diff --git a/LICENSE b/LICENSE new file mode 100644 index 000000000..e5e4ee061 --- /dev/null +++ b/LICENSE @@ -0,0 +1,201 @@ + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [2021] [SwinIR Authors] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/README.md b/README.md index e09ca7195..06d93685d 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,178 @@ # SwinIR: Image Restoration Using Swin Transformer -## Stay tuned. The code will arrive before 27th, August. + +This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Window Transformer +([arxiv](https://arxiv.org/pdf/2108.10257.pdf), [supp](https://github.com/JingyunLiang/SwinIR/releases/tag/v0.0)). SwinIR ahcieves **state-of-the-art performance** in +- bicubic/lighweight/real-world image SR +- grayscale/color image denoising +- JPEG compression artifact reduction + +
+ +:rocket: :rocket: :rocket: **News**: + - *Aug. 26, 2021: See our recent work on real-world image SR: [a pratical degrdation model BSRGAN, ICCV2021](https://github.com/cszn/BSRGAN)* + - *Aug. 26, 2021: See our recent work on generative modelling of image SR and image rescaling: [normalizing-flow-based HCFlow, ICCV2021](https://github.com/JingyunLiang/HCFlow)* + - *Aug. 26, 2021: See our recent work on blind SR kernel estimation: [spatially variant kernel estimation (MANet, ICCV2021)](https://github.com/JingyunLiang/MANet) and [unsupervised kernel estimation (FKP, CVPR2021)](https://github.com/JingyunLiang/FKP)* + +--- + +> Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from low-quality images (e.g., downscaled, noisy and compressed images). While state-of-the-art image restoration methods are based on convolutional neural networks, few attempts have been made with Transformers which show impressive performance on high-level vision tasks. In this paper, we propose a strong baseline model SwinIR for image restoration based on the Swin Transformer. SwinIR consists of three parts: shallow feature extraction, deep feature extraction and high-quality image reconstruction. In particular, the deep feature extraction module is composed of several residual Swin Transformer blocks (RSTB), each of which has several Swin Transformer layers together with a residual connection. We conduct experiments on three representative tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. Experimental results demonstrate that SwinIR outperforms state-of-the-art methods on different tasks by up to 0.14~0.45dB, while the total number of parameters can be reduced by up to 67%. +>

+ +

+ + + +#### Contents + +1. [Training](#Training) +1. [Testing](#Testing) +1. [Results](#Results) +1. [Citation](#Citation) +1. [License and Acknowledgement](#License-and-Acknowledgement) + + +### Training + + +Used training and testing sets can be downloaded as follows: + +| Task | Training Set | Testing Set| +| :--- | :---: | :---: | +| classical/lightweight image SR | [DIV2K](https://cv.snu.ac.kr/research/EDSR/DIV2K.tar) (800 training images) or DIV2K +[Flickr2K](https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar) (2650 images) | Set5 + Set14 + BSD100 + Urban100 + Manga109 [download all](https://drive.google.com/drive/folders/1B3DJGQKB6eNdwuQIhdskA64qUuVKLZ9u) | +| real-world image SR | SwinIR-M (middle size): [DIV2K](https://cv.snu.ac.kr/research/EDSR/DIV2K.tar) (800 training images) +[Flickr2K](https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar) (2650 images) + [OST](https://openmmlab.oss-cn-hangzhou.aliyuncs.com/datasets/OST_dataset.zip) (10324 images, sky,water,grass,mountain,building,plant,animal)
SwinIR-L (large size): DIV2K + Flickr2K + OST + [WED](ivc.uwaterloo.ca/database/WaterlooExploration/exploration_database_and_code.rar)(4744 images) + [FFHQ](https://drive.google.com/drive/folders/1tZUcXDBeOibC6jcMCtgRRz67pzrAHeHL) (first 2000 images, face) + Manga109 (manga) + [SCUT-CTW1500](https://universityofadelaide.box.com/shared/static/py5uwlfyyytbb2pxzq9czvu6fuqbjdh8.zip) (first 100 training images, texts)

