forked from udacity/FCND-Motion-Planning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
planning_utils_grid.py
228 lines (180 loc) · 7.66 KB
/
planning_utils_grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from enum import Enum
from queue import PriorityQueue
import numpy as np
import matplotlib.pyplot as plt
def create_grid(data, drone_altitude, safety_distance):
"""
Returns a grid representation of a 2D configuration space
based on given obstacle data, drone altitude and safety distance
arguments.
"""
# minimum and maximum north coordinates
north_min = np.floor(np.min(data[:, 0] - data[:, 3]))
north_max = np.ceil(np.max(data[:, 0] + data[:, 3]))
# minimum and maximum east coordinates
east_min = np.floor(np.min(data[:, 1] - data[:, 4]))
east_max = np.ceil(np.max(data[:, 1] + data[:, 4]))
# given the minimum and maximum coordinates we can
# calculate the size of the grid.
north_size = int(np.ceil(north_max - north_min))
east_size = int(np.ceil(east_max - east_min))
# Initialize an empty grid
grid = np.zeros((north_size, east_size))
# Populate the grid with obstacles
for i in range(data.shape[0]):
north, east, alt, d_north, d_east, d_alt = data[i, :]
if alt + d_alt + safety_distance > drone_altitude:
obstacle = [
int(np.clip(north - d_north - safety_distance - north_min, 0, north_size-1)),
int(np.clip(north + d_north + safety_distance - north_min, 0, north_size-1)),
int(np.clip(east - d_east - safety_distance - east_min, 0, east_size-1)),
int(np.clip(east + d_east + safety_distance - east_min, 0, east_size-1)),
]
grid[obstacle[0]:obstacle[1]+1, obstacle[2]:obstacle[3]+1] = 1
return grid, int(north_min), int(east_min)
#----------------------------------------------------------------------
#Class Action : valid movement actions that can take the drone from the current position.
#An action is represented by a 3 element tuple :
# - the two first values are the delta of the action relative to the current grid position (N/E/S/W).
# - the third value is the cost of performing the action.
class Action(Enum):
"""
An action is represented by a 3 element tuple.
The first 2 values are the delta of the action relative
to the current grid position. The third and final value
is the cost of performing the action.
"""
# add diagonal motions with a cost of sqrt(2) to your A* implementation
WEST = (0,-1,1)
EAST = (0,1, 1)
NORTH = (-1,0,1)
SOUTH = (1,0,1)
NORTH_WEST = (-1,-1,np.sqrt(2))
NORTH_EAST = (-1,1,np.sqrt(2))
SOUTH_WEST = (1,-1,np.sqrt(2))
SOUTH_EAST = (1,1,np.sqrt(2))
@property
def cost(self):
return self.value[2]
@property
def delta(self):
return (self.value[0], self.value[1])
#----------------------------------------------------------------------
# Valid_actions : deliver the list of valid actions given a grid and current node.
def valid_actions(grid, current_node):
"""
Returns a list of valid actions given a grid and current node.
"""
valid_actions = list(Action)
n, m = grid.shape[0] - 1, grid.shape[1] - 1
x, y = current_node
# check if the node is off the grid or
# it's an obstacle
if x - 1 < 0 or grid[x - 1, y] == 1:
valid_actions.remove(Action.NORTH)
if x + 1 > n or grid[x + 1, y] == 1:
valid_actions.remove(Action.SOUTH)
if y - 1 < 0 or grid[x, y - 1] == 1:
valid_actions.remove(Action.WEST)
if y + 1 > m or grid[x, y + 1] == 1:
valid_actions.remove(Action.EAST)
if (x-1<0 or y-1<0) or grid[x-1, y-1] == 1:
valid_actions.remove(Action.NORTH_WEST)
if (x-1<0 or y+1>m) or grid[x-1, y+1] == 1:
valid_actions.remove(Action.NORTH_EAST)
if (x+1>n or y-1<0) or grid[x+1, y-1] == 1:
valid_actions.remove(Action.SOUTH_WEST)
if (x+1>n or y+1>m) or grid[x+1, y+1] == 1:
valid_actions.remove(Action.SOUTH_EAST)
return valid_actions
#---------------------------------------------------------------------
# A_star : Algorithm, which calculate the path from the start point to the goal point.
def a_star(grid, h, start, goal):
path = []
path_cost = 0
queue = PriorityQueue()
queue.put((0, start))
visited = set(start)
branch = {}
found = False
while not queue.empty():
item = queue.get()
current_node = item[1]
if current_node == start:
current_cost = 0.0
else:
current_cost = branch[current_node][0]
if current_node == goal:
print('Found a path.')
found = True
break
else:
for action in valid_actions(grid, current_node):
# get the tuple representation
da = action.delta
next_node = (current_node[0] + da[0], current_node[1] + da[1])
branch_cost = current_cost + action.cost
queue_cost = branch_cost + h(next_node, goal)
if next_node not in visited:
visited.add(next_node)
branch[next_node] = (branch_cost, current_node, action)
queue.put((queue_cost, next_node))
if found:
# retrace steps
n = goal
path_cost = branch[n][0]
path.append(goal)
while branch[n][1] != start:
path.append(branch[n][1])
n = branch[n][1]
path.append(branch[n][1])
else:
print('**********************')
print('Failed to find a path!')
print('**********************')
return path[::-1], path_cost
#-------------------------------------------------------------------
#Heuristic : calculation of the euclidean distance (and the Manhattan distance) between a start point and a goal point.
def heuristic(position, goal_position):
# Euclidean approach
h = np.sqrt((position[0] - goal_position[0])**2 + (position[1] - goal_position[1])**2)
# Mannhattan approach
#h = np.linalg.norm(np.array(position) - np.array(goal_position))
return h
#---------------------------------------------------------------------
#Point : 3D point implementation in a array.
def point(p):
return np.array([p[0], p[1], 1.]).reshape(1, -1)
#Collinearity check : determinant calculation of a matrix containing the points.
# If the determinant is less that the epsilon threshold, then the points are collinear.
def collinearity_check(p1, p2, p3, epsilon=1e-3):
m = np.concatenate((p1, p2, p3), 0)
det = np.linalg.det(m)
return abs(det) < epsilon
# Prune_path : deletion of the unneeded waypoints.
# Use of the collinearity_check to know if the points are in the in a linear line.
def prune_path(path):
pruned_path = [p for p in path]
i=0
while i < len(pruned_path) - 2:
p1 = point (pruned_path [i])
p2 = point (pruned_path [i+1])
p3 = point (pruned_path [i+2])
if collinearity_check (p1,p2,p3) == True:
pruned_path.remove (pruned_path[i+1])
else:
i=i+1
return pruned_path
#--------------------------------------------------------------
#Plot_route : visualization of the start point, the goal point and the waypoints.
#The function will be called before and after the prune activity.
def plot_route (grid, start_ne, goal_ne,pruned_path):
plt.imshow(grid, cmap='Greys', origin='lower')
plt.plot(start_ne[1], start_ne[0], 'x')
plt.plot(goal_ne[1], goal_ne[0], 'x')
pp = np.array(pruned_path)
plt.plot(pp[:, 1], pp[:, 0], 'g')
plt.scatter(pp[:, 1], pp[:, 0])
plt.xlabel('EAST')
plt.ylabel('NORTH')
plt.show()