forked from davidackerman/nnmf
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocessMiniData.m
executable file
·260 lines (227 loc) · 9.95 KB
/
processMiniData.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
function A = processMiniData
%process recordings of GluSnFR minis from the Schreiter Nikon Scope
%parameters
nIter = 5; %number of outer loops to run
bgFrac = 0.2; %fraction of extra components to use to fit non-constrained background in nmf
sparseFac = 0.15; %set to 0 all pixels with less than sparseFac of the maximum weight
maxN = 1600;
cameraOffset = 400; %hamamatsu cameras have an offset of 100 per pixel, 400 for 2x2 binning
sigma = 2; %area to consider for sources (gaussian sigma of initial weights, full window width will be ~ 6*sigma+1)
[b1,a1] = butter(4, 0.02); %lowpass filter for defining F0/bleaching correction
[b2,a2] = butter(4, 0.08, 'high'); % highpass filter for generating correlation image
hFvs = [];
% %load files
% if ~nargin
% dr = uigetdir('\\dm11\podgorskilab\GluSnFR3');
% end
% %find all datasets in folder
% fns = dir([dr filesep '*.nd2']);
% fns = {fns.name};
% %discard all APO and SAT images
% keep = cellfun(@isempty, strfind(fns, 'APO'));
% fns = fns(keep);
% keep = cellfun(@isempty, strfind(fns, 'SAT'));
% fns = fns(keep);
thisDr = fileparts(which('processMiniData'));
[fns, dr] = uigetfile([thisDr filesep '*.*'], 'multiselect', 'on');
if ~iscell(fns)
fns = {fns};
end
for fnum = length(fns):-1:1
% if exist([dr filesep fns{fnum}(1:end-4) '.mat'], 'file')
% disp(['Already processed:' fns{fnum} ', skipping.'])
% continue
% end
A = struct();%initialize output, one output struct for each input file
f = bfopen([dr filesep fns{fnum}]);
IM = double(cat(3, f{1}{:,1}))-cameraOffset;
clear f
%downsample in space (we should have binned 4x at acquisition time...)
%IM = IM(1:2:end,1:2:end,:) + IM(2:2:end,1:2:end,:) + IM(1:2:end,2:2:end,:) + IM(2:2:end,2:2:end,:);
sz = [size(IM,1) size(IM,2)];
T = size(IM,3);
%downsample in time
IMds = IM;
nIter = 0; %number of time downsampling iterations
for it = 1:nIter
IMds = IMds(:,:,1:2*floor(end/2));
IMds=IMds(:,:,1:2:end) + IMds(:,:,2:2:end);
end
IMds = IMds./(2.^it); %keep scale;
meanIM = mean(IMds,3);
T2 = size(IMds,3);
%compute F0
disp('computing F0...');
v = 0;
a = 0.04;
%compute a leaky cumulative minimum
e1 = medfilt2(reshape(IMds, [], size(IMds,3)), [1 3], 'symmetric');
for t = 2:size(e1,2)
e1(:,t) = min(e1(:,t), e1(:,t-1) + v + a);
v = max(0, e1(:,t) - e1(:,t-1));
end
%use it to make a smooth F0 that obeys the data minima
F0ds = filtfilt(b1,a1,e1');
for ii = 1:6
delta = min(0,e1'-F0ds);
delta([1:20, end-19:end],:) = 0;
F0ds = filtfilt(b1,a1,F0ds+2*delta); %2*delta to accelerate convergence
end
clear e1 v a
F0ds = reshape(F0ds', size(IMds));
disp('done');
%compute F0 and dF
dFds = IMds-F0ds;
F0 = reshape(interp1((0.5:1:T2).*(2.^it), reshape(F0ds,[],T2)', 1:T, 'linear', 'extrap')', size(IM));
dF = IM - F0;
%ensure that F0 is always>0; We will additionally regularize when
%calculating DFF
F0 = F0 - min(0, min(F0,[],3));
clear F0ds IM
%save out the downsampled tiff stacks
disp('Saving downsampled movies...')
