-
Notifications
You must be signed in to change notification settings - Fork 5
/
measure_errors.py
894 lines (739 loc) · 29.3 KB
/
measure_errors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
#!/usr/bin/env python
"""Script to measure the errors from a transcription system in order to create
a degraded MIDI dataset with the given proportions of degradations."""
import argparse
import glob
import json
import logging
import os
import pickle
import numpy as np
from tqdm import tqdm
from mdtk import fileio, formatters
from mdtk.degradations import (
DEGRADATIONS,
MAX_GAP_DEFAULT,
MAX_PITCH_DEFAULT,
MIN_PITCH_DEFAULT,
MIN_SHIFT_DEFAULT,
)
FILE_TYPES = ["mid", "pkl", "csv"]
def get_df_excerpt(note_df, start_time, end_time):
"""
Return an excerpt of the given note_df, with notes cut at the given
start and end times.
Parameters
----------
note_df : pd.DataFrame
The note_df we want to take an excerpt of.
start_time : int
The start time for the returned excerpt, in ms, inclusive. Notes
entirely before this time will be dropped. Notes which onset before
this time but continue after it will have their onset shifted to
this time.
end_time : int
The end time for the returned excerpt, in ms, exclusive. Notes
entirely after this time will be dropped. Notes which onset before
this time but continue after it will have their offset shifted to
this time. None to enforce no end time.
Returns
-------
note_df : pd.DataFrame
An excerpt of the notes from the given note_df, within the given
two times.
"""
# Make copy so as not to change original values
note_df = note_df.copy()
# Move onsets of notes which lie before start (and finish after start)
need_to_shift = (note_df.onset < start_time) & (
note_df.onset + note_df.dur > start_time
)
shift_amt = start_time - note_df.loc[need_to_shift, "onset"]
note_df.loc[need_to_shift, "onset"] = start_time
note_df.loc[need_to_shift, "dur"] -= shift_amt
# Shorten notes which go past end time
if end_time is not None:
need_to_shorten = (note_df.onset < end_time) & (
note_df.onset + note_df.dur > end_time
)
note_df.loc[need_to_shorten, "dur"] = (
end_time - note_df.loc[need_to_shorten, "onset"]
)
# Drop notes which lie outside of bounds
to_keep = note_df.onset >= start_time
if end_time is not None:
to_keep &= note_df.onset < end_time
note_df = note_df.loc[to_keep]
return note_df
def load_file(
filename,
pr_min_pitch=MIN_PITCH_DEFAULT,
pr_max_pitch=MAX_PITCH_DEFAULT,
pr_time_increment=40,
):
"""
Load the given filename into a pandas dataframe.
Parameters
----------
filename : string
The file to load into a dataframe.
pr_min_pitch : int
The minimum pitch for any piano roll, inclusive.
pr_max_pitch : int
The maximum pitch for any piano roll, inclusive.
pr_time_increment : int
The length of each frame of any piano roll.
Return
------
df : pandas dataframe
A pandas dataframe representing the music from the given file.
"""
ext = os.path.splitext(os.path.basename(filename))[1]
if ext == ".mid":
return fileio.midi_to_df(filename)
if ext == ".csv":
return fileio.csv_to_df(filename)
if ext == ".pkl":
with open(filename, "rb") as file:
pkl = pickle.load(file)
piano_roll = pkl["piano_roll"]
if piano_roll.shape[1] == (pr_min_pitch - pr_max_pitch + 1):
# Normal piano roll only -- no onsets
note_pr = piano_roll.astype(int)
onset_pr = (np.roll(note_pr, 1, axis=0) - note_pr) == -1
onset_pr[0] = note_pr[0]
onset_pr = onset_pr.astype(int)
elif piano_roll.shape[1] == 2 * (pr_min_pitch - pr_max_pitch + 1):
# Piano roll with onsets
note_pr = piano_roll[:, : piano_roll.shape[1] / 2].astype(int)
onset_pr = piano_roll[:, piano_roll.shape[1] / 2 :].astype(int)
else:
raise ValueError(
"Piano roll dimension 2 size ("
f"{piano_roll.shape[1]}) must be equal to 1 or 2"
f" times the given pitch range [{pr_min_pitch} - "
f"{pr_max_pitch}] = "
f"{pr_min_pitch - pr_max_pitch + 1}"
)
piano_roll = np.vstack((note_pr, onset_pr))
return formatters.double_pianoroll_to_df(
piano_roll,
min_pitch=pr_min_pitch,
max_pitch=pr_max_pitch,
time_increment=pr_time_increment,
)
raise NotImplementedError(f"Extension {ext} not supported.")