***We use the degradation model proposed in [BSRGAN, ICCV2021](https://github.com/cszn/BSRGAN)** | [RealSRSet](https://github.com/cszn/BSRGAN/tree/main/testsets/RealSRSet) | +| color/grayscale image denoising | [DIV2K](https://cv.snu.ac.kr/research/EDSR/DIV2K.tar) (800 training images) + [Flickr2K](https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar) (2650 images) + [BSD500](www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz) (400 training&testing images) + [WED](ivc.uwaterloo.ca/database/WaterlooExploration/exploration_database_and_code.rar)(4744 images) | grayscale: Set12 + BSD68 + Urban100
color: CBSD68 + Kodak24 + McMaster + Urban100 [download all](https://github.com/cszn/FFDNet/tree/master/testsets) | +| JPEG compression artifact reduction | [DIV2K](https://cv.snu.ac.kr/research/EDSR/DIV2K.tar) (800 training images) + [Flickr2K](https://cv.snu.ac.kr/research/EDSR/Flickr2K.tar) (2650 images) + [BSD500](www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz) (400 training&testing images) + [WED](ivc.uwaterloo.ca/database/WaterlooExploration/exploration_database_and_code.rar)(4744 images) | grayscale: Classic5 +LIVE1 [download all](https://github.com/cszn/DnCNN/tree/master/testsets) | + + + + +The training code will be put in [KAIR](https://github.com/cszn/KAIR). + +## Testing (without preparing datasets) +For your convience, we provide some example datasets (~20Mb) in `/testsets`. +If you just want codes, downloading `models/network_swinir.py`, `utils/util_calculate_psnr_ssim.py` and `main_test_swinir.py` is enough. +Download [pretrained models](https://github.com/JingyunLiang/SwinIR/releases/tag/v0.0) and put them in `model_zoo/swinir`, then run following commands: + + +```bash +# 001 Classical Image Super-Resolution (middle size) +# (when model is trained on DIV2K, use patch_size=48) +python main_test_swinir.py --task classical_sr --scale 2 --patch_size 48 --model_path model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth --folder_lq testsets/Set5/LR_bicubic/X2 --folder_gt testsets/Set5/HR +python main_test_swinir.py --task classical_sr --scale 3 --patch_size 48 --model_path model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x3.pth --folder_lq testsets/Set5/LR_bicubic/X3 --folder_gt testsets/Set5/HR +python main_test_swinir.py --task classical_sr --scale 4 --patch_size 48 --model_path model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x4.pth --folder_lq testsets/Set5/LR_bicubic/X4 --folder_gt testsets/Set5/HR +python main_test_swinir.py --task classical_sr --scale 8 --patch_size 48 --model_path model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x8.pth --folder_lq testsets/Set5/LR_bicubic/X8 --folder_gt testsets/Set5/HR + +# (when model is trained on DIV2K+Flickr2K, use patch_size=64) +python main_test_swinir.py --task classical_sr --scale 2 --patch_size 64 --model_path model_zoo/swinir/001_classicalSR_DF2K_s64w8_SwinIR-M_x2.pth --folder_lq testsets/Set5/LR_bicubic/X2 --folder_gt testsets/Set5/HR +python main_test_swinir.py --task classical_sr --scale 3 --patch_size 64 --model_path model_zoo/swinir/001_classicalSR_DF2K_s64w8_SwinIR-M_x3.pth --folder_lq testsets/Set5/LR_bicubic/X3 --folder_gt testsets/Set5/HR +python main_test_swinir.py --task classical_sr --scale 4 --patch_size 64 --model_path model_zoo/swinir/001_classicalSR_DF2K_s64w8_SwinIR-M_x4.pth --folder_lq testsets/Set5/LR_bicubic/X4 --folder_gt testsets/Set5/HR +python main_test_swinir.py --task classical_sr --scale 8 --patch_size 64 --model_path model_zoo/swinir/001_classicalSR_DF2K_s64w8_SwinIR-M_x8.pth --folder_lq testsets/Set5/LR_bicubic/X8 --folder_gt testsets/Set5/HR + + +# 002 Lightweight Image Super-Resolution (small size) +python main_test_swinir.py --task lightweight_sr --scale 2 --model_path model_zoo/swinir/002_lightweightSR_DIV2K_s64w8_SwinIR-S_x2.pth --folder_lq testsets/Set5/LR_bicubic/X2 --folder_gt testsets/Set5/HR +python main_test_swinir.py --task lightweight_sr --scale 3 --model_path model_zoo/swinir/002_lightweightSR_DIV2K_s64w8_SwinIR-S_x3.pth --folder_lq testsets/Set5/LR_bicubic/X3 --folder_gt testsets/Set5/HR +python main_test_swinir.py --task lightweight_sr --scale 4 --model_path model_zoo/swinir/002_lightweightSR_DIV2K_s64w8_SwinIR-S_x4.pth --folder_lq testsets/Set5/LR_bicubic/X4 --folder_gt testsets/Set5/HR + + +# 003 Real-World Image Super-Resolution +# (middle size) +python main_test_swinir.py --task real_sr --scale 4 --model_path model_zoo/swinir/003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x4_GAN.pth --folder_lq testsets/RealSRSet+5images + +# (larger size + trained on more datasets) +# python main_test_swinir.py --task real_sr --scale 4 --large_model --model_path model_zoo/swinir/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth --folder_lq testsets/RealSRSet+5images + + +# 004 Grayscale Image Deoising (middle size) +python main_test_swinir.py --task gray_dn --noise 15 --model_path model_zoo/swinir/004_grayDN_DFWB_s128w8_SwinIR-M_noise15.pth --folder_gt testsets/Set12 +python main_test_swinir.py --task gray_dn --noise 25 --model_path model_zoo/swinir/004_grayDN_DFWB_s128w8_SwinIR-M_noise25.pth --folder_gt testsets/Set12 +python main_test_swinir.py --task gray_dn --noise 50 --model_path model_zoo/swinir/004_grayDN_DFWB_s128w8_SwinIR-M_noise50.pth --folder_gt testsets/Set12 + + +# 005 Color Image Deoising (middle size) +python main_test_swinir.py --task color_dn --noise 15 --model_path model_zoo/swinir/005_colorDN_DFWB_s128w8_SwinIR-M_noise15.pth --folder_gt testsets/McMaster +python main_test_swinir.py --task color_dn --noise 25 --model_path model_zoo/swinir/005_colorDN_DFWB_s128w8_SwinIR-M_noise25.pth --folder_gt testsets/McMaster +python main_test_swinir.py --task color_dn --noise 50 --model_path model_zoo/swinir/005_colorDN_DFWB_s128w8_SwinIR-M_noise50.pth --folder_gt testsets/McMaster + + +# 006 JPEG Compression Artifact Reduction (middle size, using window_size=7 because JPEG encoding uses 8x8 blocks) +python main_test_swinir.py --task jpeg_car --jpeg 10 --model_path model_zoo/swinir/006_CAR_DFWB_s126w7_SwinIR-M_jpeg10.pth --folder_gt testsets/classic5 +python main_test_swinir.py --task jpeg_car --jpeg 20 --model_path model_zoo/swinir/006_CAR_DFWB_s126w7_SwinIR-M_jpeg20.pth --folder_gt testsets/classic5 +python main_test_swinir.py --task jpeg_car --jpeg 30 --model_path model_zoo/swinir/006_CAR_DFWB_s126w7_SwinIR-M_jpeg30.pth --folder_gt testsets/classic5 +python main_test_swinir.py --task jpeg_car --jpeg 40 --model_path model_zoo/swinir/006_CAR_DFWB_s126w7_SwinIR-M_jpeg40.pth --folder_gt testsets/classic5 + +``` + +***All visual results of SwinIR can be downloaded [here](https://github.com/JingyunLiang/SwinIR/releases/tag/v0.0)**. + +*Large size real-world image SR model (`003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth`) will be released later. + +--- + +## Results +We achieved state-of-the-art performance on classical/lightweight/real-world image SR, grayscale/color image denoising and JPEG compression artifact reduction. Detailed results can be found in the [paper](https://arxiv.org/abs/2108.10257). + +
+Classical Image Super-Resolution (click me) +

