-
Notifications
You must be signed in to change notification settings - Fork 48
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
88 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
# Rudimentary VLLM support for generating descriptions of images. | ||
# | ||
|
||
from pathlib import Path | ||
from PIL import Image | ||
import io | ||
import array | ||
import ctypes | ||
from llama_cpp import (Llama, clip_model_load, llava_image_embed_make_with_bytes, | ||
llava_image_embed_p, llava_image_embed_free, llava_eval_image_embed) | ||
|
||
class VLLM: | ||
def prompt(self, prompt: str, image: Image.Image | Path | None = None) -> str: | ||
pass | ||
|
||
def heartbeat(self) -> bool: | ||
pass | ||
|
||
class LLAVA(VLLM): | ||
""" | ||
LLAMA CPP Based LLAVA implementation | ||
""" | ||
MAX_TARGET_LEN = 256 | ||
N_CTX = 2048 | ||
def __init__(self, model: Path, mmproj: Path, temp: float = 0.1): | ||
self.temp = temp | ||
self.model_path = model | ||
self.mmproj_path = mmproj | ||
self.initialize_llm() | ||
|
||
def initialize_llm(self): | ||
self.llm = Llama(model_path=str(self.model_path), n_ctx=self.N_CTX, n_gpu_layers=1) | ||
self.ctx_clip = clip_model_load(str(self.mmproj_path).encode('utf-8')) | ||
self.system_prompt() | ||
|
||
def load_image_path_embded(self, image: Path) -> llava_image_embed_p: | ||
with open(image, 'rb') as file: | ||
image_bytes = file.read() | ||
bytes_length = len(image_bytes) | ||
data_array = array.array('B', image_bytes) | ||
c_ubyte_ptr = (ctypes.c_ubyte * len(data_array)).from_buffer(data_array) | ||
return llava_image_embed_make_with_bytes(ctx_clip=self.ctx_clip, n_threads=1, image_bytes=c_ubyte_ptr, image_bytes_length=bytes_length) | ||
|
||
def load_image_embed(self, image: Image.Image) -> llava_image_embed_p: | ||
output = io.BytesIO() | ||
image.save(output, format='JPEG') | ||
return llava_image_embed_make_with_bytes(ctx_clip=self.ctx_clip, n_threads=1, image_bytes=output.getvalue(), image_bytes_length=output.tell()) | ||
|
||
|
||
def eval_img(self, image: Image.Image | Path): | ||
if isinstance(image, Image.Image): | ||
im = self.load_image_embed(image) | ||
else: | ||
im = self.load_image_path_embded(image) | ||
n_past = ctypes.c_int(self.llm.n_tokens) | ||
n_past_p = ctypes.byref(n_past) | ||
llava_eval_image_embed(self.llm.ctx, im, self.llm.n_batch, n_past_p) | ||
self.llm.n_tokens = n_past.value | ||
llava_image_embed_free(im) | ||
|
||
def output(self, stream = True): | ||
res = "" | ||
for i in range(self.MAX_TARGET_LEN): | ||
t_id = self.llm.sample(temp=self.temp) | ||
t = self.llm.detokenize([t_id]).decode('utf8') | ||
if t == "</s>": | ||
break | ||
if stream: | ||
print(t, end="") | ||
res += t | ||
self.llm.eval([t_id]) | ||
return res | ||
|
||
def system_prompt(self): | ||
self.llm.eval(self.llm.tokenize(b"You are a helpful assistant that objectively describes images.")) | ||
|
||
def prompt(self, prompt: str, image: Image.Image | Path | None = None, refresh: bool=False, stream: bool=False) -> str: | ||
if refresh: | ||
self.initialize_llm() | ||
self.llm.eval(self.llm.tokenize("\nUSER: ".encode('utf8'))) | ||
if image is not None: | ||
self.eval_img(image) | ||
self.llm.eval(self.llm.tokenize(prompt.encode("utf8"))) | ||
self.llm.eval(self.llm.tokenize("\nASSISTANT:".encode("utf8"))) | ||
return self.output() | ||
|
||
def heartbeat(self) -> bool: | ||
return self.llm is not None |