def merge_on_pitch(gt_df, trans_df, offset=True):
"""
Merge the given ground truth and transcribed dfs on pitch, with
corresponding suffixes, and possibly offset columns.
Parameters
----------
gt_df : pd.DataFrame
The ground truth data frame.
trans_df : pd.DataFrame
The transcription data frame.
offset : boolean
Calculate offset columns pre-merge.
Results
-------
merge_df : pd.DataFrame
The gt and trans DataFrames, merged on equal pitches, with index
columns added for each pre-merge, and _gt and _trans suffixes added
to the resulting columns. If offset is True, offset columns are
calculated pre-merge.
"""
# This both creates a copy and creates an index column which will be
# retained in the merge
gt_df = gt_df.reset_index()
trans_df = trans_df.reset_index()
# Pre-calculate offset time once
if offset:
gt_df["offset"] = gt_df.onset + gt_df.dur
trans_df["offset"] = trans_df.onset + trans_df.dur
# Merge notes with equal pitch -- keep all pairs
return trans_df.reset_index().merge(
gt_df.reset_index(), on="pitch", suffixes=("_trans", "_gt")
)
def get_correct_notes(
gt_df, trans_df, max_onset_err=MIN_SHIFT_DEFAULT, max_offset_err=MIN_SHIFT_DEFAULT
):
"""
Get lists of the correctly transcribed notes' indices.
Parameters
----------
gt_df : pd.DataFrame
The ground truth data frame.
trans_df : pd.DataFrame
The transcription data frame.
max_onset_err : int
The maximum error for 2 onsets to be considered simultaneous.
max_offset_err : int
The maximum error for 2 offsets to be considered simultaneous.
Returns
-------
correct_gt : list(int)
A list of the indices of the correctly transcribed ground truth
notes.
correct_trans : list(int)
A list of the indices of the correctly transcribed transcribed
notes.
"""
correct_gt = []
correct_trans = []
# Merge on pitch
merged_df = merge_on_pitch(gt_df, trans_df, offset=True)
# Keep only notes close enough at onset and offset
merged_df["onset_diff"] = (merged_df.onset_trans - merged_df.onset_gt).abs()
onset_close = merged_df.onset_diff < max_onset_err
offset_close = (
merged_df.offset_trans - merged_df.offset_gt
).abs() <= max_offset_err
merged_df = merged_df.loc[onset_close & offset_close]
while len(merged_df) > 0:
# Keep only match closest to correct onset
matched_notes = merged_df.loc[
merged_df.groupby("index_gt")["onset_diff"].idxmin()
]
# Remove duplicate trans note matches
matched_notes = matched_notes.loc[~matched_notes.index_trans.duplicated()]
# Save matches
correct_gt.extend(list(matched_notes.index_gt))
correct_trans.extend(list(matched_notes.index_trans))
# Remove saved from merged_df for next pass (in case of duplicates)
trans_matched = merged_df.index_trans.isin(matched_notes.index_trans)
gt_matched = merged_df.index_gt.isin(matched_notes.index_gt)
merged_df = merged_df.loc[~trans_matched & ~gt_matched]
return correct_gt, correct_trans
def get_shifts(
gt_df,
trans_df,
max_onset_err=MIN_SHIFT_DEFAULT,
max_offset_err=MIN_SHIFT_DEFAULT,
max_dur_err=MIN_SHIFT_DEFAULT,
):
"""
Get the shift degradations (onset, offset, time, pitch) of the
given ground truth and transcription.
