-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
136 lines (108 loc) · 5.59 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
MAIN FILE in the "BA" Neuronal Network Repositoy
CALL BY: <main.py>
RETURN: -
INFO: This Git-Repository holds all the Code written for my Bachelor Thesis at the Chair of Automatic Control at TF Uni Kiel.
The Programming Language is Python.
In this Main-Function, modules are being called and reviewed.
"""
from modules import random_search as rs
from modules import random_search_v2 as rs2
from modules import weights_nn as w
from modules import genetic_algorithm as ga
from modules import visiualize as vs
from modules import inspect_nn as ins
from modules import parameters
import easygui as eg
def start():
global choices
msg = "Willkommen im TW Circuit20 Si10mulator. Bitte wählen Sie eine Option:"
title = "TW Circuit Simulator"
choices = ["Lokale Simulation","Parameter Dump öffnen","Parameter mit Weight Dump öffnen","Dumps inspizieren"]
choice = eg.choicebox(msg, title, choices)
return choice
def local_simulation():
msg = "Wählen Sie eine der unten aufgeführten lokalen Simulationen:"
title = "TW Circuit Simulator - Local Simulation"
choices = ["RandomSearch_v2","RandomSearch_v2 mit Weight-Optimization","Genetic Algorithm"]
choice = eg.choicebox(msg, title, choices)
if choice == choices[0]:
local_rs()
elif choice == choices[1]:
local_rs_w()
elif choice == choices[2]:
local_ga()
def local_rs():
fieldmsg = "Legen Sie die Dauer der lokalen Simulation fest. Bei keiner Eingabe wird die Simulation nicht durchgeführt."
fieldtitle = "TW Circuit - RandomSearch_v2"
fieldNames = ["Dauer der Parametersimulation (in Sek.):","Dauer der Visualisierung"]
fieldValues = [60,10]
fieldValues = eg.multenterbox(fieldmsg, fieldtitle, fieldNames)
date, best_reward_p = rs2.main(int(fieldValues[0]))
parameter_matrices = parameters.current_dir + "/parameter_dumps/" + date + "_rs2_v2_" + best_reward_p + ".hkl"
vs.main(parameter_matrices, int(fieldValues[1])) # Callig the VISIUALIZATION Module to show the newly learned paramteter matrices
def local_rs_w():
fieldmsg = "Legen Sie die Dauer der lokalen Simulation fest. Bei keiner Eingabe wird die Simulation nicht durchgeführt."
fieldtitle = "TW Circuit - RandomSearch_v2 with Weights"
fieldNames = ["Dauer der Parametersimulation (in Sek.):","Dauer der Gewichtungsoptimierung: (in Sek.)","Dauer der Visualisierung"]
fieldValues = [60,60,10]
fieldValues = eg.multenterbox(fieldmsg, fieldtitle, fieldNames)
date, best_reward_p = rs2.main(int(fieldValues[0]))
parameter_matrices = parameters.current_dir + "/parameter_dumps/" + date + "_rs2_v2_" + best_reward_p + ".hkl"
date, best_reward_w = w.main(int(fieldValues[1]), parameter_matrices, best_reward_p)
if best_reward_p <= best_reward_w:
weight_matrices = parameters.current_dir + "/weight_dumps/" + date + "_" + best_reward_w + ".hkl"
vs.main_with_weights(parameter_matrices, weight_matrices, int(fieldValues[2])) # Callig the VISIUALIZATION Module to show the newly learned paramteter matrices
else:
eg.msgbox(msg="Weight Run Failed!")
vs.main(parameter_matrices, int(fieldValues[2])) # Callig the VISIUALIZATION Module to show the newly learned paramteter matrices
def local_ga():
fieldmsg = "Legen Sie die Dauer der lokalen Simulation fest. Bei keiner Eingabe wird die Simulation nicht durchgeführt."
fieldtitle = "TW Circuit - Genetic Algorithm"
fieldNames = ["Dauer der Parametersimulation (in Sek.):","Plot der Lernkurven erwünscht? <0=NEIN,1=JA>","Dauer der Visualisierung"]
fieldValues = [60,10]
fieldValues = eg.multenterbox(fieldmsg, fieldtitle, fieldNames)
date, best_reward_p = ga.main(int(fieldValues[0]),int(fieldValues[1]))
parameter_matrices = parameters.current_dir + "/parameter_dumps/" + date + "_ga_" + best_reward_p + ".hkl"
vs.main(parameter_matrices, int(fieldValues[2])) # Callig the VISIUALIZATION Module to show the newly learned paramteter matrices
def load_parameter():
msg = "Parameter Dump auswählen oder Best-Score-Visualisierung"
choices = ["Parameter auswählen","Beste Visualisierug"]
reply = eg.buttonbox(msg, choices=choices)
if reply == choices[0]:
parameter_dir = eg.fileopenbox()
vis_time = eg.integerbox("Dauer der Simulation (in Sek.):","TW Circuit")
vs.main(parameter_dir, int(vis_time))
elif reply == choices[1]:
parameter_dir = "parameter_dumps/20180817_01-56-01_rs2_v2_200.hkl"
vis_time = eg.integerbox("Dauer der Simulation (in Sek.):","TW Circuit")
vs.main(parameter_dir, int(vis_time))
def load_parameter_weights():
eg.msgbox(msg="Wählen Sie zuerst den Parameter-Dump.")
parameter_dir = eg.fileopenbox()
eg.msgbox(msg="Wählen Sie nun den entsprechenden Weight-Dump.")
weight_dir = eg.fileopenbox()
vis_time = eg.integerbox("Dauer der Simulation (in Sek.):","TW Circuit")
vs.main_with_weights(parameter_dir, weight_dir, int(vis_time))
def inspect():
choices = ["Parameter-Dump", "Weight-Dump"]
file = eg.buttonbox("Welche Datei wollen Sie inspizieren?", choices=choices)
if file == choices[0]:
dir = eg.fileopenbox()
ins.parameters(dir)
elif file == choices[1]:
dir = eg.fileopenbox()
ins.weights(dir)
def main():
global parameter_matrices, weight_matrices
choice = start()
if choice == choices[0]:
local_simulation()
elif choice == choices[1]:
load_parameter()
elif choice == choices[2]:
load_parameter_weights()
elif choice == choices[3]:
inspect()
if __name__=="__main__":
main()