Skip to content

Poneglyph is an optimized distributed advanced analytics as a service framework designed to be highly efficient, flexible and scalable. It implements machine learning algorithms such as UMAP and Gaussian Mixture Models to yield insights and shed light to business, industry and scinentific questions.

Notifications You must be signed in to change notification settings

Jailsonrs/Poneglyph

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation



Poneglyph is an optimized distributed advanced analytics as a service framework designed to be highly efficient, flexible and scalable. It implements machine learning algorithms such as UMAP and Gaussian Mixture Models to yield insights and shed light on business, industry and scientific questions.

Features

Application Structure:

Directory Structure

.
├── app
│   ├── data
│   │   ├── raw
│   │   │   └── dados_municipais.csv
│   │   └── transformed
│   │       ├── clustered_dataset
│   │       ├── dados_limpos.csv
│   │       └── UMAP_embeddings.csv
│   ├── index.html
│   ├── rsconnect
│   │   └── shinyapps.io
│   │       └── jailson-rodrigues
│   │           └── Cluster-test.dcf
│   ├── server.R
│   ├── src
│   │   └── R
│   │       ├── libs.R
│   │       ├── modules
│   │       │   ├── inputs.R
│   │       │   └── outputs.R
│   │       ├── multiClassSummary.R
│   │       └── MyGgthemes.R
│   ├── ui.R
│   └── www
│       ├── alert.js
│       └── style.css
├── appscreen.png
├── data
│   ├── raw
│   │   └── dados_municipais.csv
│   └── transformed
│       ├── clustered_dataset
│       ├── dados_limpos.csv
│       └── UMAP_embeddings.csv
├── README.md
├── src
│   ├── clustering.py
│   ├── Dockerfile
│   ├── ranking.py
│   └── sankey.R
└── UMAP-GMM.ipynb



Screenshots

About

Poneglyph is an optimized distributed advanced analytics as a service framework designed to be highly efficient, flexible and scalable. It implements machine learning algorithms such as UMAP and Gaussian Mixture Models to yield insights and shed light to business, industry and scinentific questions.

Resources

Stars

Watchers

Forks

Packages

No packages published