Parameters
----------
gt_df : pd.DataFrame
The ground truth data frame.
trans_df : pd.DataFrame
The transcription data frame.
max_onset_err : int
The maximum error for 2 onsets to be considered simultaneous.
max_offset_err : int
The maximum error for 2 offsets to be considered simultaneous.
max_dur_err : int
The maximum error for 2 durations to be considered of equal length.
Returns
-------
onset : dict(int -> int)
A mapping of gt_index -> trans_index of each note that has been
onset shifted in the transcription.
offset : dict(int -> int)
A mapping of gt_index -> trans_index of each note that has been
offset shifted in the transcription.
time : dict(int -> int)
A mapping of gt_index -> trans_index of each note that has been
time shifted in the transcription.
pitch : dict(int -> int)
A mapping of gt_index -> trans_index of each note that has been
pitch shifted in the transcription.
also_offset : list(int)
A list of gt_indexes of pitch shifts which were also offset shifts.
"""
onset = dict()
offset = dict()
time = dict()
pitch = dict()
also_offset = []
# Save fully merged df
merged_df = merge_on_pitch(gt_df, trans_df, offset=True)
merged_df["onset_diff"] = (merged_df.onset_trans - merged_df.onset_gt).abs()
merged_df["offset_diff"] = (merged_df.offset_trans - merged_df.offset_gt).abs()
merged_df["dur_diff"] = (merged_df.dur_trans - merged_df.dur_gt).abs()
# First, check for time offset shifts
# Onset is close enough
match_df = merged_df.loc[merged_df.onset_diff <= max_onset_err]
# Keep only match closest to correct onset
match_df = match_df.loc[
match_df.index
== match_df.groupby("index_gt")["onset_diff"].idxmin()[match_df.index_gt]
]
offset = dict(zip(match_df.index_gt, match_df.index_trans))
# Filter offset shifts out of base dfs
merged_df = merged_df.loc[
~(
merged_df.index_trans.isin(match_df.index_trans)
| merged_df.index_gt.isin(match_df.index_gt)
)
].copy()
gt_df = gt_df.drop(index=match_df.index_gt)
trans_df = trans_df.drop(index=match_df.index_trans)
# Second, check for onset shifts
# Offset is close enough
match_df = merged_df.loc[merged_df.offset_diff <= max_offset_err]
# Keep only match closest to correct offset
match_df = match_df.loc[
match_df.index
== match_df.groupby("index_gt")["offset_diff"].idxmin()[match_df.index_gt]
]
onset = dict(zip(match_df.index_gt, match_df.index_trans))
# Filter onset shifts out of base dfs
merged_df = merged_df.loc[
~(
merged_df.index_trans.isin(match_df.index_trans)
| merged_df.index_gt.isin(match_df.index_gt)
)
].copy()
gt_df = gt_df.drop(index=match_df.index_gt)
trans_df = trans_df.drop(index=match_df.index_trans)
# Third, check for time shifts
# Dur is close enough
match_df = merged_df.loc[merged_df.dur_diff <= max_onset_err]
# Shift is small enough (smaller than gt note duration)
match_df = match_df.loc[match_df.onset_diff <= match_df.dur_gt]
# Keep only match shortest shift
match_df = match_df.loc[
match_df.index
== match_df.groupby("index_gt")["onset_diff"].idxmin()[match_df.index_gt]
]
time = dict(zip(match_df.index_gt, match_df.index_trans))
# Filter time shifts out of base dfs (merged is unused past here)
gt_df = gt_df.drop(index=match_df.index_gt)
trans_df = trans_df.drop(index=match_df.index_trans)