+ + +

+
+ +
+Lightweight Image Super-Resolution +

+ +

+
+ +
+Real-World Image Super-Resolution +

+ +

+
+ +
+Grayscale Image Deoising +

+ +

+
+ +
+Color Image Deoising +

+ +

+
+ +
+JPEG Compression Artifact Reduction +

+ +

+
+ + + +## Citation + @article{liang2021swinir, + title={SwinIR: Image Restoration Using Swin Transformer}, + author={Liang, Jingyun and Cao, Jiezhang and Sun, Guolei and Zhang, Kai and Van Gool, Luc and Timofte, Radu}, + journal={arXiv preprint arXiv:2108.10257}, + year={2021} + } + +## License and Acknowledgement +This project is released under the Apache 2.0 license. The codes are heavily based on [Swin Transformer](https://github.com/microsoft/Swin-Transformer). We also refer to codes in [KAIR](https://github.com/cszn/KAIR) and [BasicSR](https://github.com/xinntao/BasicSR). Please also follow their licenses. Thanks for their awesome works. diff --git a/figs/SwinIR_archi.png b/figs/SwinIR_archi.png new file mode 100644 index 000000000..a4cb6fc5e Binary files /dev/null and b/figs/SwinIR_archi.png differ diff --git a/figs/classic_image_sr.png b/figs/classic_image_sr.png new file mode 100644 index 000000000..5c8f931d9 Binary files /dev/null and b/figs/classic_image_sr.png differ diff --git a/figs/classic_image_sr_visual.png b/figs/classic_image_sr_visual.png new file mode 100644 index 000000000..0ffa8ab8a Binary files /dev/null and b/figs/classic_image_sr_visual.png differ diff --git a/figs/color_image_denoising.png b/figs/color_image_denoising.png new file mode 100644 index 000000000..a0f184145 Binary files /dev/null and b/figs/color_image_denoising.png differ diff --git a/figs/gray_image_denoising.png b/figs/gray_image_denoising.png new file mode 100644 index 000000000..c06cad4b0 Binary files /dev/null and b/figs/gray_image_denoising.png differ diff --git a/figs/jepg_compress_artfact_reduction.png b/figs/jepg_compress_artfact_reduction.png new file mode 100644 index 000000000..a5551df79 Binary files /dev/null and b/figs/jepg_compress_artfact_reduction.png differ diff --git a/figs/lightweight_image_sr.png b/figs/lightweight_image_sr.png new file mode 100644 index 000000000..af13c7e52 Binary files /dev/null and b/figs/lightweight_image_sr.png differ diff --git a/figs/real_world_image_sr.png b/figs/real_world_image_sr.png new file mode 100644 index 000000000..fadd9071d Binary files /dev/null and b/figs/real_world_image_sr.png differ diff --git a/main_test_swinir.py b/main_test_swinir.py new file mode 100644 index 000000000..bf9c08eb8 --- /dev/null +++ b/main_test_swinir.py @@ -0,0 +1,239 @@ +import argparse +import cv2 +import glob +import numpy as np +from collections import OrderedDict +import os +import torch + +from models.network_swinir import SwinIR as net +from utils import util_calculate_psnr_ssim as util + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument('--task', type=str, default='color_dn', help='classical_sr, lightweight_sr, real_sr, ' + 'gray_dn, color_dn, jpeg_car') + parser.add_argument('--scale', type=int, default=1, help='scale factor: 1, 2, 3, 4, 8') # 1 for dn and jpeg car + parser.add_argument('--noise', type=int, default=15, help='noise level: 15, 25, 50') + parser.add_argument('--jpeg', type=int, default=40, help='scale factor: 10, 20, 30, 40') + parser.add_argument('--patch_size', type=int, default=128, help='patch size used in SwinIR') + parser.add_argument('--large_model', action='store_true', help='use large model, only provided for real image sr') + parser.add_argument('--model_path', type=str, + default='model_zoo/swinir/001_classicalSR_DIV2K_s48w8_SwinIR-M_x2.pth') + parser.add_argument('--folder_lq', type=str, default=None, help='input low-quality test image folder') + parser.add_argument('--folder_gt', type=str, default=None, help='input ground-truth test image folder') + args = parser.parse_args() + + device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') + # set up model + print(f'loading model from {args.model_path}') + model = define_model(args) + model.eval() + model = model.to(device) + + # setup folder and path + folder, save_dir, border, window_size = setup(args) + os.makedirs(save_dir, exist_ok=True) + test_results = OrderedDict() + test_results['psnr'] = [] + test_results['ssim'] = [] + test_results['psnr_y'] = [] + test_results['ssim_y'] = [] + test_results['psnr_b'] = [] + psnr, ssim, psnr_y, ssim_y, psnr_b = 0, 0, 0, 0, 0 + + for idx, path in enumerate(sorted(glob.glob(os.path.join(folder, '*')))): + # read image + imgname, img_lq, img_gt = get_image_pair(args, path) # image to HWC-BGR, float32 + img_lq = np.transpose(img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)) # HCW-BGR to CHW-RGB + img_lq = torch.from_numpy(img_lq).float().unsqueeze(0).to(device) # CHW-RGB to NCHW-RGB + + # inference + with torch.no_grad(): + # pad input image to be a multiple of window_size + _, _, h_old, w_old = img_lq.size() + h_pad = (h_old // window_size + 1) * window_size - h_old + w_pad = (w_old // window_size + 1) * window_size - w_old + img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[:, :, :h_old + h_pad, :] + img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[:, :, :, :w_old + w_pad] + output = model(img_lq) + output = output[..., :h_old * args.scale, :w_old * args.scale] + + # save image + output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() + if output.ndim == 3: + output = np.transpose(output[[2, 1, 0], :, :], (1, 2, 0)) # CHW-RGB to HCW-BGR + output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 + cv2.imwrite(f'{save_dir}/{imgname}_SwinIR.png', output) + + # evaluate psnr/ssim/psnr_b + if img_gt is not None: + img_gt = (img_gt * 255.0).round().astype(np.uint8) # float32 to uint8 + img_gt = img_gt[:h_old * args.scale, :w_old * args.scale, ...] # crop gt + img_gt = np.squeeze(img_gt) + + psnr = util.calculate_psnr(output, img_gt, crop_border=border) + ssim = util.calculate_ssim(output, img_gt, crop_border=border) + test_results['psnr'].append(psnr) + test_results['ssim'].append(ssim) + if img_gt.ndim == 3: # RGB image + psnr_y = util.calculate_psnr(output, img_gt, crop_border=border, test_y_channel=True) + ssim_y = util.calculate_ssim(output, img_gt, crop_border=border, test_y_channel=True) + test_results['psnr_y'].append(psnr_y) + test_results['ssim_y'].append(ssim_y) + if args.task in ['jpeg_car']: + psnr_b = util.calculate_psnrb(output, img_gt, crop_border=border, test_y_channel=True) + test_results['psnr_b'].append(psnr_b) + print('Testing {:d} {:20s} - PSNR: {:.2f} dB; SSIM: {:.4f}; ' + 'PSNR_Y: {:.2f} dB; SSIM_Y: {:.4f}; ' + 'PSNR_B: {:.2f} dB.'