if ~exist([dr filesep fns{fnum}(1:end-4) '_dFds.tif'], 'file')
saveastiff(uint16(dFds), [dr filesep fns{fnum}(1:end-4) '_dFds.tif']);
%bfsave(uint16(IMds), [dr filesep fns{fnum}(1:end-4) '_ds.tif']);
end
%highpass filter for correlation image
dFdshp = permute(filtfilt(b2,a2,permute(dFds, [3 1 2])), [2 3 1]);
%compute correlation image on downsampled recording
disp('computing correlation image');
ss = sum(dFdshp.^2,3);
vertC = sum(dFdshp .* circshift(dFdshp, [1 0 0]),3)./sqrt(ss.*circshift(ss, [1 0 0]));
horzC = sum(dFdshp .* circshift(dFdshp, [0 1 0]),3)./sqrt(ss.*circshift(ss, [0 1 0]));
C = nanmean(cat(3, horzC, circshift(horzC,1,2), vertC, circshift(vertC, 1,1)),3);
A.corrIM = C;
%find peaks in correlation image to initialize cNMF
C = imgaussfilt(C,0.5);
C2 = C;
Cthresh = 2.*(median(C(:))-prctile(C(:),1));
C2(C2<(median(C(:))+Cthresh)) = 0;
BW = imregionalmax(C2);
C2(imdilate(BW, strel('disk', 6*sigma))) = 0;
while any(C2(:))
BW = BW | imregionalmax(C2);
C2(imdilate(BW, strel('disk', 6*sigma))) = 0;
end
BWinds = find(BW(:));
if length(BWinds)>maxN
BWvals = C(BWinds);
[~,sortorder] = sort(BWvals, 'descend');
BWinds = BWinds(sortorder(1:maxN));
end
nComp = length(BWinds);
[Pr,Pc] = ind2sub(sz, BWinds); %locations of putative release sites
%global cNMF to get footprints and traces for each mini location, with
%mild unmixing of overlapping signals
nBG = floor(nComp.*bgFrac+10);
W0 = zeros([sz nComp+nBG]); %start with twice as many components as local maxima
W0(sub2ind(size(W0), Pr',Pc', 1:nComp)) = 1; %initialize one pixel for every component
W0 = imgaussfilt(W0,0.5)+imgaussfilt(W0,sigma, 'FilterSize', 6*ceil(sigma)+1);
W0 = reshape(W0, prod(sz),nComp+nBG);
W0(:, nComp+1:end) = rand(size(W0,1), size(W0,2)-length(Pr))./size(W0,1); %background components are initialized random
%Use multiplicative updates NMF, which makes it easy to zero out pixels
opts1 = statset('MaxIter', 20, 'Display', 'iter');%, 'UseParallel', true);
[W0,H0] = nnmf(reshape(dFds,[],T2), nComp+nBG,'algorithm', 'mult', 'w0', W0, 'options', opts1); %!!nnmf has been modified to allow it to take more than rank(Y) inputs
for bigIter = 1:nIter
disp(['outer loop ' int2str(bigIter) ' of ' int2str(nIter)]);
nW0 = sum(W0>0,1);
%apply sparsity
setZero = W0<(sparseFac.*max(W0,[],1));
setZero(:, nW0<=9) = false; %don't shrink any more once below 9 pixels
W0(setZero) = 0;
%apply contiguous constraint
smallComps = nW0<(prod(sz)*0.05); %sparse components, that we will apply contiguous constrains to; we have to do this because matlab's nnmf reorders components
W0 = reshape(W0, sz(1),sz(2),[]);
for comp = find(smallComps)
[maxval, maxind] = max(reshape(W0(:,:,comp),1,[]));
[rr,cc] = ind2sub(sz, maxind);
if nW0(comp)<5
W0(max(1,min(end,rr+(-1:1))),max(1,min(end,cc+(-1:1))),comp) = maxval/3;
end
W0(:,:,comp) = W0(:,:,comp).*bwselect(W0(:,:,comp)>0, cc,rr, 4);
end
W0 = reshape(W0, prod(sz),[]);