# Fourth, check for pitch shifts
gt_df["offset"] = gt_df.onset + gt_df.dur
trans_df["offset"] = trans_df.onset + trans_df.dur
# Looping is necesary because we only get 1 gt_note per trans note,
# Although, each trans_note may be associated with multiple gt notes
# at each iteration.
while len(gt_df) and len(trans_df) > 0:
# Find onset time closest to each gt note
gt_df["closest_onset_idx"] = gt_df.apply(
lambda x: (trans_df.onset - x.onset).abs().idxmin(), axis=1
)
gt_df["closest_onset"] = (
trans_df.loc[gt_df.closest_onset_idx, "onset"].to_numpy() - gt_df.onset
).abs()
# Here, gt_df will eventually become empty (to exit while loop)
gt_df = gt_df.loc[gt_df.closest_onset <= max_onset_err]
# Sort by closest onset, and then only take first of each trans_idx
gt_df = gt_df.sort_values(by="closest_onset")
pitch_df = gt_df.drop_duplicates(subset="closest_onset_idx")
# Add to pitch shifts and also_offset
pitch.update(zip(pitch_df.index, pitch_df.closest_onset_idx))
offset_diff = (
pitch_df.offset - trans_df.loc[pitch_df.closest_onset_idx, "offset"]
)
also_offset.extend(pitch_df.loc[offset_diff.abs() > max_offset_err].index)
# Remove matches from gt_df and trans_df
gt_df = gt_df.drop(index=pitch_df.index)
trans_df = trans_df.drop(index=pitch_df.closest_onset_idx)
return onset, offset, time, pitch, also_offset
def get_joins(gt_df, trans_df, max_gap=MAX_GAP_DEFAULT):
"""
Find any notes in the ground truth which have been joined in the
transcription.
Parameters
----------
gt_df : pd.DataFrame
The ground truth data frame.
trans_df : pd.DataFrame
The transcription data frame.
max_gap : int
The maximum allowed gap between notes to be joined, in ms.
Returns
-------
pre_joined_notes : list(list(pd.Index))
A list of the notes that have been joined. Each element in
pre_joined_notes represents a list of notes that have been joined
together in the given transcription.
post_joined_notes : list(pd.Index)
A list of the notes (in trans_df) resulting from each join
in pre_joined_notes.
shift_onset : list(boolean)
A list of bools indicating whether the onset of the corresponding
join has been shifted (in addition to the join).
shift_offset : list(boolean)
A list of bools indicating whether the offset of the corresponding
join has been shifted (in addition to the join).
"""
pre_joined_notes = []
post_joined_notes = []
shift_onset = []
shift_offset = []
# Merge on pitch
merged_df = merge_on_pitch(gt_df, trans_df, offset=True)
# Save only rows where notes overlap enough
# Must overlap at least half of min(max gap, gt_duration)
overlap_start = merged_df[["onset_trans", "onset_gt"]].max(axis=1)
overlap_end = merged_df[["offset_trans", "offset_gt"]].min(axis=1)
merged_df["overlap_length"] = overlap_end - overlap_start
merged_df = merged_df.loc[
merged_df.overlap_length >= 0.5 * merged_df.dur_gt.clip(upper=max_gap)
]
# Keep only trans notes with multiple overlapping gt notes
merged_df = merged_df.loc[merged_df.index_trans.duplicated(keep=False)].copy()
# Save only rows where consecutive gt notes have small enough gap
# (Also save last rows of each trans note)
valid_gap = (merged_df.onset_gt.shift(-1) - merged_df.offset_gt) <= max_gap
last_trans_note = merged_df.index_trans != merged_df.index_trans.shift(-1)
valid_note = valid_gap | last_trans_note
# This line counts the number of Falses before each row
# This allows us to find consecutive Trues based on having the same value here
# Note that the last False before a True will be included in the cumsum group
# The second line filters the Falses out, leaving only the Trues
merged_df["invalid_count"] = (~valid_note).cumsum()
merged_df = merged_df.loc[valid_note].copy()
# Now, group by trans note, and find each one's largest chunk of True
merged_df["largest_group_invalid_count"] = merged_df.groupby("index_trans")[
"invalid_count"
].transform(lambda x: x.value_counts().idxmax())
merged_df["largest_group_size"] = merged_df.groupby("index_trans")[
"invalid_count"
].transform(lambda x: x.value_counts().max())
# Select each one's largest group, if of size > 1
merged_df = merged_df.loc[
(merged_df.invalid_count == merged_df.largest_group_invalid_count)
& (merged_df.largest_group_size > 1)
].copy()
# Check for onset/offset shifts
merged_df["onset_close"] = (
merged_df.onset_trans - merged_df.onset_gt
).abs() <= max_gap
merged_df["offset_close"] = (
merged_df.offset_trans - merged_df.offset_gt
).abs() <= max_gap
# Generate output lists
for trans_id, trans_note_df in merged_df.groupby("index_trans"):
pre_joined_notes.append(list(trans_note_df.index_gt))
post_joined_notes.append(trans_id)
shift_onset.append(not trans_note_df.iloc[0].onset_close)
shift_offset.append(not trans_note_df.iloc[-1].offset_close)
return pre_joined_notes, post_joined_notes, shift_onset, shift_offset
def get_splits(gt_df, trans_df, max_gap=MAX_GAP_DEFAULT):
"""
Find any notes in the ground truth which have been split in the
transcription.
