONS
##############################################################################
* NOTES ARE PROVIDED WITH EACH FUNCTION IN THE FORM OF COMMENTS. EXPLORE
* SM_Solve(Expression, AHK=false) --- Solves a Mathematical expression. (with extreme capabilites)
* SM_Add(number1, number2) --- +/- massive numbers . Supports Real Nos (Everything)
* SM_Multiply(number1, number2) --- multiply two massive numbers . Supports everything
* SM_Divide(Dividend, Divisor, length) --- Divide two massive numbers . Supports everything . length is number of decimals smartly rounded.
* SM_Greater(number1, number2, trueforequal=false) --- compare two massive numbers
* SM_Prefect(number) --- convert a number to most suitable form. like ( 002 to 2 ) and ( 000.5600 to 0.56 )
* SM_fact(number) --- factorial of a number . supports large numbers
* SM_toExp(number, decimals) --- Converts a number to Scientific notation format
* SM_FromExp(sci_num) --- Converts a scientific type formatted number to a real number
* SM_Pow(number, power) --- power of a number . supports large numbers and powers
* SM_Mod(Dividend, Divisor) --- Mod() . Supports large numbers
* SM_Round(number, decimals) --- Round() . Large numbers
* SM_Floor(number) --- Floor() . large numbers
* SM_Ceil(number) --- Ceil() . large number
* SM_e(N, auto=1) --- returns e to the power N . Recommend auto=1 for speed
* SM_Number2base(N, base) --- Converts N to base 'base'
* SM_Base2Number(H, base) --- Converts H in base 'base' to a real number
* SM_UniquePmt(pattern, ID, Delimiter=",") ;gives the unique permutation possible .
################################################################################
READ
################################################################################
* Pass the numbers as strings in each of these functions. This is done to avoid number trimming due to Internal AHK Limit
* For a collection of general Math functions, see < Math-functions.ahk >
*/
SM_Solve(expression, ahk=false){
static fchars := "e- e+ **- ** **+ ^- ^+ + - * / \" , rchars := "#< #> ^< ^> ^> ^< ^> � � � � �"
;Reject invalid
if expression=
return
;Check Expression for invalid
if expression is alpha
{
temp2 := %expression%
return %temp2% ;return value of expression if it is a global variable or nothing
}
else if expression is number
{
if !Instr(expression, "e")
return expression
}
;Fix Expression
StringReplace,expression,expression,%A_space%,,All
StringReplace,expression,expression,%A_tab%,,All
expression := SM_Fixexpression(expression)
; Solving Brackets first
while b_pos := RegexMatch(expression, "i)[\+\-\*\\\/\^]\(")
{
b_count := {"(": 1, ")": 0}
b_temp := Substr(expression, b_pos+2)
loop, parse, b_temp
{
b_count[A_LoopField] += 1
if b_count["("] = b_count[")"]
{
end_pos := A_index
break
}
}
expression := Substr(expression, 1, b_pos) SM_Solve( Substr(expression, b_pos+2, end_pos-1) ) Substr(expression, end_pos+b_pos+2)
}
;Changing +,-,e-,e+ and all signs to different things
expression := SM_FixExpression(expression) ;FIX again after solving brackets
loop,
{
if !(Instr(expression, "(")){
expression := SM_PowerReplace(expression, fchars, rchars, "All") ;power replaces replaces those characters
reserve .= expression
break
}
temp := Substr(expression, 1, Instr(expression, "(")) ;till 4+2 + sin(
temp := SM_PowerReplace(temp, fchars, rchars, "All") ;we dont want to replace +- inside functions
temp2 := SubStr(expression, Instr(expression, "(") + 1, Instr(expression, ")") - Instr(expression, "("))
reserve .= temp . temp2
expression := Substr(expression,Instr(expression, ")")+ 1)
}
;
expression := reserve
