-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
James Bristow
committed
Feb 8, 2024
1 parent
57f0244
commit 52c2c3d
Showing
13 changed files
with
2,935 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,289 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "c9d42a09", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Downloading https://maxhalford.github.io/files/datasets/toulouse_bikes.zip (1.12 MB)\n", | ||
"Uncompressing into /home/jbris/river_data/Bikes\n", | ||
"{'clouds': 75,\n", | ||
" 'description': 'light rain',\n", | ||
" 'humidity': 81,\n", | ||
" 'moment': datetime.datetime(2016, 4, 1, 0, 0, 7),\n", | ||
" 'pressure': 1017.0,\n", | ||
" 'station': 'metro-canal-du-midi',\n", | ||
" 'temperature': 6.54,\n", | ||
" 'wind': 9.3}\n", | ||
"Number of available bikes: 1\n", | ||
"[20,000] MAE: 4.912763\n", | ||
"[40,000] MAE: 5.333578\n", | ||
"[60,000] MAE: 5.330969\n", | ||
"[80,000] MAE: 5.392334\n", | ||
"[100,000] MAE: 5.423078\n", | ||
"[120,000] MAE: 5.541239\n", | ||
"[140,000] MAE: 5.613038\n", | ||
"[160,000] MAE: 5.622441\n", | ||
"[180,000] MAE: 5.567836\n", | ||
"[182,470] MAE: 5.563905\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"MAE: 5.563905" | ||
] | ||
}, | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"from pprint import pprint\n", | ||
"from river import datasets\n", | ||
"\n", | ||
"dataset = datasets.Bikes()\n", | ||
"\n", | ||
"for x, y in dataset:\n", | ||
" pprint(x)\n", | ||
" print(f'Number of available bikes: {y}')\n", | ||
" break\n", | ||
" \n", | ||
"from river import compose\n", | ||
"from river import linear_model\n", | ||
"from river import metrics\n", | ||
"from river import evaluate\n", | ||
"from river import preprocessing\n", | ||
"from river import optim\n", | ||
"\n", | ||
"model = compose.Select('clouds', 'humidity', 'pressure', 'temperature', 'wind')\n", | ||
"model |= preprocessing.StandardScaler()\n", | ||
"model |= linear_model.LinearRegression(optimizer=optim.SGD(0.001))\n", | ||
"\n", | ||
"metric = metrics.MAE()\n", | ||
"\n", | ||
"evaluate.progressive_val_score(dataset, model, metric, print_every=20_000)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "93b94267", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[20,000] MAE: 3.720766\n", | ||
"[40,000] MAE: 3.829739\n", | ||
"[60,000] MAE: 3.844905\n", | ||
"[80,000] MAE: 3.910137\n", | ||
"[100,000] MAE: 3.888553\n", | ||
"[120,000] MAE: 3.923644\n", | ||
"[140,000] MAE: 3.980882\n", | ||
"[160,000] MAE: 3.949972\n", | ||
"[180,000] MAE: 3.934489\n", | ||
"[182,470] MAE: 3.933442\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"MAE: 3.933442" | ||
] | ||
}, | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"from river import feature_extraction\n", | ||
"from river import stats\n", | ||
"\n", | ||
"def get_hour(x):\n", | ||
" x['hour'] = x['moment'].hour\n", | ||
" return x\n", | ||
"\n", | ||
"model = compose.Select('clouds', 'humidity', 'pressure', 'temperature', 'wind')\n", | ||
"model += (\n", | ||
" get_hour |\n", | ||
" feature_extraction.TargetAgg(by=['station', 'hour'], how=stats.Mean())\n", | ||
")\n", | ||
"model |= preprocessing.StandardScaler()\n", | ||
"model |= linear_model.LinearRegression(optimizer=optim.SGD(0.001))\n", | ||
"\n", | ||
"metric = metrics.MAE()\n", | ||
"\n", | ||
"evaluate.progressive_val_score(dataset, model, metric, print_every=20_000)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "aa7a091c", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"0. Input\n", | ||