This is equivalent to calling get_joins with gt_df and trans_df
swapped.
Parameters
----------
gt_df : pd.DataFrame
The ground truth data frame.
trans_df : pd.DataFrame
The transcription data frame.
max_gap : int
The maximum allowed gap between notes post split, in ms.
Returns
-------
pre_split_notes : list(pd.Index)
A list of the notes that have been split. Each element in
pre_joined_notes represents a note that has been split in the
given transcription.
post_split_notes : list(list(pd.Index))
A list of the notes (in trans_df) resulting from each split
in pre_split_notes.
shift_onset : list(boolean)
A list of bools indicating whether the onset of the corresponding
join has been shifted (in addition to the split).
shift_offset : list(boolean)
A list of bools indicating whether the offset of the corresponding
join has been shifted (in addition to the split).
"""
# Split is exactly reverse of a join
post_split_notes, pre_split_notes, shift_onset, shift_offset = get_joins(
trans_df, gt_df, max_gap=max_gap
)
return pre_split_notes, post_split_notes, shift_onset, shift_offset
def get_excerpt_degs(gt_excerpt, trans_excerpt):
"""
Get the count of each degradation given a ground truth excerpt and a
transcribed excerpt.
Parameters
----------
gt_excerpt : pd.DataFrame
The ground truth data frame.
trans_excerpt : pd.DataFrame
The corresponding transcribed dataframe.
Returns
-------
degs : np.array(float)
The estimated count of each degradation in this transcription, in the
order given by mdtk.degradations.DEGRADATIONS.
"""
deg_counts = np.zeros(len(DEGRADATIONS))
# Remove equal notes
correct_gt, correct_trans = get_correct_notes(gt_excerpt, trans_excerpt)
gt_excerpt = gt_excerpt.drop(index=correct_gt)
trans_excerpt = trans_excerpt.drop(index=correct_trans)
# Check for joins
pre_joined_notes, post_joined_notes, shift_onset, shift_offset = get_joins(
gt_excerpt, trans_excerpt
)
deg_counts[list(DEGRADATIONS).index("join_notes")] = len(pre_joined_notes)
deg_counts[list(DEGRADATIONS).index("onset_shift")] = sum(shift_onset)
deg_counts[list(DEGRADATIONS).index("offset_shift")] = sum(shift_offset)
gt_excerpt = gt_excerpt.drop(
index=[idx for join in pre_joined_notes for idx in join]
)
trans_excerpt = trans_excerpt.drop(index=post_joined_notes)
# Check for splits
pre_split_notes, post_split_notes, shift_onset, shift_offset = get_splits(
gt_excerpt, trans_excerpt
)
deg_counts[list(DEGRADATIONS).index("split_note")] = len(pre_split_notes)
deg_counts[list(DEGRADATIONS).index("onset_shift")] += sum(shift_onset)
deg_counts[list(DEGRADATIONS).index("offset_shift")] += sum(shift_offset)
gt_excerpt = gt_excerpt.drop(index=pre_split_notes)
trans_excerpt = trans_excerpt.drop(
index=[idx for split in post_split_notes for idx in split]
)
# Shift degredation estimation (onset, offset, time, pitch)
onset, offset, time, pitch, also_offset = get_shifts(gt_excerpt, trans_excerpt)
deg_counts[list(DEGRADATIONS).index("onset_shift")] += len(onset)
deg_counts[list(DEGRADATIONS).index("offset_shift")] += len(offset) + len(
also_offset
)
deg_counts[list(DEGRADATIONS).index("time_shift")] = len(time)
deg_counts[list(DEGRADATIONS).index("pitch_shift")] = len(pitch)
total_shifts = len(onset) + len(offset) + len(time) + len(pitch)
# Remainder are all adds and removes
deg_counts[list(DEGRADATIONS).index("add_note")] = len(trans_excerpt) - total_shifts
deg_counts[list(DEGRADATIONS).index("remove_note")] = len(gt_excerpt) - total_shifts
return deg_counts
def get_proportions(
gt, trans, trans_start=0, trans_end=None, length=5000, min_notes=10
):
"""
Get the proportion of each degradation given a ground truth file and
its transcription.