; The final solving will be done now
loop, parse, expression,����
{
;Check for functions --
if RegExMatch(A_LoopField, "iU)^[a-z0-9_]+\(.*\)$") ;Ungreedy ensures throwing cases like sin(45)^sin(95)
{
fname := Substr(A_LoopField, 1, Instr(A_loopfield,"(") - 1) ;extract func
ffeed := Substr(A_loopfield, Instr(A_loopfield, "(") + 1, Instr(A_loopfield, ")") - Instr(A_loopfield, "(") - 1) ;extract func feed
loop, parse, ffeed,`,
{
StringReplace,feed,A_loopfield,",,All
feed%A_index% := SM_Solve(feed)
totalfeeds := A_index
}
if fname = SM_toExp
outExp := 1 ; now output will be in Exp , set feed1 as the number
, number := feed1
else if totalfeeds = 1
number := %fname%(feed1)
else if totalfeeds = 2
number := %fname%(feed1, feed2)
else if totalfeeds = 3
number := %fname%(feed1, feed2, feed3)
else if totalfeeds = 4
number := %fname%(feed1, feed2, feed3, feed4) ;Add more like this if needed
function := 1
}
else
number := A_LoopField , function := 0
;Perform the previous assignment routine
if (char != "") {
;The order is important here
if (!function) {
while match_pos := RegExMatch(number, "iU)%.*%", output_var)
output_var := Substr(output_var, 2 , -1)
, number := Substr(number, 1, match_pos-1) SM_Solve(Instr(output_var, "(") ? output_var : %output_var%) Substr(number, match_pos+Strlen(output_var)+2)
if Instr(number, "#") or Instr(number, "^")
number := SM_PowerReplace(number, "#< #> ^> ^<", "e- e ^ ^-", "All") ;replace #,^ back to e and ^
;Symbols
;As all use SM_Solve() , else-if is OK
if ( p := Instr(number, "c") ) or ( p := p + Instr(number, "p") ) ;permutation or combination
term_n := Substr(number, 1, p-1) , term_r := Substr(number,p+1)
, number := SM_Solve( term_n "!/" term_r "!" ( Instr(number, "c") ? "/(" term_n "-" term_r ")!" : "" ) )
else if Instr(number, "^")
number := SM_Pow( SM_Solve( SubStr(number, 1, posofpow := Instr(number, "^")-1 ) ) , SM_Solve( Substr(number, posofpow+2) ) )
else if Instr(number, "!")
number := SM_fact( SM_Solve( Substr(number, 1, -1) ) )
else if Instr(number, "e") ; solve e
number := SM_fromExp( number )
}
if (Ahk){
if char = �
solved := solved + (number)
else if char = �
solved := solved - (number)
else if char = �
{
if !number
return
solved := solved / (number)
}
else if char = �
solved := solved * (number)
}else{
if char = �
solved := SM_Add(solved, number)
else if char = �
solved := SM_Add(solved,"-" . number)
else if char = �
{
if !number
return
solved := SM_Divide(solved, number)
}
else if char = �
solved := SM_Multiply(solved, number)
}
}
if solved =
solved := number
char := Substr(expression, Strlen(A_loopfield) + 1,1)
expression := Substr(expression, Strlen(A_LoopField) + 2) ;Everything except number and char
}
return, outExp ? SM_ToExp( solved ) : SM_Prefect( solved )
}
/*
SM_Add(number1, number2, prefect=true)
Adds or subtracts 2 numbers
To subtract A and B , do like SM_Add(A, "-" B) i.e. append a minus
*/
SM_Add(number1, number2, prefect=true){ ;Dont set Prefect false, Just forget about it.
;Processing
IfInString,number2,--
count := 2
else IfInString,number2,-
count := 1
else
count := 0
IfInString,number1,-
count+=1
;
n1 := number1
n2 := number2
StringReplace,number1,number1,-,,All
StringReplace,number2,number2,-,,All
;Decimals
dec1 := Instr(number1,".") ? StrLen(number1) - InStr(number1, ".") : 0
dec2 := Instr(number2,".") ? StrLen(number2) - InStr(number2, ".") : 0
if (dec1 > dec2){
dec := dec1
loop,% (dec1 - dec2)
number2 .= "0"
}
else if (dec2 > dec1){
dec := dec2
loop,% (dec2 - dec1)
number1 .= "0"
}
else
dec := dec1
StringReplace,number1,number1,.
StringReplace,number2,number2,.