[W0,H0] = nnmf(reshape(dFds,[],T2), nComp+nBG,'algorithm', 'mult', 'w0', W0, 'h0', H0, 'options', opts1);
end
%get the traces for the full-time-resolution dataset, without nonnegativity constraints
%constraint
dF = reshape(dF,[],T);
F0 = reshape(F0,[],T);
Hhf = W0\dF;
%merge small components if they have high correlation
nW0 = sum(W0>0,1);
smallComps = nW0<(prod(sz)*0.01);
recalc = false;
activityCorr = corr((Hhf-smoothdata(Hhf,2,'movmean',75))', 'type', 'Spearman');
for c1 = 1:size(W0,2)
for c2 = (c1+1):size(W0,2)
if all(smallComps([c1 c2])) && (activityCorr(c1,c2)>0.25) && any(imdilate(reshape(W0(:,c1),sz), ones(3)) & reshape(W0(:,c2),sz),'all')
W0(:,c1) = W0(:,c1) + W0(:,c2);
W0(:,c2) = 0;
activityCorr(c2,:) = 0; activityCorr(:,c2) = 0;
recalc = true;
end
end
end
if recalc
disp('Some components were merged. Recalculating factorization.');
sel = any(W0,1);
W0 = W0(:, sel);
H0 = H0(sel,:);
%run some more NMF
[W0,~] = nnmf(reshape(dFds,[],T2), sum(sel),'algorithm', 'mult', 'w0', W0, 'h0', H0, 'options', opts1);
Hhf = W0\dF; %solve for full speed data
end
%reconstruct the movie and look at residuals; could be used to refine
%component definition
%recon = W0*Hhf;
%Select only sparse components
nW0 = sum(W0>0,1);
smallComps = nW0<(prod(sz)*0.01);
W0 = W0(:,smallComps);
Hhf = Hhf(smallComps,:);
%visualize components
delete(hFvs)
hFvs = visualize_comps(W0,sz);
set(hFvs, 'name', fns{fnum});
drawnow;
%sort components by high frequency power
ac = sum(W0,1)'.*Hhf;
[~,sortorder] = sort(sum((ac-smoothdata(ac,2,'movmean',75)).^2,2), 'descend');
W0 = W0(:,sortorder);
Hhf = Hhf(sortorder,:);
%compute DFF using the most sensitive pixels within the ROI
DFF=nan(size(Hhf)); rawDFF = DFF;
F=nan(size(Hhf)); rawF = F; Fzero = F;
lambda = 10; %prctile(meanIM(meanIM(:)>0),1); %regularizer, larger favors selecting brighter pixels
for comp = 1:size(Hhf,1)
support = find(W0(:,comp)>0);
F(comp,:) = sum((W0(support,comp).*Hhf(comp,:)),1);
pxDFF = (W0(support,comp).*Hhf(comp,:))./(F0(support,:)+lambda);
[~, sortorder] = sort(sqrt(sum(pxDFF.^2,2)), 'descend');
selpix = sortorder(1:min(end,9)); %take the 9 highest-DFF pixels
Fzero(comp,:) = sum(F0(support(selpix),:),1);
DFF(comp,:)= sum(W0(support(selpix),comp)*Hhf(comp,:),1)./Fzero(comp,:);
rawF(comp,:) = sum(dF(support(selpix),:),1);
rawDFF(comp,:) = sum(dF(support(selpix),:),1)./Fzero(comp,:);
end
A.fn = [dr filesep fns{fnum}];
A.lambda = lambda;
A.IM = meanIM;
A.F0 = Fzero;
A.DFF = DFF; A.rawDFF = rawDFF;
A.F = F; A.rawF = rawF;
A.spatial = reshape(W0, [sz size(W0,2)]);
save([dr filesep fns{fnum}(1:end-4) 'v2'], 'A', '-v7.3');
clear F0 dF A
end
end
function hF = visualize_comps(S, sz)
nS = size(S,2);
RGB = rand(3,nS).^2; RGB = RGB./repmat(sum(RGB,1), 3,1);
S_RGB = sqrt([S*RGB(1,:)' S*RGB(2,:)' S*RGB(3,:)']);
S_RGB = 1.5* S_RGB./max(S_RGB(:));
S_RGB = reshape(full(S_RGB), [sz 3]);
hF = figure('Name', 'NMF components'); imshow(S_RGB);
end