This measures the expected count of each degradation given a random
excerpt from the ground truth (that is NOT clean). And probability
that a random excerpt will be clean.
Parameters
----------
gt : string
The filename of a ground truth musical score.
trans : string
The filename of a transciption of the given ground truth.
trans_start : int
The starting time of the transcription, in ms.
trans_end : int
The ending time of the transcription, in ms.
length : int
The length of the excerpts to grab in ms (plus sustains).
min_notes : int
The minimum number of notes required for an excerpt to be valid.
Returns
-------
proportions : list(float)
The expected count of each degradation present in a random excerpt
from the given ground truth (that is NOT correctly transcribed), in
the order given by mdtk.degradations.DEGRADATIONS.
clean : float
The estimated probability that a random excerpt from the given
ground truth will have no errors in the transcription.
"""
num_excerpts = 0
deg_counts = np.zeros(len(DEGRADATIONS))
clean_count = 0
gt_df = load_file(gt)
trans_df = load_file(trans)
# Enforce transcription bounds
gt_df = get_df_excerpt(gt_df, trans_start, trans_end)
if trans_start != 0:
gt_df.onset -= trans_start
# Calculate latest end time (if else solves nan issue)
if len(gt_df) == 0:
end_time = (trans_df.onset + trans_df.dur).max()
elif len(trans_df) == 0:
end_time = (gt_df.onset + gt_df.dur).max()
else:
end_time = max(
(gt_df.onset + gt_df.dur).max(), (trans_df.onset + trans_df.dur).max()
)
# Take each excerpt from time 0 until the end
for excerpt_start in range(0, end_time, length):
excerpt_end = min(excerpt_start + length, end_time)
gt_excerpt = get_df_excerpt(gt_df, excerpt_start, excerpt_end)
trans_excerpt = get_df_excerpt(trans_df, excerpt_start, excerpt_end)
# Check for validity
if len(gt_excerpt) < min_notes and len(trans_excerpt) < min_notes:
logging.warning(
f"Skipping excerpt {gt} for too few notes. "
f"Time range = [{excerpt_start}, {excerpt_end}). "
f"Try lowering the minimum note count --min-notes "
f"(currently {min_notes}), or "
"ignore this if it is just due to a song length "
"not being divisible by the --excerpt-length "
f"(currently {length})."
)
continue
num_excerpts += 1
excerpt_degs = get_excerpt_degs(gt_excerpt, trans_excerpt)
deg_counts += excerpt_degs
if np.sum(excerpt_degs) == 0:
clean_count += 1
# Divide number of errors by the number of possible excerpts
if num_excerpts - clean_count == 0:
proportions = deg_counts
else:
proportions = deg_counts / (num_excerpts - clean_count)
clean = clean_count / num_excerpts if num_excerpts > 0 else 0
return proportions, clean
def parse_args(args_input=None):
parser = argparse.ArgumentParser(
description="Measure errors from a "
"transcription error in order to make "
"a degraded MIDI dataset with the measure"
" proportion of each degration."