;Processing
;Add zeros
if (Strlen(number1) >= StrLen(number2)){
loop,% (Strlen(number1) - strlen(number2))
number2 := "0" . number2
}
else
loop,% (Strlen(number2) - strlen(number1))
number1 := "0" . number1
n := strlen(number1)
;
if count not in 1,3 ;Add
{
loop,
{
digit := SubStr(number1,1 - A_Index, 1) + SubStr(number2, 1 - A_index, 1) + (carry ? 1 : 0)
if (A_index == n){
sum := digit . sum
break
}
if (digit > 9){
carry := true
digit := SubStr(digit, 0, 1)
}
else
carry := false
sum := digit . sum
}
;Giving sign
if (Instr(n2,"-") and Instr(n1, "-"))
sum := "-" . sum
}
;SUBTRACT ******************
elsE
{
;Compare numbers for suitable order
numbercompare := SM_Greater(number1, number2, true)
if !(numbercompare){
mid := number2
number2 := number1
number1 := mid
}
loop,
{
digit := SubStr(number1,1 - A_Index, 1) - SubStr(number2, 1 - A_index, 1) + (borrow ? -1 : 0)
if (A_index == n){
StringReplace,digit,digit,-
sum := digit . sum
break
}
if Instr(digit, "-")
borrow:= true , digit := 10 + digit ;4 - 6 , then 14 - 6 = 10 + (-2) = 8
else
borrow := false
sum := digit sum
}
;End of loop ;Giving Sign
;
If InStr(n2,"--"){
if (numbercompare)
sum := "-" . sum
}else If InStr(n2,"-"){
if !(numbercompare)
sum := "-" . sum
}else IfInString,n1,-
if (numbercompare)
sum := "-" . sum
}
;End of Subtract - Sum
;End
if ((sum == "-")) ;Ltrim(sum, "0") == ""
sum := 0
;Including Decimal
If (dec)
if (sum)
sum := SubStr(sum,1,StrLen(sum) - dec) . "." . SubStr(sum,1 - dec)
;Prefect
return, Prefect ? SM_Prefect(sum) : sum
}
/*
SM_Multiply(number1, number2)
Multiplies any two numbers
*/
SM_Multiply(number1, number2){
;Getting Sign
positive := true
if Instr(number2, "-")
positive := false
if Instr(number1, "-")
positive := !positive
number1 := Substr(number1, Instr(number1, "-") ? 2 : 1)
number2 := Substr(number2, Instr(number2, "-") ? 2 : 1)
; Removing Dot
dec := InStr(number1,".") ? StrLen(number1) - InStr(number1, ".") : 0
If n2dotpos := Instr(number2, ".")
dec := dec + StrLen(number2) - n2dotpos
StringReplace,number1,number1,.
StringReplace,number2,number2,.
; Multiplying
loop,% Strlen(number2)
number2temp .= Substr(number2, 1-A_Index, 1)
number2 := number2temp
;Reversing for suitable order
product := "0"
Loop,parse,number2
{
;Getting Individual letters
row := "0"
zeros := ""
if (A_loopfield)
loop,% (A_loopfield)
row := SM_Add(row, number1, 0)
else
loop,% (Strlen(number1) - 1) ;one zero is already 5 lines above
row .= "0"
loop,% (A_index - 1) ;add suitable zeroes to end
zeros .= "0"
row .= zeros
product := SM_Add(product, row, false)
}
;Give Dots
if (dec){
product := SubStr(product,1,StrLen(product) - dec) . "." . SubStr(product,1 - dec)
product := SM_Prefect(product)
}
;Give sign
if !(positive)
product := "-" . product
return, product
}
/*
SM_Divide(number1, number2, length=10)
Divide any two numbers
length = defines the number of decimal places in the result
*/
SM_Divide(number1, number2, length=10){
;Getting Sign
positive := true
if (Instr(number2, "-"))
positive := false
if (Instr(number1, "-"))
positive := !positive
StringReplace,number1,number1,-
StringReplace,number2,number2,-
;Perfect them
number1 := SM_Prefect(number1) , number2 := SM_Prefect(number2)
;Cases
;if !number1 && !number2
; return 1
if !number2 ; return blank if denom is 0
return
;Remove Decimals
dec := 0
if Instr(number1, ".")
dec := - (Strlen(number1) - Instr(number1, ".")) ;-ve as when the num is multiplied by 10, 10 is divided
if Instr(number2, ".")
dec := Strlen(number2) - Instr(number2, ".") + dec + 0
StringReplace,number1,number1,.
