-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpscan.py
153 lines (115 loc) · 4.33 KB
/
pscan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Imported this file from https://github.com/alxndrTL/mamba.py/pscan.py Alexandre TL
import math
import torch
import torch.nn.functional as F
def npo2(len):
return 2 ** math.ceil(math.log2(len))
def pad_npo2(X):
len_npo2 = npo2(X.size(1))
pad_tuple = (0, 0, 0, 0, 0, len_npo2 - X.size(1))
return F.pad(X, pad_tuple, "constant", 0)
class PScan(torch.autograd.Function):
@staticmethod
def pscan(A, X):
B, D, L, _ = A.size()
num_steps = int(math.log2(L))
Aa = A
Xa = X
for _ in range(num_steps - 2):
T = Xa.size(2)
Aa = Aa.view(B, D, T // 2, 2, -1)
Xa = Xa.view(B, D, T // 2, 2, -1)
Xa[:, :, :, 1].add_(Aa[:, :, :, 1].mul(Xa[:, :, :, 0]))
Aa[:, :, :, 1].mul_(Aa[:, :, :, 0])
Aa = Aa[:, :, :, 1]
Xa = Xa[:, :, :, 1]
if Xa.size(2) == 4:
Xa[:, :, 1].add_(Aa[:, :, 1].mul(Xa[:, :, 0]))
Aa[:, :, 1].mul_(Aa[:, :, 0])
Xa[:, :, 3].add_(Aa[:, :, 3].mul(Xa[:, :, 2] + Aa[:, :, 2].mul(Xa[:, :, 1])))
elif Xa.size(2) == 2:
Xa[:, :, 1].add_(Aa[:, :, 1].mul(Xa[:, :, 0]))
return
else:
return
Aa = A[:, :, 2 ** (num_steps - 2) - 1:L:2 ** (num_steps - 2)]
Xa = X[:, :, 2 ** (num_steps - 2) - 1:L:2 ** (num_steps - 2)]
Xa[:, :, 2].add_(Aa[:, :, 2].mul(Xa[:, :, 1]))
Aa[:, :, 2].mul_(Aa[:, :, 1])
for k in range(num_steps - 3, -1, -1):
Aa = A[:, :, 2 ** k - 1:L:2 ** k]
Xa = X[:, :, 2 ** k - 1:L:2 ** k]
T = Xa.size(2)
Aa = Aa.view(B, D, T // 2, 2, -1)
Xa = Xa.view(B, D, T // 2, 2, -1)
Xa[:, :, 1:, 0].add_(Aa[:, :, 1:, 0].mul(Xa[:, :, :-1, 1]))
Aa[:, :, 1:, 0].mul_(Aa[:, :, :-1, 1])
@staticmethod
def pscan_rev(A, X):
B, D, L, _ = A.size()
num_steps = int(math.log2(L))
Aa = A
Xa = X
for _ in range(num_steps - 2):
T = Xa.size(2)
Aa = Aa.view(B, D, T // 2, 2, -1)
Xa = Xa.view(B, D, T // 2, 2, -1)
Xa[:, :, :, 0].add_(Aa[:, :, :, 0].mul(Xa[:, :, :, 1]))
Aa[:, :, :, 0].mul_(Aa[:, :, :, 1])
Aa = Aa[:, :, :, 0]
Xa = Xa[:, :, :, 0]
if Xa.size(2) == 4:
Xa[:, :, 2].add_(Aa[:, :, 2].mul(Xa[:, :, 3]))
Aa[:, :, 2].mul_(Aa[:, :, 3])
Xa[:, :, 0].add_(Aa[:, :, 0].mul(Xa[:, :, 1].add(Aa[:, :, 1].mul(Xa[:, :, 2]))))
elif Xa.size(2) == 2:
Xa[:, :, 0].add_(Aa[:, :, 0].mul(Xa[:, :, 1]))
return
else:
return
Aa = A[:, :, 0:L:2 ** (num_steps - 2)]
Xa = X[:, :, 0:L:2 ** (num_steps - 2)]
Xa[:, :, 1].add_(Aa[:, :, 1].mul(Xa[:, :, 2]))
Aa[:, :, 1].mul_(Aa[:, :, 2])
for k in range(num_steps - 3, -1, -1):
Aa = A[:, :, 0:L:2 ** k]
Xa = X[:, :, 0:L:2 ** k]
T = Xa.size(2)
Aa = Aa.view(B, D, T // 2, 2, -1)
Xa = Xa.view(B, D, T // 2, 2, -1)
Xa[:, :, :-1, 1].add_(Aa[:, :, :-1, 1].mul(Xa[:, :, 1:, 0]))
Aa[:, :, :-1, 1].mul_(Aa[:, :, 1:, 0])
@staticmethod
def forward(ctx, A_in, X_in):
L = X_in.size(1)
if L == npo2(L):
A = A_in.clone()
X = X_in.clone()
else:
A = pad_npo2(A_in)
X = pad_npo2(X_in)
# prepare tensors
A = A.transpose(2, 1)
X = X.transpose(2, 1)
PScan.pscan(A, X)
ctx.save_for_backward(A_in, X)
return X.transpose(2, 1)[:, :L]
@staticmethod
def backward(ctx, grad_output_in):
A_in, X = ctx.saved_tensors
L = grad_output_in.size(1)
if L == npo2(L):
grad_output = grad_output_in.clone()
else:
grad_output = pad_npo2(grad_output_in)
A_in = pad_npo2(A_in)
# prepare tensors
grad_output = grad_output.transpose(2, 1)
A_in = A_in.transpose(2, 1)
A = torch.nn.functional.pad(A_in[:, :, 1:],
(0, 0, 0, 1))
PScan.pscan_rev(A, grad_output)
Q = torch.zeros_like(X)
Q[:, :, 1:].add_(X[:, :, :-1] * grad_output[:, :, 1:])
return Q.transpose(2, 1)[:, :L], grad_output.transpose(2, 1)[:, :L]
pscan = PScan.apply