"--------\n", | ||
"clouds: 75 (int)\n", | ||
"description: light rain (str)\n", | ||
"humidity: 81 (int)\n", | ||
"moment: 2016-04-01 00:00:07 (datetime)\n", | ||
"pressure: 1,017.00000 (float)\n", | ||
"station: metro-canal-du-midi (str)\n", | ||
"temperature: 6.54000 (float)\n", | ||
"wind: 9.30000 (float)\n", | ||
"\n", | ||
"1. Transformer union\n", | ||
"--------------------\n", | ||
" 1.0 Select\n", | ||
" ----------\n", | ||
" clouds: 75 (int)\n", | ||
" humidity: 81 (int)\n", | ||
" pressure: 1,017.00000 (float)\n", | ||
" temperature: 6.54000 (float)\n", | ||
" wind: 9.30000 (float)\n", | ||
"\n", | ||
" 1.1 get_hour | y_mean_by_station_and_hour\n", | ||
" -----------------------------------------\n", | ||
" y_mean_by_station_and_hour: 4.43243 (float)\n", | ||
"\n", | ||
"clouds: 75 (int)\n", | ||
"humidity: 81 (int)\n", | ||
"pressure: 1,017.00000 (float)\n", | ||
"temperature: 6.54000 (float)\n", | ||
"wind: 9.30000 (float)\n", | ||
"y_mean_by_station_and_hour: 4.43243 (float)\n", | ||
"\n", | ||
"2. StandardScaler\n", | ||
"-----------------\n", | ||
"clouds: 0.47566 (float)\n", | ||
"humidity: 0.42247 (float)\n", | ||
"pressure: 1.05314 (float)\n", | ||
"temperature: -1.22098 (float)\n", | ||
"wind: 2.21104 (float)\n", | ||
"y_mean_by_station_and_hour: -0.59098 (float)\n", | ||
"\n", | ||
"3. LinearRegression\n", | ||
"-------------------\n", | ||
"Name Value Weight Contribution \n", | ||
" Intercept 1.00000 6.58252 6.58252 \n", | ||
" pressure 1.05314 3.78529 3.98646 \n", | ||
" humidity 0.42247 1.44921 0.61225 \n", | ||
"y_mean_by_station_and_hour -0.59098 0.54167 -0.32011 \n", | ||
" clouds 0.47566 -1.92255 -0.91448 \n", | ||
" wind 2.21104 -0.77720 -1.71843 \n", | ||
" temperature -1.22098 2.47030 -3.01619 \n", | ||
"\n", | ||
"Prediction: 5.21201\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import itertools\n", | ||
"\n", | ||
"model = compose.Select('clouds', 'humidity', 'pressure', 'temperature', 'wind')\n", | ||
"model += (\n", | ||
" get_hour |\n", | ||
" feature_extraction.TargetAgg(by=['station', 'hour'], how=stats.Mean())\n", | ||
")\n", | ||
"model |= preprocessing.StandardScaler()\n", | ||
"model |= linear_model.LinearRegression()\n", | ||
"\n", | ||
"for x, y in itertools.islice(dataset, 10000):\n", | ||
" y_pred = model.predict_one(x)\n", | ||
" model.learn_one(x, y)\n", | ||
"\n", | ||
"x, y = next(iter(dataset))\n", | ||
"print(model.debug_one(x))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "a06bc18b", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"[20,000] MAE: 20.198137\n", | ||
"[40,000] MAE: 12.199763\n", | ||
"[60,000] MAE: 9.468279\n", | ||
"[80,000] MAE: 8.126625\n", | ||
"[100,000] MAE: 7.273133\n", | ||
"[120,000] MAE: 6.735469\n", | ||
"[140,000] MAE: 6.376704\n", | ||
"[160,000] MAE: 6.06156\n", | ||
"[180,000] MAE: 5.806744\n", | ||
"[182,470] MAE: 5.780772\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"MAE: 5.780772" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"import datetime as dt\n", | ||
"\n", | ||
"evaluate.progressive_val_score(\n", | ||
" dataset=dataset,\n", | ||
" model=model.clone(),\n", | ||
" metric=metrics.MAE(),\n", | ||
" moment='moment',\n", | ||
" delay=dt.timedelta(minutes=30),\n", | ||
" print_every=20_000\n", | ||
")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "9bbc8b4e", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.13" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.