. + format(idx, imgname, psnr, ssim, psnr_y, ssim_y, psnr_b)) + else: + print('Testing {:d} {:20s}'.format(idx, imgname)) + + # summarize psnr/ssim + if img_gt is not None: + ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) + ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) + print('\n{} \n-- Average PSNR/SSIM(RGB): {:.2f} dB; {:.4f}'.format(save_dir, ave_psnr, ave_ssim)) + if img_gt.ndim == 3: + ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y']) + ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y']) + print('-- Average PSNR_Y/SSIM_Y: {:.2f} dB; {:.4f}'.format(ave_psnr_y, ave_ssim_y)) + if args.task in ['jpeg_car']: + ave_psnr_b = sum(test_results['psnr_b']) / len(test_results['psnr_b']) + print('-- Average PSNR_B: {:.2f} dB'.format(ave_psnr_b)) + + +def define_model(args): + # 001 classical image sr + if args.task == 'classical_sr': + model = net(upscale=args.scale, in_chans=3, img_size=args.patch_size, window_size=8, + img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], + mlp_ratio=2, upsampler='pixelshuffle', resi_connection='1conv') + model.load_state_dict(torch.load(args.model_path)['params'], strict=True) + + # 002 lightweight image sr + # use 'pixelshuffledirect' to save parameters + elif args.task == 'lightweight_sr': + model = net(upscale=args.scale, in_chans=3, img_size=64, window_size=8, + img_range=1., depths=[6, 6, 6, 6], embed_dim=60, num_heads=[6, 6, 6, 6], + mlp_ratio=2, upsampler='pixelshuffledirect', resi_connection='1conv') + model.load_state_dict(torch.load(args.model_path)['params'], strict=True) + + # 003 real-world image sr + elif args.task == 'real_sr': + if not args.large_model: + # use 'nearest+conv' to avoid block artifacts + model = net(upscale=4, in_chans=3, img_size=64, window_size=8, + img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], + mlp_ratio=2, upsampler='nearest+conv', resi_connection='1conv') + else: + # larger model size; use '3conv' to save parameters and memory; use ema for GAN training + model = net(upscale=4, in_chans=3, img_size=64, window_size=8, + img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=248, + num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], + mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv') + model.load_state_dict(torch.load(args.model_path)['params_ema'], strict=True) # + + # 004 grayscale image denoising + elif args.task == 'gray_dn': + model = net(upscale=1, in_chans=1, img_size=128, window_size=8, + img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], + mlp_ratio=2, upsampler='', resi_connection='1conv') + model.load_state_dict(torch.load(args.model_path)['params'], strict=True) + + # 005 color image denoising + elif args.task == 'color_dn': + model = net(upscale=1, in_chans=3, img_size=128, window_size=8, + img_range=1., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], + mlp_ratio=2, upsampler='', resi_connection='1conv') + model.load_state_dict(torch.load(args.model_path)['params'], strict=True) + + # 006 JPEG compression artifact reduction + # use window_size=7 because JPEG encoding uses 8x8; use img_range=255 because it's sligtly better than 1 + elif args.task == 'jpeg_car': + model = net(upscale=1, in_chans=1, img_size=126, window_size=7, + img_range=255., depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], + mlp_ratio=2, upsampler='', resi_connection='1conv') + model.load_state_dict(torch.load(args.model_path)['params'], strict=True) + + return model + + +def setup(args): + # 001 classical image sr/ 002 lightweight image sr + if args.task in ['classical_sr', 'lightweight_sr']: + save_dir = f'results/swinir_{args.task}_x{args.scale}' + folder = args.folder_gt + border = args.scale + window_size = 8 + + # 003 real-world image sr + elif args.task in ['real_sr']: + save_dir = f'results/swinir_{args.task}_x{args.scale}' + folder = args.folder_lq + border = 0 + window_size = 8 + + # 004 grayscale image denoising/ 005 color image denoising + elif args.task in ['gray_dn', 'color_dn']: + save_dir = f'results/swinir_{args.task}_noise{args.noise}' + folder = args.folder_gt + border = 0 + window_size = 8 + + # 006 JPEG compression artifact reduction + elif args.task in ['jpeg_car']: + save_dir = f'results/swinir_{args.task}_jpeg{args.jpeg}' + folder = args.folder_gt + border = 0 + window_size = 7 + + return folder, save_dir, border, window_size + + +def get_image_pair(args, path): + (imgname, imgext) = os.path.splitext(os.path.basename(path)) + + # 001 classical image sr/ 002 lightweight image sr (load lq-gt image pairs) + if args.task in ['classical_sr', 'lightweight_sr']: + img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255. + img_lq = cv2.imread(f'{args.folder_lq}/{imgname}x{args.scale}{imgext}', cv2.IMREAD_COLOR).astype( + np.float32) / 255. + + # 003 real-world image sr (load lq image only) + elif args.task in ['real_sr']: + img_gt = None + img_lq = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255. + + # 004 grayscale image denoising (load gt image and generate lq image on-the-fly) + elif args.task in ['gray_dn']: + img_gt = cv2.imread(path, cv2.IMREAD_GRAYSCALE).astype(np.float32) / 255. + np.random.seed(seed=0) + img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape) + img_gt = np.expand_dims(img_gt, axis=2) + img_lq = np.expand_dims(img_lq, axis=2) + + # 005 color image denoising (load gt image and generate lq image on-the-fly) + elif args.task in ['color_dn']: + img_gt = cv2.imread(path, cv2.IMREAD_COLOR).astype(np.float32) / 255. + np.random.seed(seed=0) + img_lq = img_gt + np.random.normal(0, args.noise / 255., img_gt.shape) + + # 006 JPEG compression artifact reduction (load gt image and generate lq image on-the-fly) + elif args.task in ['jpeg_car']: + img_gt = cv2.imread(path, cv2.IMREAD_UNCHANGED) + if img_gt.ndim != 2: + img_gt = util.rgb2ycbcr(cv2.cvtColor(img_gt, cv2.COLOR_BGR2RGB), y_only=True) + result, encimg = cv2.imencode('.jpg', img_gt, [int(cv2.IMWRITE_JPEG_QUALITY), args.jpeg]) + img_lq = cv2.imdecode(encimg, 0) + img_gt = np.expand_dims(img_gt, axis=2).astype(np.float32) / 255. + img_lq = np.expand_dims(img_lq, axis=2).astype(np.float32) / 255. + + return imgname, img_lq, img_gt + + +if __name__ == '__main__': + main() diff --git a/model_zoo/README.md b/model_zoo/README.md new file mode 100644 index 000000000..a9e5c2a4b --- /dev/null +++ b/model_zoo/README.md @@ -0,0 +1,3 @@ +model_zoo + +The SwinIR models are available at [here](https://github.com/JingyunLiang/SwinIR/releases/tag/v0.0). \ No newline at end of file diff --git a/models/network_swinir.py b/models/network_swinir.py new file mode 100644 index 000000000..c69d16a50 --- /dev/null +++ b/models/network_swinir.py @@ -0,0 +1,854 @@ +# ----------------------------------------------------------------------------------- +# SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257 +# Originally Written by Ze Liu, Modified by Jingyun Liang. +# ----------------------------------------------------------------------------------- + +import math +import torch +import torch.nn as nn +import torch.utils.checkpoint as checkpoint +from timm.models.layers import DropPath, to_2tuple, trunc_normal_ + + +class Mlp(nn.Module): + def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): + super().__init__() + out_features = out_features or in_features + hidden_features = hidden_features or in_features + self.fc1 = nn.Linear(in_features, hidden_features) + self.act = act_layer() + self.fc2 = nn.Linear(hidden_features, out_features) + self.drop = nn.Dropout(drop) + + def forward(self, x): + x = self.fc1(x) + x = self.act(x) + x = self.drop(x) + x = self.fc2(x) + x = self.drop(x) + return x + + +def window_partition(x, window_size): + """ + Args: + x: (B, H, W, C) + window_size (int): window size + + Returns: + windows: (num_windows*B, window_size, window_size, C) + """ + B, H, W, C = x.shape + x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) + windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) + return windows + + +def window_reverse(windows, window_size, H, W): + """ + Args: + windows: (num_windows*B, window_size, window_size, C) + window_size (int): Window size + H (int): Height of image + W (int): Width of image + + Returns: + x: (B, H, W, C) + """ + B = int(windows.shape[0] / (H * W / window_size / window_size)) + x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) + x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) + return x + + +class WindowAttention(nn.Module): + r""" Window based multi-head self attention (W-MSA) module with relative position bias. + It supports both of shifted and non-shifted window. + + Args: + dim (int): Number of input channels. + window_size (tuple[int]): The height and width of the window. + num_heads (int): Number of attention heads. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set + attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 + proj_drop (float, optional): Dropout ratio of output. Default: 0.0 + """ + + def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): + + super().__init__() + self.dim = dim + self.window_size = window_size # Wh, Ww + self.num_heads = num_heads + head_dim = dim // num_heads + self.scale = qk_scale or head_dim ** -0.5 + + # define a parameter table of relative position bias + self.relative_position_bias_table = nn.Parameter( + torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH + + # get pair-wise relative position index for each token inside the window + coords_h = torch.arange(self.window_size[0]) + coords_w = torch.arange(self.window_size[1]) + coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww + coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww + relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww + relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 + relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 + relative_coords[:, :, 1] += self.window_size[1] - 1 + relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 + relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww + self.register_buffer("relative_position_index", relative_position_index) + + self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) + self.attn_drop = nn.Dropout(attn_drop) + self.proj = nn.Linear(dim, dim) + + self.proj_drop = nn.Dropout(proj_drop) + + trunc_normal_(self.relative_position_bias_table, std=.02) + self.softmax = nn.Softmax(dim=-1) + + def forward(self, x, mask=None): + """ + Args: + x: input features with shape of (num_windows*B, N, C) + mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None + """ + B_, N, C = x.shape + qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) + q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) + + q = q * self.scale + attn = (q @ k.transpose(-2, -1)) + + relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( + self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH + relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww + attn = attn + relative_position_bias.unsqueeze(0) + + if mask is not None: + nW = mask.shape[0] + attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) + attn = attn.view(-1, self.num_heads, N, N) + attn = self.softmax(attn) + else: + attn = self.softmax(attn) + + attn = self.attn_drop(attn) + + x = (attn @ v).transpose(1, 2).reshape(B_, N, C) + x = self.proj(x) + x = self.proj_drop(x) + return x + + def extra_repr(self) -> str: + return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' + + def flops(self, N): + # calculate flops for 1 window with token length of N + flops = 0 + # qkv = self.qkv(x) + flops += N * self.dim * 3 * self.dim + # attn = (q @ k.transpose(-2, -1)) + flops += self.num_heads * N * (self.dim // self.num_heads) * N + # x = (attn @ v) + flops += self.num_heads * N * N * (self.dim // self.num_heads) + # x = self.proj(x) + flops += N * self.dim * self.dim + return flops + + +class SwinTransformerBlock(nn.Module): + r""" Swin Transformer Block. + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resulotion. + num_heads (int): Number of attention heads. + window_size (int): Window size. + shift_size (int): Shift size for SW-MSA. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float, optional): Stochastic depth rate. Default: 0.0 + act_layer (nn.Module, optional): Activation layer. Default: nn.GELU + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, + mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., + act_layer=nn.GELU, norm_layer=nn.LayerNorm): + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.num_heads = num_heads + self.window_size = window_size + self.shift_size = shift_size + self.mlp_ratio = mlp_ratio + if min(self.input_resolution) <= self.window_size: + # if window size is larger than input resolution, we don't partition windows + self.shift_size = 0 + self.window_size = min(self.input_resolution) + assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" + + self.norm1 = norm_layer(dim) + self.attn = WindowAttention( + dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, + qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) + + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.norm2 = norm_layer(dim) + mlp_hidden_dim = int(dim * mlp_ratio) + self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) + + if self.shift_size > 0: + attn_mask = self.calculate_mask(self.input_resolution) + else: + attn_mask = None + + self.register_buffer("attn_mask", attn_mask) + + def calculate_mask(self, x_size): + # calculate attention mask for SW-MSA + H, W = x_size + img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 + h_slices = (slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None)) + w_slices = (slice(0, -self.window_size), + slice(-self.window_size, -self.shift_size), + slice(-self.shift_size, None)) + cnt = 0 + for h in h_slices: + for w in w_slices: + img_mask[:, h, w, :] = cnt + cnt += 1 + + mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 + mask_windows = mask_windows.view(-1, self.window_size * self.window_size) + attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) + attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) + + return attn_mask + + def forward(self, x, x_size): + H, W = x_size + B, L, C = x.shape + # assert L == H * W, "input feature has wrong size" + + shortcut = x + x = self.norm1(x) + x = x.view(B, H, W, C) + + # cyclic shift + if self.shift_size > 0: + shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) + else: + shifted_x = x + + # partition windows + x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C + x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C + + # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size + if self.input_resolution == x_size: + attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C + else: + attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device)) + + # merge windows + attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) + shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C + + # reverse cyclic shift + if self.shift_size > 0: + x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) + else: + x = shifted_x + x = x.view(B, H * W, C) + + # FFN + x = shortcut + self.drop_path(x) + x = x + self.drop_path(self.mlp(self.norm2(x))) + + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ + f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" + + def flops(self): + flops = 0 + H, W = self.input_resolution + # norm1 + flops += self.dim * H * W + # W-MSA/SW-MSA + nW = H * W / self.window_size / self.window_size + flops += nW * self.attn.flops(self.window_size * self.window_size) + # mlp + flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio + # norm2 + flops += self.dim * H * W + return flops + + +class PatchMerging(nn.Module): + r""" Patch Merging Layer. + + Args: + input_resolution (tuple[int]): Resolution of input feature. + dim (int): Number of input channels. + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + """ + + def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): + super().