forked from lancopku/DPGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbatcher.py
360 lines (263 loc) · 13.9 KB
/
batcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
# Modifications Copyright 2017 Abigail See
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""This file contains code to process data into batches"""
import queue
from random import shuffle
from threading import Thread
import time
import numpy as np
import tensorflow as tf
import data
from nltk.tokenize import sent_tokenize
import glob
import codecs
import json
FLAGS = tf.app.flags.FLAGS
class Example(object):
"""Class representing a train/val/test example for text summarization."""
def __init__(self, review, vocab, hps, input=None):
"""Initializes the Example, performing tokenization and truncation to produce the encoder, decoder and target sequences, which are stored in self.
Args:
article: source text; a string. each token is separated by a single space.
abstract_sentences: list of strings, one per abstract sentence. In each sentence, each token is separated by a single space.
vocab: Vocabulary object
hps: hyperparameters
"""
self.hps = hps
# Get ids of special tokens
start_decoding = vocab.word2id(data.START_DECODING)
stop_decoding = vocab.word2id(data.STOP_DECODING)
stop_doc = vocab.word2id(data.STOP_DECODING_DOCUMENT)
#abstract_words = review.split() # list of strings
#abs_ids = [vocab.word2id(w) for w in abstract_words] # list of word ids; OOVs are represented by the id for UNK token
if input !=None:
review_sentence = sent_tokenize(review)
article = input
article_words = article.split() # list of strings
if len(article_words) > hps.max_enc_steps:
article_words = article_words[:hps.max_enc_steps]
self.enc_len = len(article_words) # store the length after truncation but before padding
self.enc_input = [vocab.word2id(w) for w in
article_words] # list of word ids; OOVs are represented by the id for UNK token
self.original_review_input =input
self.original_review_output = review
abstract_sentences = [x.strip() for x in review_sentence]
abstract_words = []
for i in range(len(abstract_sentences)):
if i >= hps.max_dec_sen_num:
abstract_words = abstract_words[:hps.max_dec_sen_num]
break
abstract_sen = abstract_sentences[i]
abstract_sen_words = abstract_sen.split()
if len(abstract_sen_words) > hps.max_dec_steps:
abstract_sen_words = abstract_sen_words[:hps.max_dec_steps]
abstract_words.append(abstract_sen_words)
if len(abstract_words[-1]) < hps.max_dec_steps:
abstract_words[-1].append(stop_doc)
else:
review_sentence = sent_tokenize(review)
article = review_sentence[0]
article_words = article.split() # list of strings
if len(article_words) > hps.max_enc_steps:
article_words = article_words[:hps.max_enc_steps]
self.enc_len = len(article_words) # store the length after truncation but before padding
self.enc_input = [vocab.word2id(w) for w in
article_words] # list of word ids; OOVs are represented by the id for UNK token
self.original_review_input = review_sentence[0]
self.original_review_output = " ".join(review_sentence[1:])
review_sentence = review_sentence[1:]
abstract_sentences = [x.strip() for x in review_sentence]
abstract_words = []
for i in range(len(abstract_sentences)):
if i >= hps.max_dec_sen_num:
abstract_words = abstract_words[:hps.max_dec_sen_num]
break
abstract_sen = abstract_sentences[i]
abstract_sen_words = abstract_sen.split()
if len(abstract_sen_words) > hps.max_dec_steps:
abstract_sen_words = abstract_sen_words[:hps.max_dec_steps]
abstract_words.append(abstract_sen_words)
if len(abstract_words[-1]) < hps.max_dec_steps:
abstract_words[-1].append(stop_doc)
'''if len(abstract_sentences) < hps.max_dec_sen_num:
abstract_words.append([stop_doc])'''
# abstract_words = abstract.split() # list of strings
abs_ids = [[vocab.word2id(w) for w in sen] for sen in
abstract_words] # list of word ids; OOVs are represented by the id for UNK token
# Get the decoder input sequence and target sequence
self.dec_input, self.target = self.get_dec_inp_targ_seqs(abs_ids, hps.max_dec_sen_num, hps.max_dec_steps,
start_decoding,stop_decoding) # max_sen_num,max_len, start_doc_id, end_doc_id,start_id, stop_id
self.dec_len = len(self.dec_input)
self.dec_sen_len = [len(sentence) for sentence in self.target]
self.original_review = review
def get_dec_inp_targ_seqs(self, sequence, max_sen_num,max_len, start_id, stop_id):
"""Given the reference summary as a sequence of tokens, return the input sequence for the decoder, and the target sequence which we will use to calculate loss. The sequence will be truncated if it is longer than max_len. The input sequence must start with the start_id and the target sequence must end with the stop_id (but not if it's been truncated).