StringReplace,number2,number2,.
number1 := Ltrim(number1, "0") , number2 := Ltrim(number2, "0")
decimal := dec , num1 := number1 , num2 := number2 ;These wiil be used to handle point insertion
n1 := Strlen(number1) , n2 := StrLen(number2) ;Stroring n1 & n2 as they will be used heavily below
;Widen number1
loop,% n2 + length
number1 .= "0"
coveredlength := 0 , dec := dec - n2 - length , takeone := false , n1f := n1 + n2 + length
;Start
while(number1 != "")
{
times := 0 , below := "" , lendivide := 0 , n1fromleft := (takeone) ? Substr(number1, 1, n2+1) : Substr(number1, 1, n2)
if SM_Greater(n1fromleft, number2, true)
{
todivide := n1fromleft
loop, 10
{
num2temp%A_index% := SM_Multiply(number2, A_index)
if !(SM_Greater(todivide, num2temp%A_index%, true)){
lendivide := (takeone) ? n2 + 1 : n2
times := A_index - 1 , below := num2temp%times%
break
}
}
res .= zeroes_r
}
else
{
todivide := SubStr(number1, 1, n2+1) ; :-P (takeone) will not be needed here
loop, 10
{
num2temp%A_index% := SM_Multiply(number2, A_index)
if !(SM_Greater(todivide, num2temp%A_index%, true)){
lendivide := n2 + 1
times := A_index - 1 , below := num2temp%times%
break
}
}
if (coveredlength != 0)
res .= zeroes_r "0"
}
res .= times , coveredlength+=(lendivide - Strlen(remainder)) ;length of previous remainder will add to number1 and so is not counted
remainder := SM_Add(todivide, "-" below)
if remainder = 0
remainder := ""
number1 := remainder . Substr(number1, lendivide + 1)
if SM_Greater("0", remainder, true)
{
zeroes_k := ""
loop,% Strlen(number1)
zeroes_k .= "0"
if (number1 == zeroes_k){
StringTrimRight,number1,number1,1
number1 := "1" . number1
res := SM_Multiply(res, number1)
break
}
}
if times = 0
break
zeroes_r := "" , takeone := false
if (remainder == "") {
loop,
if (Instr(number1, "0") == 1)
zeroes_r .= "0" , number1 := Substr(number1, 2) , coveredlength+=1
else
break
}
if (Strlen(remainder) == n2)
takeone := true
else
loop,% n2 - StrLen(remainder) - 1
zeroes_r .= "0"
}
;Putting Decimal points"
if (dec < 0)
{
oldformat := A_formatfloat
SetFormat,float,0.16e
Divi := Substr(num1,1,15) / Substr(num2,1,15) ; answer in decimals
decimal := decimal + Strlen(Substr(num1,16)) - Strlen(Substr(num2,16))
if (Instr(divi,"-"))
decimal := decimal - Substr(divi,-1) + 1
else
decimal := decimal + Substr(divi,-1) + 1
if (decimal > 0)
res := Substr(res, 1, decimal) . "." . Substr(res, decimal + 1)
else if (decimal < 0){
loop,% Abs(decimal)
zeroes_e .= "0"
res := "0." zeroes_e res
}
else
res := "0." res
SetFormat,float,%oldformat%
}
else
{
num := "1"
loop,% dec
num .= "0"
res := SM_Multiply(SM_Prefect(res), num)
}
return, ( (positive) ? "" : "-" ) . SM_Round(SM_Prefect(res), decimal < 0 ? Abs(decimal)+length : length)
}
/*
SM_UniquePmt(series, ID="", Delimiter=",")
Powerful Permutation explorer function that uses an unique algorithm made by the author to give a unique sequence linked to a number.
For example, the word "abc" has 6 permutations . So, SM_UniquePmt("abc", 1) gives a different sequence, ("abc", 2) a different till ("abc", 6)
As the function is powered by the the specialist Mod, Division and Multiply functions, it can handle series larger series too.