__init__() + self.input_resolution = input_resolution + self.dim = dim + self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) + self.norm = norm_layer(4 * dim) + + def forward(self, x): + """ + x: B, H*W, C + """ + H, W = self.input_resolution + B, L, C = x.shape + assert L == H * W, "input feature has wrong size" + assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." + + x = x.view(B, H, W, C) + + x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C + x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C + x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C + x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C + x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C + x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C + + x = self.norm(x) + x = self.reduction(x) + + return x + + def extra_repr(self) -> str: + return f"input_resolution={self.input_resolution}, dim={self.dim}" + + def flops(self): + H, W = self.input_resolution + flops = H * W * self.dim + flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim + return flops + + +class BasicLayer(nn.Module): + """ A basic Swin Transformer layer for one stage. + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + """ + + def __init__(self, dim, input_resolution, depth, num_heads, window_size, + mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., + drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): + + super().__init__() + self.dim = dim + self.input_resolution = input_resolution + self.depth = depth + self.use_checkpoint = use_checkpoint + + # build blocks + self.blocks = nn.ModuleList([ + SwinTransformerBlock(dim=dim, input_resolution=input_resolution, + num_heads=num_heads, window_size=window_size, + shift_size=0 if (i % 2 == 0) else window_size // 2, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop, attn_drop=attn_drop, + drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, + norm_layer=norm_layer) + for i in range(depth)]) + + # patch merging layer + if downsample is not None: + self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) + else: + self.downsample = None + + def forward(self, x, x_size): + for blk in self.blocks: + if self.use_checkpoint: + x = checkpoint.checkpoint(blk, x) + else: + x = blk(x, x_size) + if self.downsample is not None: + x = self.downsample(x) + return x + + def extra_repr(self) -> str: + return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" + + def flops(self): + flops = 0 + for blk in self.blocks: + flops += blk.flops() + if self.downsample is not None: + flops += self.downsample.flops() + return flops + + +class RSTB(nn.Module): + """Residual Swin Transformer Block (RSTB). + + Args: + dim (int): Number of input channels. + input_resolution (tuple[int]): Input resolution. + depth (int): Number of blocks. + num_heads (int): Number of attention heads. + window_size (int): Local window size. + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. + qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. + drop (float, optional): Dropout rate. Default: 0.0 + attn_drop (float, optional): Attention dropout rate. Default: 0.0 + drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 + norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm + downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. + img_size: Input image size. + patch_size: Patch size. + resi_connection: The convolutional block before residual connection. + """ + + def __init__(self, dim, input_resolution, depth, num_heads, window_size, + mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., + drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, + img_size=224, patch_size=4, resi_connection='1conv'): + super(RSTB, self).__init__() + + self.dim = dim + self.input_resolution = input_resolution + + self.residual_group = BasicLayer(dim=dim, + input_resolution=input_resolution, + depth=depth, + num_heads=num_heads, + window_size=window_size, + mlp_ratio=mlp_ratio, + qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop, attn_drop=attn_drop, + drop_path=drop_path, + norm_layer=norm_layer, + downsample=downsample, + use_checkpoint=use_checkpoint) + + if resi_connection == '1conv': + self.conv = nn.Conv2d(dim, dim, 3, 1, 1) + elif resi_connection == '3conv': + # to save parameters and memory + self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(dim // 4, dim, 3, 1, 1)) + + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, + norm_layer=None) + + self.patch_unembed = PatchUnEmbed( + img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, + norm_layer=None) + + def forward(self, x, x_size): + return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x + + def flops(self): + flops = 0 + flops += self.residual_group.flops() + H, W = self.input_resolution + flops += H * W * self.dim * self.dim * 9 + flops += self.patch_embed.flops() + flops += self.patch_unembed.flops() + + return flops + + +class PatchEmbed(nn.Module): + r""" Image to Patch Embedding + + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + if norm_layer is not None: + self.norm = norm_layer(embed_dim) + else: + self.norm = None + + def forward(self, x): + x = x.flatten(2).transpose(1, 2) # B Ph*Pw C + if self.norm is not None: + x = self.norm(x) + return x + + def flops(self): + flops = 0 + H, W = self.img_size + if self.norm is not None: + flops += H * W * self.embed_dim + return flops + + +class PatchUnEmbed(nn.Module): + r""" Image to Patch Unembedding + + Args: + img_size (int): Image size. Default: 224. + patch_size (int): Patch token size. Default: 4. + in_chans (int): Number of input image channels. Default: 3. + embed_dim (int): Number of linear projection output channels. Default: 96. + norm_layer (nn.Module, optional): Normalization layer. Default: None + """ + + def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): + super().__init__() + img_size = to_2tuple(img_size) + patch_size = to_2tuple(patch_size) + patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] + self.img_size = img_size + self.patch_size = patch_size + self.patches_resolution = patches_resolution + self.num_patches = patches_resolution[0] * patches_resolution[1] + + self.in_chans = in_chans + self.embed_dim = embed_dim + + def forward(self, x, x_size): + B, HW, C = x.shape + x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C + return x + + def flops(self): + flops = 0 + return flops + + +class Upsample(nn.Sequential): + """Upsample module. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + """ + + def __init__(self, scale, num_feat): + m = [] + if (scale & (scale - 1)) == 0: # scale = 2^n + for _ in range(int(math.log(scale, 2))): + m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(2)) + elif scale == 3: + m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) + m.append(nn.PixelShuffle(3)) + else: + raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.') + super(Upsample, self).