Args:
sequence: List of ids (integers)
max_len: integer
start_id: integer
stop_id: integer
Returns:
inp: sequence length <=max_len starting with start_id
target: sequence same length as input, ending with stop_id only if there was no truncation
"""
inps = sequence[:]
targets = sequence[:]
if len(inps) > max_sen_num:
inps = inps[:max_sen_num]
targets = targets[:max_sen_num]
for i in range(len(inps)):
inps[i] = [start_id] + inps[i][:]
if len(inps[i]) > max_len:
inps[i] = inps[i][:max_len]
for i in range(len(targets)):
if len(targets[i]) >= max_len:
targets[i] = targets[i][:max_len - 1] # no end_token
targets[i].append(stop_id) # end token
else:
targets[i]=targets[i] +[stop_id]
return inps, targets
def pad_decoder_inp_targ(self, max_sen_len, max_sen_num, pad_doc_id):
"""Pad decoder input and target sequences with pad_id up to max_len."""
while len(self.dec_sen_len) < max_sen_num:
self.dec_sen_len.append(1)
for i in range(len(self.dec_input)):
while len(self.dec_input[i]) < max_sen_len:
self.dec_input[i].append(pad_doc_id)
while len(self.dec_input) < max_sen_num:
self.dec_input.append([pad_doc_id for i in range(max_sen_len)])
for i in range(len(self.target)):
while len(self.target[i]) < max_sen_len:
self.target[i].append(pad_doc_id)
while len(self.target) < max_sen_num:
self.target.append([pad_doc_id for i in range(max_sen_len)])
# print (self.target)
def pad_encoder_input(self, max_len, pad_id):
"""Pad the encoder input sequence with pad_id up to max_len."""
while len(self.enc_input) < max_len:
self.enc_input.append(pad_id)
class Batch(object):
"""Class representing a minibatch of train/val/test examples for text summarization."""
def __init__(self, example_list, hps, vocab):
"""Turns the example_list into a Batch object.
Args:
example_list: List of Example objects
hps: hyperparameters
vocab: Vocabulary object
"""
self.pad_id = vocab.word2id(data.PAD_TOKEN) # id of the PAD token used to pad sequences
if FLAGS.run_method == 'auto-encoder':
self.init_encoder_seq(example_list, hps) # initialize the input to the encoder
self.init_decoder_seq(example_list, hps) # initialize the input and targets for the decoder
self.store_orig_strings(example_list) # store the original strings
def init_encoder_seq(self, example_list, hps):
#print ([ex.enc_len for ex in example_list])
max_enc_seq_len = max([ex.enc_len for ex in example_list])
# Pad the encoder input sequences up to the length of the longest sequence
for ex in example_list:
ex.pad_encoder_input(max_enc_seq_len, self.pad_id)
# Initialize the numpy arrays
# Note: our enc_batch can have different length (second dimension) for each batch because we use dynamic_rnn for the encoder.
self.enc_batch = np.zeros((hps.batch_size, max_enc_seq_len), dtype=np.int32)
self.enc_lens = np.zeros((hps.batch_size), dtype=np.int32)
#self.enc_padding_mask = np.zeros((hps.batch_size, max_enc_seq_len), dtype=np.float32)
# Fill in the numpy arrays
for i, ex in enumerate(example_list):
#print (ex.enc_input)
self.enc_batch[i, :] = ex.enc_input[:]
self.enc_lens[i] = ex.enc_len
'''for j in range(ex.enc_len):
self.enc_padding_mask[i][j] = 1'''
def init_decoder_seq(self, example_list, hps):
for ex in example_list:
ex.pad_decoder_inp_targ(hps.max_dec_steps, hps.max_dec_sen_num,self.pad_id)
# Initialize the numpy arrays.
# Note: our decoder inputs and targets must be the same length for each batch (second dimension = max_dec_steps) because we do not use a dynamic_rnn for decoding. However I believe this is possible, or will soon be possible, with Tensorflow 1.0, in which case it may be best to upgrade to that.
