forked from yejin109/NeRF-pytorch-imple
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yml
257 lines (212 loc) · 7.69 KB
/
config.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
data:
synthetic:
data_type: nerf_synthetic
dataset: lego # options : chair, drums, ficus, hotdog, lego, materials, mic, ship
run_type: train # options : train, val ,test
factor: 8
no_ndc: True # 'do not use normalized device coordinates (set for non-forward facing scenes)
spherify : True
path_zflat: False # regarding render_poses(poses for test img), choose spiral or path
bd_factor: .75
recenter : True
llffhold: 8 # will take every 1/N images as LLFF test set, paper uses 8
half_res : True
white_bkgd: False # set to render synthetic data on a white bkgd (always use for dvoxels)
llff:
data_type: nerf_llff_data
dataset: fern # options : fern, flower, fortress, horns, leaves, orchids, room, trex
run_type: train # options : train, val ,test
factor: 8
no_ndc: False # 'do not use normalized device coordinates (set for non-forward facing scenes)
lindisp: False # sampling linearly in disparity rather than depth
spherify : False # Should be synchronized with Image source camera position distribution
path_zflat: False # regarding render_poses(poses for test img), choose spiral or path
bd_factor: .75
recenter : True
llffhold: 8 # will take every 1/N images as LLFF test set, paper uses 8
thin_structure:
data_type: neus_thin_structure
dataset: thin_catbus
camera_outside_sphere: True
scale_mat_scale : 1.1
white_bkgd: False
embed:
nerf:
include_input: True
input_dims : 3
log_sampling: True
neus:
include_input: True
input_dims : 3
log_sampling: True
hypernerf:
# NeRF metadata configs.
use_nerf_embed: False
nerf_embed_key: appearance
nerf_num_embeddings: 8 # TODO
nerf_num_dims: 8 # TODO
# Warp configs.
use_warp: False
warp_embed_key: warp
warp_num_embeddings: 8 # TODO
warp_num_dims: 8 # TODO
warp_field_cls: Callable[..., nn.Module] = warping.SE3Field
use_alpha_condition: bool = False
use_rgb_condition: bool = False
hyper_slice_method: none
hyper_num_embeddings: 8 # TODO
hyper_num_dims: 8 # TODO
hyper_embed_cls: Callable[..., nn.Module] = (
functools.partial(modules.GLOEmbed, num_dims=8))
hyper_embed_key: str = 'appearance'
hyper_use_warp_embed: bool = True
hyper_sheet_mlp_cls: Callable[..., nn.Module] = modules.HyperSheetMLP
hyper_sheet_use_input_points: bool = True
rendering:
nerf:
N_samples: 64 # number of coarse samples per ray
N_importance: 64 # number of additional fine samples per ray
perturb: 1. # set to 0. for no jitter, 1. for jitter
use_viewdirs: True # use full 5D input instead of 3D
i_embed: 0 # set 0 for default positional encoding, -1 for none
multires: 10 # 'log2 of max freq for positional encoding (3D location)'
multires_views: 4 # 'log2 of max freq for positional encoding (2D direction)'
raw_noise_std: 1 # 'std dev of noise added to regularize sigma_a output, 1e0 recommended'
render_only: False # do not optimize, reload weights and render out render_poses path
render_test: False # render the test set instead of render_poses path
render_factor: 0 #downsampling factor to speed up rendering, set 4 or 8 for fast preview
# Camera Movements
render_pose_num : 1 # default 120, newly added for factorization
N_rots : 2 # Number of rotation for spiral path
zrate: .5 # Moving speed along with z axis for spiral path
# For deeepvoxel
shape: greek # options, armchair/ cube/ greek/ vase
neus:
n_samples: 64 # The number of samples in z axis
n_importance: 64 # Determine whether to up sampling or not
n_outside: 0 # default with mask. without mask, use 32
up_sample_steps: 4 # 1 for simple coarse-to-fine sampling. The number of updating z_vals
perturb: 1.0 # positive value -> perturbation on samples of z values.
