-
Notifications
You must be signed in to change notification settings - Fork 10
/
grad_rpn.py
239 lines (200 loc) · 6.86 KB
/
grad_rpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import argparse
import multiprocessing as mp
import os
import cv2
import detectron2.data.transforms as T
import numpy as np
import torch
from detectron2.checkpoint import DetectionCheckpointer
from fewx.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.data.detection_utils import read_image
from detectron2.modeling import build_model
from detectron2.utils.logger import setup_logger
from GradCAM.rpn_cam import GradCAM, GradCamPlusPlus
from skimage import io
from torch import nn
# constants
WINDOW_NAME = "COCO detections"
def setup_cfg(args):
# load config from file and command-line arguments
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
# Set score_threshold for builtin models
cfg.MODEL.RETINANET.SCORE_THRESH_TEST = args.confidence_threshold
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = args.confidence_threshold
cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH = args.confidence_threshold
cfg.freeze()
return cfg
def get_last_conv_name(net):
"""
获取网络的最后一个卷积层的名字
:param net:
:return:
"""
layer_name = None
for name, m in net.named_modules():
if isinstance(m, nn.Conv2d):
layer_name = name
return layer_name
class GuidedBackPropagation(object):
def __init__(self, net):
self.net = net
for (name, module) in self.net.named_modules():
if isinstance(module, nn.ReLU):
module.register_backward_hook(self.backward_hook)
self.net.eval()
@classmethod
def backward_hook(cls, module, grad_in, grad_out):
"""
:param module:
:param grad_in: tuple,长度为1
:param grad_out: tuple,长度为1
:return: tuple(new_grad_in,)
"""
return torch.clamp(grad_in[0], min=0.0),
def __call__(self, inputs, index=0):
"""
:param inputs: {"image": [C,H,W], "height": height, "width": width}
:param index: 第几个边框
:return:
"""
self.net.zero_grad()
output = self.net.inference([inputs])
score = output[0]['instances'].scores[index]
score.backward()
return inputs['image'].grad # [3,H,W]
def norm_image(image):
"""
标准化图像
:param image: [H,W,C]
:return:
"""
image = image.copy()
image -= np.max(np.min(image), 0)
image /= np.max(image)
image *= 255.
return np.uint8(image)
def gen_cam(image, mask):
"""
生成CAM图
:param image: [H,W,C],原始图像
:param mask: [H,W],范围0~1
:return: tuple(cam,heatmap)
"""
# mask转为heatmap
heatmap = cv2.applyColorMap(np.uint8(255 * mask), cv2.COLORMAP_JET)
heatmap = np.float32(heatmap) / 255
heatmap = heatmap[..., ::-1] # gbr to rgb
# 合并heatmap到原始图像
cam = heatmap + np.float32(image)/255
return norm_image(cam), heatmap
def gen_gb(grad):
"""
生guided back propagation 输入图像的梯度
:param grad: tensor,[3,H,W]
:return:
"""
# 标准化
grad = grad.data.numpy()
gb = np.transpose(grad, (1, 2, 0))
return gb
def save_image(image_dicts, input_image_name, index, network='AirShot-101', output_dir='./vis/grad_rpn/'):
prefix = os.path.splitext(input_image_name)[0]
for key, image in image_dicts.items():
io.imsave(os.path.join(output_dir, '{}-{}-{}-RPN_{}_vis.jpg'.format(prefix, network, key, index)), image)
def get_parser():
parser = argparse.ArgumentParser(description="Detectron2 demo for builtin models")
parser.add_argument(
"--config-file",
default="configs/fsod/R101/test_R_101_C4_1x_coco5.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument("--input", help="A list of space separated input images")
parser.add_argument(
"--output",
help="A file or directory to save output visualizations. "
"If not given, will show output in an OpenCV window.",
)
parser.add_argument(
"--confidence-threshold",
type=float,
default=0.8,
help="Minimum score for instance predictions to be shown",
)
parser.add_argument(
"--opts",
help="Modify config options using the command-line 'KEY VALUE' pairs",
default=[],
nargs=argparse.REMAINDER,
)
parser.add_argument(
"--index",
type=int,
)
return parser
def main(args):
setup_logger(name="fvcore")
logger = setup_logger()
logger.info("Arguments: " + str(args))
cfg = setup_cfg(args)
print(cfg)
# 构建模型
model = build_model(cfg)
metadata = MetadataCatalog.get(cfg.DATASETS.TEST[0])
# 加载权重
checkpointer = DetectionCheckpointer(model)
checkpointer.load(cfg.MODEL.WEIGHTS)
# 加载图像
path = os.path.expanduser(args.input)
original_image = read_image(path, format="BGR")
height, width = original_image.shape[:2]
transform_gen = T.ResizeShortestEdge(
[cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
)
image = transform_gen.get_transform(original_image).apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)).requires_grad_(True)
inputs = {"image": image, "height": height, "width": width}
# Grad-CAM
layer_name = 'proposal_generator.rpn_head.conv'
# layer_name = 'apn.r3.conv.0'
grad_cam = GradCAM(model, layer_name, (height, width))
mask, box = grad_cam(inputs,args.index) # cam mask
grad_cam.remove_handlers()
#
image_dict = {}
img = original_image[..., ::-1]
x1, y1, x2, y2 = box
# image_dict['predict_box'] = img[y1:y2, x1:x2]
image_dict['image_cam'], _ = gen_cam(img, mask)
# 获取类别名称
# meta = MetadataCatalog.get(
# cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused"
# )
# label = meta.thing_classes[class_id]
# print("label:{}".format(label))
# # GuidedBackPropagation
# gbp = GuidedBackPropagation(model)
# inputs['image'].grad.zero_() # 梯度置零
# grad = gbp(inputs)
# print("grad.shape:{}".format(grad.shape))
# gb = gen_gb(grad)
# gb = gb[y1:y2, x1:x2]
# image_dict['gb'] = gb
# # 生成Guided Grad-CAM
# cam_gb = gb * mask[..., np.newaxis]
# image_dict['cam_gb'] = norm_image(cam_gb)
save_image(image_dict, os.path.basename(path), args.index)
if __name__ == "__main__":
"""
Usage:export KMP_DUPLICATE_LIB_OK=TRUE
python detection/demo.py --config-file detection/faster_rcnn_R_50_C4.yaml \
--input ./examples/pic1.jpg \
--opts MODEL.WEIGHTS ./model_final_b1acc2.pkl MODEL.DEVICE cpu
"""
mp.set_start_method("spawn", force=True)
arguments = get_parser().parse_args()
main(arguments)