)
parser.add_argument(
"--json",
help="The file to write the degradation config json data out to.",
default="config.json",
)
parser.add_argument(
"-r",
"--recursive",
help="Search the given --gt and "
"--trans directories recursively. The directory structures"
" in each don't have to be identical, but corresponding "
"files must still be uniquely named.",
action="store_true",
)
parser.add_argument(
"--gt",
help="The directory which contains the ground "
"truth musical scores or piano rolls.",
required=True,
)
parser.add_argument(
"--gt_ext",
choices=FILE_TYPES,
default=None,
help="Restrict the file type for the ground truths.",
)
parser.add_argument(
"--trans",
help="The directory which contains the transcriptions.",
required=True,
)
parser.add_argument(
"--trans_ext",
choices=FILE_TYPES,
default=None,
help="Restrict the file type for the transcriptions.",
)
# Pianoroll specific args
parser.add_argument(
"--pr-min-pitch", type=int, default=21, help="Minimum pianoroll pitch."
)
parser.add_argument(
"--pr-max-pitch", type=int, default=108, help="Maximum pianoroll pitch."
)
# Transcription doesn't have same time basis as ground truth
parser.add_argument(
"--trans_start",
type=int,
default=0,
help="What time"
" the transcription starts, in ms. Notes before this "
"in the gt will be ignored, and all transcribed notes "
"will be shifted forward by this amount.",
)
parser.add_argument(
"--trans_end",
type=int,
default=None,
help="What time"
"the transcription ends, in ms (if any). Notes after "
"this in the gt will be ignored, and notes still on "
"will be cut at this time.",
)
# Excerpt arguments
parser.add_argument(
"--excerpt-length",
metavar="ms",
type=int,
help="The length of the excerpt (in ms) to take from "
"each piece. The excerpt will start on a note onset "
"and include all notes whose onset lies within this "
"number of ms after the first note.",
default=5000,
)
parser.add_argument(
"--min-notes",
metavar="N",
type=int,
default=10,
help="The minimum number of notes required for an excerpt to be valid.",
)
args = parser.parse_args(args=args_input)
return args
if __name__ == "__main__":
args = parse_args()
# Get allowed file extensions
trans_ext = [args.trans_ext] if args.trans_ext is not None else FILE_TYPES
gt_ext = [args.gt_ext] if args.gt_ext is not None else FILE_TYPES
if args.recursive:
args.trans = os.path.join(args.trans, "**")
args.gt = os.path.join(args.gt, "**")
trans = []
for ext in trans_ext:
trans.extend(
glob.glob(os.path.join(args.trans, "*." + ext), recursive=args.recursive)
)
proportion = []
clean_prop = []
for file in tqdm(trans):
basename = os.path.splitext(os.path.basename(file))[0]
# Find gt file
gt_list = []
for ext in gt_ext:
gt_list.extend(
glob.glob(
os.path.join(args.gt, basename + "." + ext),
recursive=args.recursive,
)
)
if len(gt_list) == 0:
logging.warning(
f"No ground truth found for transcription {file}. Check"
" that the file extension --gt_ext is correct (or not "
"given), and the dir --gt is correct. Searched for file"
f" {basename}.{gt_ext} in dir {args.gt}."
)
continue
elif len(gt_list) > 1:
logging.warning(
f"Multiple ground truths found for transcription {file}:"
f"{gt_list}. Defaulting to the first one. Try narrowing "
"down extensions with --gt_ext."
)
gt = gt_list[0]
prop, clean = get_proportions(
gt,
file,
trans_start=args.trans_start,
trans_end=args.trans_end,
length=args.excerpt_length,
min_notes=args.min_notes,
)
if sum(prop) > 0:
proportion.append(prop)
if sum(prop) + clean > 0:
clean_prop.append(clean)
# We want the mean deg_count per file
proportion = np.mean(proportion, axis=0)
clean = np.mean(clean_prop)
with open(args.json, "w") as file:
json.dump(
{"degradation_dist": proportion.tolist(), "clean_prop": clean},
file,
indent=4,
)