render_pose_num: 1
hypernerf:
# NeRF rendering.
num_coarse_samples: 196
num_fine_samples: 196
use_stratified_sampling: True
use_white_background: False
use_linear_disparity: False
use_sample_at_infinity: True
spatial_point_min_deg: 0
spatial_point_max_deg: 10
hyper_point_min_deg: 0
hyper_point_max_deg: 4
viewdir_min_deg: 0
viewdir_max_deg: 4
use_posenc_identity: True
alpha_channels: 1
rgb_channels: 3
activation: nn.relu
norm_type: None
sigma_activation: nn.softplus
model:
nerf:
layer_num: 8 # Original netdepth: 8 # layers in network
hidden_dim : 256 # netwidth: 256 # channels per layer
layer_num_fine : 8 # netdepth_fine: 8 # layers in fine network
hidden_feature_fine : 256 # netwidth_fine: 256 # channels per layer in fine network
batch_size: 1024 # 32*32*4=4096, batch size (number of random rays per gradient step)
lrate: 5.0E-4 # learning rate
lrate_decay: 250 # exponential learning rate decay (in 1000s)
lrate_schedule_gamma: 0.1
N_iters: 200000 # 2500 * 4096(N_rand) = 5GB GRAM usage
chunk: 32768 # 65536, 1024*32, number of rays processed in parallel, decrease if running out of memory. (Rendering Image) 4585 - 1985 = 2600MiB Uses
netchunk: 65536 # 1024*64, number of pts sent through network in parallel, decrease if running out of memory
no_batching: False # only take random rays from 1 image at a time -> latency at ray_generation ~10s
no_reload: False # do not reload weights from saved ckpt
ft_path: None # specific weights npy file to reload for coarse network
random_seed: None, # fix random seed for repeatability
precrop_iters: 0 # 'number of steps to train on central crops'
precrop_frac: .5 # fraction of img taken for central crops
neus: # with mask configuration
learning_rate: 5.0E-4
learning_rate_alpha: 0.05
N_iters: 300000
batch_size: 16 # default 512
validate_resolution_level: 4
warm_up_end: 5000
anneal_end: 50000 # default for with mask. without mask, wmaks : 0 , thin structure : 50000
igr_weight: 0.1
mask_weight: 0.0 # wmask : 0.1, thin structure : 0.0
layer_num_fine: 8 # netdepth_fine: 8 # layers in fine network
hidden_feature_fine: 256 # netwidth_fine: 256 # channels per layer in fine network
layer_num: 8
hidden_dim: 256
backbone:
D: 8
d_in: 4
d_in_view: 3
W: 256
multires: 10
multires_view: 4
output_ch: 4
skips:
- 4
use_viewdirs: True
sdf_network:
d_out: 257
d_in: 3
d_hidden: 256
n_layers: 8
skip_in:
- 4
multires: 6
bias: 0.5
scale: 3.0 # used thin structure : 3.0 wmask : 1.0
geometric_init: True
weight_norm: True
variance_network:
init_val: 0.3
rendering_network:
d_feature : 256
mode: idr
d_in: 9
d_out: 3
d_hidden: 256
n_layers: 4
weight_norm: True
multires_view: 4
squeeze_out: True
hypernerf:
use_viewdirs: True
noise_std: None
# NeRF architecture.
in_feature : 10 # TODO: dummy
use_fine_model : True
nerf_trunk_depth: 8
nerf_trunk_width: 256
nerf_rgb_branch_depth: 1
nerf_rgb_branch_width: 128
nerf_rgb_channels: 3
nerf_alpha_depth: 0
nerf_alapha_width: 8
nerf_alpha_channels: 1
nerf_norm : None
nerf_activation: relu
nerf_skips:
- 4
hypersheet:
in_channels: 10 # TODO
out_channels: 3 # TODO
min_deg: 0
max_deg: 1
depth: 6
width: 64
skips:
- 4
use_residual: False
log:
i_print: 200
i_img: 5000 # frequency of tensorboard image logging, default 5000
i_weights: 10000 # frequency of weight ckpt saving, 10000
i_testset: 5000 # frequency of testset saving, 5000
i_video: 20000 # frequency of render_poses video saving, 20000