Examples --
msgbox,% SM_UniquePmt("abcd") ;leaving ID = "" gives all permutations
msgbox,% SM_UniquePmt("abcdefghijklmnopqrstuvwxyz123456789", 23322323323) ;<----- That's called huge numbers
*/
SM_UniquePmt(series, ID="", Delimiter=","){
if Instr(series, Delimiter)
loop, parse, series,%Delimiter%
item%A_index% := A_LoopField , last := lastbk := A_Index
else{
loop, parse, series
item%A_index% := A_loopfield
last := lastbk := Strlen(series) , Delimiter := ""
}
if (ID == "") ;Return all possible permutations
{
fact := SM_fact(last)
loop,% fact
toreturn .= SM_UniquePmt(series, A_index) . "`n"
return, Rtrim(toreturn, "`n")
}
posfactor := (SM_Mod(ID, last) == "0") ? last : SM_Mod(ID, last)
incfactor := (SM_Mod(ID, last) == "0") ? SM_Floor(SM_Divide(ID,last)) : SM_Floor(SM_Divide(ID,last)) + 1
loop,% last
{
tempmod := SM_Mod(posfactor + incfactor - 1, last) ;should be faster
posfactor := (tempmod == "0") ? last : tempmod ;Extraction point
if (posfactor < 0)
posfactor:= posfactor*(-1) ;Ixiko's mod to prevent neg integer
res .= item%posfactor% . Delimiter , item%posfactor% := ""
loop,% lastbk
if (item%A_index% == "")
plus1 := A_index + 1 , item%A_index% := item%plus1% , item%plus1% := ""
last-=1
if (posfactor > last)
posfactor := 1
}
return, Rtrim(res, Delimiter)
}
/*
SM_Greater(number1, number2, trueforqual=false)
Evaluates to true if number1 > number2
If the "trueforequal" param is true , the function will also evaluate to true if number1 = number2
*/
SM_Greater(number1, number2, trueforequal=false){
IfInString,number2,-
IfNotInString,number1,-
return, true
IfInString,number1,-
IfNotInString,number2,-
return, false
if (Instr(number1, "-") and Instr(number2, "-"))
bothminus := true
number1 := SM_Prefect(number1) , number2 := SM_Prefect(number2)
; Manage Decimals
dec1 := (Instr(number1,".")) ? ( StrLen(number1) - InStr(number1, ".") ) : (0)
dec2 := (Instr(number2,".")) ? ( StrLen(number2) - InStr(number2, ".") ) : (0)
if (dec1 > dec2)
loop,% (dec1 - dec2)
number2 .= "0"
else if (dec2 > dec1)
loop,% (dec2 - dec1)
number1 .= "0"
StringReplace,number1,number1,.
StringReplace,number2,number2,.
; Compare Lengths
if (Strlen(number1) > Strlen(number2))
return,% (bothminus) ? (false) : (true)
else if (Strlen(number2) > Strlen(number1))
return,% (bothminus) ? (true) : (false)
else ;The final way out
{
stop := StrLen(number1)
loop,
{
if (SubStr(number1,A_Index, 1) > Substr(number2,A_index, 1))
return bothminus ? 0 : 1
else if (Substr(number2,A_index, 1) > SubStr(number1,A_Index, 1))
return bothminus ? 1 : 0
if (a_index == stop)
return, (trueforequal) ? 1 : 0
}
}
}
/*
SM_Prefect(number)
Converts any number to Perfect form i.e removes extra zeroes and adds reqd. ones. eg > SM_Prefect(000343453.4354500000)
*/
SM_Prefect(number){
number .= "" ;convert to string if needed
number := RTrim(number, "+-")
if number=
return 0
if Instr(number, "-")
number := Substr(number, 2) , negative := true
if Instr(number, "."){
number := Trim(number, "0")
if (Substr(number,1,1) == ".") ;if num like .6767
number := "0" number
if (Substr(number, 0) == ".") ;like 456.