self.dec_batch = np.zeros((hps.batch_size, hps.max_dec_sen_num, hps.max_dec_steps), dtype=np.int32)
self.target_batch = np.zeros((hps.batch_size, hps.max_dec_sen_num, hps.max_dec_steps), dtype=np.int32)
self.dec_padding_mask = np.zeros((hps.batch_size* hps.max_dec_sen_num, hps.max_dec_steps),
dtype=np.float32)
self.dec_sen_lens = np.zeros((hps.batch_size, hps.max_dec_sen_num), dtype=np.int32)
self.dec_lens = np.zeros((hps.batch_size), dtype=np.int32)
for i, ex in enumerate(example_list):
self.dec_lens[i] = ex.dec_len
self.dec_batch[i, :, :] = np.array(ex.dec_input)
self.target_batch[i] = np.array(ex.target)
for j in range(len(ex.dec_sen_len)):
self.dec_sen_lens[i][j] = ex.dec_sen_len[j]
self.target_batch = np.reshape(self.target_batch,
[hps.batch_size*hps.max_dec_sen_num, hps.max_dec_steps])
for j in range(len(self.target_batch)):
for k in range(len(self.target_batch[j])):
if int(self.target_batch[j][k]) != self.pad_id:
self.dec_padding_mask[j][k] = 1
#self.dec_padding_mask = np.reshape(self.dec_padding_mask, [hps.batch_size*hps.max_dec_sen_num, hps.max_dec_steps])
def store_orig_strings(self, example_list):
"""Store the original article and abstract strings in the Batch object"""
self.original_review_output = [ex.original_review_output for ex in example_list] # list of lists
if FLAGS.run_method == 'auto-encoder':
self.original_review_inputs = [ex.original_review_input for ex in example_list] # list of lists
class GenBatcher(object):
def __init__(self, vocab, hps):
self._vocab = vocab
self._hps = hps
self.train_queue = self.fill_example_queue("review_generation_dataset/train/*", mode ="train")
self.test_queue = self.fill_example_queue("review_generation_dataset/test/*", mode ="test")
#self.test_queue = self.fill_example_queue("/home/xujingjing/code/review_summary/dataset/review_generation_dataset/test/*")
self.train_batch = self.create_batch(mode="train")
self.test_batch = self.create_batch(mode="test", shuffleis=False)
#train_batch = self.create_bach(mode="train")
def create_batch(self, mode="train", shuffleis=True):
all_batch = []
if mode == "train":
num_batches = int(len(self.train_queue) / self._hps.batch_size)
if shuffleis:
shuffle(self.train_queue)
elif mode == 'test':
num_batches = int(len(self.test_queue) / self._hps.batch_size)
for i in range(0, num_batches):
batch = []
if mode == 'train':
batch += (self.train_queue[i * self._hps.batch_size:i * self._hps.batch_size + self._hps.batch_size])
elif mode == 'test':
batch += (self.test_queue[i * self._hps.batch_size:i * self._hps.batch_size + self._hps.batch_size])
all_batch.append(Batch(batch, self._hps, self._vocab))
return all_batch
def get_batches(self, mode="train"):
if mode == "train":
shuffle(self.train_batch)
return self.train_batch
elif mode == 'test':
return self.test_batch
def fill_example_queue(self, data_path, mode = "test"):
new_queue =[]
filelist = glob.glob(data_path) # get the list of datafiles
assert filelist, ('Error: Empty filelist at %s' % data_path) # check filelist isn't empty
filelist = sorted(filelist)
if mode == "train":
filelist = filelist
for f in filelist:
reader = codecs.open(f, 'r', 'utf-8')
while True:
string_ = reader.readline()
if not string_: break
dict_example = json.loads(string_)
review = dict_example["review"]
if(len(sent_tokenize(review))<2):
continue
example = Example(review, self._vocab, self._hps)
new_queue.append(example)
return new_queue