number := Substr(number, 1, -1)
return,% (negative) ? ("-" . number) : (number)
} ; Non-decimal below
else
{
if Trim(number, "0")
return negative ? ("-" . Ltrim(number, "0")) : (Ltrim(number, "0"))
else
return 0
}
}
/*
SM_Mod(dividend, divisor)
Gives remanider when dividend is divided by divisor
*/
SM_Mod(dividend, divisor){
;Signs
positive := true
if Instr(divisor, "-")
positive := false
if (Instr(dividend, "-"))
positive := !positive
dividend := Substr(dividend, Instr(dividend, "-") ? 2 : 1) , divisor := Substr(divisor, Instr(divisor, "-") ? 2 : 1) , Remainder := dividend
;Calculate no of occurances
if SM_Greater(dividend, divisor, true){
div := SM_Divide(dividend, divisor)
div := Instr(div, ".") ? SubStr(div, 1, Instr(div, ".") - 1) : 0
if ( div == "0" )
Remainder := 0
else
Remainder := SM_Add(dividend, "-" SM_Multiply(Divisor, div))
}
return, ( (Positive or Remainder=0) ? "" : "-" ) . Remainder
}
/*
SM_ToExp(number, decimals="") // SM_Exp
Gives exponential form of representing a number.
If decimals param is omitted , it is automatically detected.
? SM_Exp was the function's name in old versions and so a dummy function has been created
*/
SM_Exp(number, decimals=""){
return SM_ToExp(number, decimals)
}
SM_ToExp(number, decimals=""){
if (dec_pos := Instr(number, "."))
{
number := SM_Prefect(number) , number := Substr(number, Instr(number, "0")=1 ? 2 : 1)
Loop, parse, number
{
if A_loopfield > 0
break
tempnum .= A_LoopField
}
number := Substr(number, Strlen(tempnum)+1) , power := dec_pos-Strlen(tempnum)-2
number2 := Substr(number, 2)
StringReplace,number2,number2,.
number := Substr(number, 1, 1) "." number2
decimals := ( decimals="" or decimals>Strlen(number2) ) ? Strlen(number2) : decimals
return SM_Round(number, decimals) "e" power
}
else
{
number := SM_Prefect(number) , decimals := ( decimals="" or decimals>Strlen(Substr(number,2)) ) ? Strlen(Substr(number,2)) : decimals
return SM_Round( Substr(number, 1, 1) "." Substr(number, 2), decimals ) "e" Strlen(number)-1
}
}
/*
SM_FromExp(expnum)
Converts exponential form to number
*/
SM_FromExp(expnum){
if !Instr(expnum, "e")
return expnum
n1 := Substr(expnum, 1, t := Instr(expnum, "e")-1) , n2 := Substr(expnum, t+2)
return SM_ShiftDecimal(n1, n2)
}
/*
SM_Round(number, decimals)
Rounds a infinitely sized number to given number of decimals
*/
SM_Round(number, decimals){
if Instr(number,".")
{
nofdecimals := StrLen(number) - ( Instr(number, ".") = 0 ? Strlen(number) : Instr(number, ".") )
if (nofdecimals > decimals)
{
secdigit := Substr(number, Instr(number,".")+decimals+1, 1)
if secdigit >= 5
loop,% decimals-1
zeroes .= "0"
number := SM_Add(Substr(number, 1, Instr(number, ".")+decimals), (secdigit >= 5) ? "0." zeroes "1" : "0")
}
else
{
loop,% decimals - nofdecimals
zeroes .= "0"
number .= zeroes
}
return, Rtrim(number, ".")
}
else
return, number
}
/*
SM_Floor(number)
Floor function with extended support. Refer to Ahk documentation for Floor()
*/
SM_Floor(number){
number := SM_Prefect(number)
if Instr(number, "-")
if Instr(number,".")
return, SM_Add(Substr(number, 1, Instr(number, ".") - 1), -1)
else
return, number
else
return, Instr(number, ".") ? Substr(number, 1, Instr(number, ".") - 1) : number
}
/*
SM_Ceil(number)
Ceil function with extended support. Refer to Ahk documentation for Ceil()
*/
SM_Ceil(number){
number := SM_Prefect(number)
if Instr(number, "-")
{
if Instr(number,".")
return, Substr(number, 1, Instr(number, ".") - 1)
else
return, number
}
else
return, Instr(number, ".") ? SM_Add( Substr(number, 1, Instr(number, ".") - 1), 1) : number
}
/*
SM_fact(number)
Gives factorial of number of any size. Try SM_fact(200) :-;
;--- Edit
Now SM_Fact() uses smorgasboard method for faster results
http://ahkscript.org/boards/viewtopic.php?f=22&t=176&p=4786#p4781
*/
SM_fact(N){
res := 1 , k := 1 , carry := 0
N -= 1
loop % N
{
StringSplit, l_times, res
index := l_times0
k := A_index + 1
Loop %index%
{
digit := k * l_times%index% + carry
if ( digit > 9 )
{
carry := RegExReplace(digit, "(.*)(\d)", "$1")
digit := RegExReplace(digit, "(.*)(\d)", "$2")
}
else
carry := 0
r := digit r
index --
}
if ( carry != 0 )
final := carry r
else
final := r
res := final
digit := index := final := r =
r := ""
carry := 0
}
return final ? final : 1
}
/*
SM_Pow(number, power)
Gives the power of a number . Uses SM_Multiply() for the purpose
*/
SM_Pow(number, power){
if (power < 1)
{
if !power ;0
return 1
if power Between -1 and 1
return number ** power
power := -power , I := Floor(power) , D := Mod(power, 1)
if Instr(number, "-") && D ;if number is - and power is - in decimals , it doesnt exist ... -4 ** -2.5
return
D_part := number ** D ;The power of decimal part
I_part := SM_Pow(number, I) ;Now I will always be >=1 . So it will fall in the below else part
return SM_Prefect( SM_Divide(1, SM_Multiply(I_part, D_part)) )
}
else
{
if power > 6
{
sqrt_c := Floor(Sqrt(power))
x_c := SM_Iterate(number, sqrt_c) , loopc := Floor(power/sqrt_c)
x_c_loop := SM_iterate(x_c, loopc) , remPow := power - (sqrt_c*loopc)
x_remPow := SM_iterate(number, remPow)
return SM_Multiply(x_c_loop, x_remPow)
}
else x_7_pow7 := 1
a := 1
loop % Mod(power, 7)
a := SM_Multiply(number, a)
return SM_Multiply(x_7_pow7, a)
}
}
/*
SM_e(N, auto=1)
Gives the power of e to N
auto = 1 enables smart rounding for faster results
Call auto as false (0) for totally accurate results. (may be slow)
*/
SM_e(N, auto=1){
static e := 2.71828182845905 , d := 14 ;rendering precise results with speed .
if (N > 5) and auto
e := SM_Round("2.71828182845905", (F := d-N+5)>2 ? F : 2)
return SM_Pow(e, N)
}
/*
SM_ base Conversion functions
via Base to Number and Number to Base conversion
Base = 16 for HexaDecimal , 2 for Binary, 8 for Octal and 10 for our own number system
*/
SM_Number2Base(N, base=16){
baseLen:=base<10 ? SM_Ceil((10/base)*Strlen(N)) : Strlen(N)
if SM_checkformat(N) && SM_Checkformat(base**(baseLen-1)) ;check if N and base**base (used below) is compatitible
loop % baseLen
D:=Floor(N/(T:=base**(baseLen-A_index))),H.=!D?0:(D>9?Chr(D+87):D),N:=N-D*T
else
loop % baseLen
D:=SM_Floor( SM_Divide(N , T:= SM_Pow(base, baselen-A_index)) ) , H.=!D?0:(D>9?Chr(D+87):D) , N:=SM_Add( N, "-" SM_Multiply(D,T) )
return Ltrim(H,"0")
}
SM_Base2Number(H, base=16){
StringLower, H, H ;convert to lowercase for Asc to work
S:=Strlen(H),N:=0
loop,parse,H
N := SM_Add( N, SM_Multiply( (A_LoopField*1="")?Asc(A_LoopField)-87:A_LoopField , SM_Pow(base, S-A_index) ) )
return N
}
;################# NON - MATH FUNCTIONS #######################################
SM_Checkformat(n){
static ahk_ct := 9223372036854775807
if n < 0
return 0
if ( ahk_ct > n+0 )
return 1
}