__init__(*m) + + +class UpsampleOneStep(nn.Sequential): + """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) + Used in lightweight SR to save parameters. + + Args: + scale (int): Scale factor. Supported scales: 2^n and 3. + num_feat (int): Channel number of intermediate features. + + """ + + def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): + self.num_feat = num_feat + self.input_resolution = input_resolution + m = [] + m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1)) + m.append(nn.PixelShuffle(scale)) + super(UpsampleOneStep, self).__init__(*m) + + def flops(self): + H, W = self.input_resolution + flops = H * W * self.num_feat * 3 * 9 + return flops + + +class SwinIR(nn.Module): + r""" SwinIR + A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer. + + Args: + img_size (int | tuple(int)): Input image size. Default 64 + patch_size (int | tuple(int)): Patch size. Default: 1 + in_chans (int): Number of input image channels. Default: 3 + embed_dim (int): Patch embedding dimension. Default: 96 + depths (tuple(int)): Depth of each Swin Transformer layer. + num_heads (tuple(int)): Number of attention heads in different layers. + window_size (int): Window size. Default: 7 + mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 + qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True + qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None + drop_rate (float): Dropout rate. Default: 0 + attn_drop_rate (float): Attention dropout rate. Default: 0 + drop_path_rate (float): Stochastic depth rate. Default: 0.1 + norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. + ape (bool): If True, add absolute position embedding to the patch embedding. Default: False + patch_norm (bool): If True, add normalization after patch embedding. Default: True + use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False + upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction + img_range: Image range. 1. or 255. + upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None + resi_connection: The convolutional block before residual connection. '1conv'/'3conv' + """ + + def __init__(self, img_size=64, patch_size=1, in_chans=3, + embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6], + window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, + drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, + norm_layer=nn.LayerNorm, ape=False, patch_norm=True, + use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv', + **kwargs): + super(SwinIR, self).__init__() + num_in_ch = in_chans + num_out_ch = in_chans + num_feat = 64 + self.img_range = img_range + if in_chans == 3: + rgb_mean = (0.4488, 0.4371, 0.4040) + self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) + else: + self.mean = torch.zeros(1, 1, 1, 1) + self.upscale = upscale + self.upsampler = upsampler + + ##################################################################################################### + ################################### 1, shallow feature extraction ################################### + self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) + + ##################################################################################################### + ################################### 2, deep feature extraction ###################################### + self.num_layers = len(depths) + self.embed_dim = embed_dim + self.ape = ape + self.patch_norm = patch_norm + self.num_features = embed_dim + self.mlp_ratio = mlp_ratio + + # split image into non-overlapping patches + self.patch_embed = PatchEmbed( + img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None) + num_patches = self.patch_embed.num_patches + patches_resolution = self.patch_embed.patches_resolution + self.patches_resolution = patches_resolution + + # merge non-overlapping patches into image + self.patch_unembed = PatchUnEmbed( + img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, + norm_layer=norm_layer if self.patch_norm else None) + + # absolute position embedding + if self.ape: + self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) + trunc_normal_(self.absolute_pos_embed, std=.02) + + self.pos_drop = nn.Dropout(p=drop_rate) + + # stochastic depth + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule + + # build Residual Swin Transformer blocks (RSTB) + self.layers = nn.ModuleList() + for i_layer in range(self.num_layers): + layer = RSTB(dim=embed_dim, + input_resolution=(patches_resolution[0], + patches_resolution[1]), + depth=depths[i_layer], + num_heads=num_heads[i_layer], + window_size=window_size, + mlp_ratio=self.mlp_ratio, + qkv_bias=qkv_bias, qk_scale=qk_scale, + drop=drop_rate, attn_drop=attn_drop_rate, + drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results + norm_layer=norm_layer, + downsample=None, + use_checkpoint=use_checkpoint, + img_size=img_size, + patch_size=patch_size, + resi_connection=resi_connection + + ) + self.layers.append(layer) + self.norm = norm_layer(self.num_features) + + # build the last conv layer in deep feature extraction + if resi_connection == '1conv': + self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) + elif resi_connection == '3conv': + # to save parameters and memory + self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), + nn.LeakyReLU(negative_slope=0.2, inplace=True), + nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1)) + + ##################################################################################################### + ################################ 3, high quality image reconstruction ################################ + if self.upsampler == 'pixelshuffle': + # for classical SR + self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.upsample = Upsample(upscale, num_feat) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + elif self.upsampler == 'pixelshuffledirect': + # for lightweight SR (to save parameters) + self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch, + (patches_resolution[0], patches_resolution[1])) + elif self.upsampler == 'nearest+conv': + # for real-world SR (less artifacts) + assert self.upscale == 4, 'only support x4 now.' + self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1), + nn.LeakyReLU(inplace=True)) + self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) + self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) + self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) + else: + # for image denoising and JPEG compression artifact reduction + self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) + + self.apply(self._init_weights) + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if isinstance(m, nn.Linear) and m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) + + @torch.jit.ignore + def no_weight_decay(self): + return {'absolute_pos_embed'} + + @torch.jit.ignore + def no_weight_decay_keywords(self): + return {'relative_position_bias_table'} + + def forward_features(self, x): + x_size = (x.shape[2], x.shape[3]) + x = self.patch_embed(x) + if self.ape: + x = x + self.absolute_pos_embed + x = self.pos_drop(x) + + for layer in self.layers: + x = layer(x, x_size) + + x = self.norm(x) # B L C + x = self.patch_unembed(x, x_size) + + return x + + def forward(self, x): + self.mean = self.mean.type_as(x) + x = (x - self.mean) * self.img_range + + if self.upsampler == 'pixelshuffle': + # for classical SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.conv_last(self.upsample(x)) + elif self.upsampler == 'pixelshuffledirect': + # for lightweight SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.upsample(x) + elif self.upsampler == 'nearest+conv': + # for real-world SR + x = self.conv_first(x) + x = self.conv_after_body(self.forward_features(x)) + x + x = self.conv_before_upsample(x) + x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) + x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest'))) + x = self.conv_last(self.lrelu(self.conv_hr(x))) + else: + # for image denoising and JPEG compression artifact reduction + x_first = self.conv_first(x) + res = self.conv_after_body(self.forward_features(x_first)) + x_first + x = x + self.conv_last(res) + + x = x / self.img_range + self.mean + + return x + + def flops(self): + flops = 0 + H, W = self.patches_resolution + flops += H * W * 3 * self.embed_dim * 9 + flops += self.patch_embed.flops() + for i, layer in enumerate(self.layers): + flops += layer.flops() + flops += H * W * 3 * self.embed_dim * self.embed_dim + flops += self.upsample.flops() + return flops + + +if __name__ == '__main__': + upscale = 4 + window_size = 8 + height = (1024 // upscale // window_size + 1) * window_size + width = (720 // upscale // window_size + 1) * window_size + model = SwinIR(upscale=2, img_size=(height, width), + window_size=window_size, img_range=1., depths=[6, 6, 6, 6], + embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect') + print(model) + print(height, width, model.flops() / 1e9) + + x = torch.randn((1, 3, height, width)) + x = model(x) + print(x.shape) diff --git a/testsets/McMaster/1.tif b/testsets/McMaster/1.tif new file mode 100644 index 000000000..5bca1b4b1 Binary files /dev/null and b/testsets/McMaster/1.tif differ diff --git a/testsets/McMaster/10.tif b/testsets/McMaster/10.tif new file mode 100644 index 000000000..ff2ec209a Binary files /dev/null and b/testsets/McMaster/10.tif differ diff --git a/testsets/McMaster/11.tif b/testsets/McMaster/11.tif new file mode 100644 index 000000000..1b9fdaf60 Binary files /dev/null and b/testsets/McMaster/11.tif differ diff --git a/testsets/McMaster/12.tif b/testsets/McMaster/12.tif new file mode 100644 index 000000000..0538086d2 Binary files /dev/null and b/testsets/McMaster/12.tif differ diff --git a/testsets/McMaster/13.tif b/testsets/McMaster/13.tif new file mode 100644 index 000000000..d0e71315f Binary files /dev/null and b/testsets/McMaster/13.tif differ diff --git a/testsets/McMaster/14.tif b/testsets/McMaster/14.tif new file mode 100644 index 000000000..8b6373dfe Binary files /dev/null and b/testsets/McMaster/14.tif differ diff --git a/testsets/McMaster/15.tif b/testsets/McMaster/15.tif new file mode 100644 index 000000000..a440fd59d Binary files /dev/null and b/testsets/McMaster/15.tif differ diff --git a/testsets/McMaster/16.tif b/testsets/McMaster/16.tif new file mode 100644 index 000000000..0be20a110 Binary files /dev/null and b/testsets/McMaster/16.tif differ diff --git a/testsets/McMaster/17.tif b/testsets/McMaster/17.tif new file mode 100644 index 000000000..a511b63c6 Binary files /dev/null and b/testsets/McMaster/17.tif differ diff --git a/testsets/McMaster/18.tif b/testsets/McMaster/18.tif new file mode 100644 index 000000000..150dba194 Binary files /dev/null and b/testsets/McMaster/18.tif differ diff --git a/testsets/McMaster/2.tif b/testsets/McMaster/2.tif new file mode 100644 index 000000000..b3bcca636 Binary files /dev/null and b/testsets/McMaster/2.tif differ diff --git a/testsets/McMaster/3.tif b/testsets/McMaster/3.tif new file mode 100644 index 000000000..3bde17ccb Binary files /dev/null and b/testsets/McMaster/3.tif differ diff --git a/testsets/McMaster/4.tif b/testsets/McMaster/4.tif new file mode 100644 index 000000000..ca4a94cdc Binary files /dev/null and b/testsets/McMaster/4.tif differ diff --git a/testsets/McMaster/5.tif b/testsets/McMaster/5.tif new file mode 100644 index 000000000..da527c1d6 Binary files /dev/null and b/testsets/McMaster/5.tif differ diff --git a/testsets/McMaster/6.tif b/testsets/McMaster/6.tif new file mode 100644 index 000000000..ccc83682e Binary files /dev/null and b/testsets/McMaster/6.tif differ diff --git a/testsets/McMaster/7.tif b/testsets/McMaster/7.tif new file mode 100644 index 000000000..a53de4c2d Binary files /dev/null and b/testsets/McMaster/7.tif differ diff --git a/testsets/McMaster/8.tif b/testsets/McMaster/8.tif new file mode 100644 index 000000000..9265a9f3e Binary files /dev/null and b/testsets/McMaster/8.tif differ diff --git a/testsets/McMaster/9.tif b/testsets/McMaster/9.tif new file mode 100644 index 000000000..42855b103 Binary files /dev/null and b/testsets/McMaster/9.tif differ diff --git a/testsets/RealSRSet+5images/00003.png b/testsets/RealSRSet+5images/00003.png new file mode 100644 index 000000000..00cad23ad Binary files /dev/null and b/testsets/RealSRSet+5images/00003.png differ diff --git a/testsets/RealSRSet+5images/0014.jpg b/testsets/RealSRSet+5images/0014.jpg new file mode 100644 index 000000000..f59554fe3 Binary files /dev/null and b/testsets/RealSRSet+5images/0014.jpg differ diff --git a/testsets/RealSRSet+5images/0030.jpg b/testsets/RealSRSet+5images/0030.jpg new file mode 100644 index 000000000..61868926a Binary files /dev/null and b/testsets/RealSRSet+5images/0030.jpg differ diff --git a/testsets/RealSRSet+5images/ADE_val_00000114.jpg b/testsets/RealSRSet+5images/ADE_val_00000114.jpg new file mode 100644 index 000000000..b4d9c9067 Binary files /dev/null and b/testsets/RealSRSet+5images/ADE_val_00000114.jpg differ diff --git a/testsets/RealSRSet+5images/Lincoln.png b/testsets/RealSRSet+5images/Lincoln.png new file mode 100644 index 000000000..de6cc4862 Binary files /dev/null and b/testsets/RealSRSet+5images/Lincoln.png differ diff --git a/testsets/RealSRSet+5images/OST_009.png b/testsets/RealSRSet+5images/OST_009.png new file mode 100644 index 000000000..10bbc831a Binary files /dev/null and b/testsets/RealSRSet+5images/OST_009.png differ diff --git a/testsets/RealSRSet+5images/building.png b/testsets/RealSRSet+5images/building.png new file mode 100644 index 000000000..8033e8644 Binary files /dev/null and b/testsets/RealSRSet+5images/building.png differ diff --git a/testsets/RealSRSet+5images/butterfly.png b/testsets/RealSRSet+5images/butterfly.png new file mode 100644 index 000000000..dc486627a Binary files /dev/null and b/testsets/RealSRSet+5images/butterfly.png differ diff --git a/testsets/RealSRSet+5images/butterfly2.png b/testsets/RealSRSet+5images/butterfly2.png new file mode 100644 index 000000000..f598ebd03 Binary files /dev/null and b/testsets/RealSRSet+5images/butterfly2.png differ diff --git a/testsets/RealSRSet+5images/chip.png b/testsets/RealSRSet+5images/chip.png new file mode 100644 index 000000000..f320bb7ac Binary files /dev/null and b/testsets/RealSRSet+5images/chip.png differ diff --git a/testsets/RealSRSet+5images/comic1.png b/testsets/RealSRSet+5images/comic1.png new file mode 100644 index 000000000..d7481cccf Binary files /dev/null and b/testsets/RealSRSet+5images/comic1.png differ diff --git a/testsets/RealSRSet+5images/comic2.png b/testsets/RealSRSet+5images/comic2.png new file mode 100644 index 000000000..d4357986d Binary files /dev/null and b/testsets/RealSRSet+5images/comic2.png differ diff --git a/testsets/RealSRSet+5images/comic3.png b/testsets/RealSRSet+5images/comic3.png new file mode 100644 index 000000000..951c3d120 Binary files /dev/null and b/testsets/RealSRSet+5images/comic3.png differ diff --git a/testsets/RealSRSet+5images/computer.png b/testsets/RealSRSet+5images/computer.png new file mode 100644 index 000000000..d1a8097a1 Binary files /dev/null and b/testsets/RealSRSet+5images/computer.png differ diff --git a/testsets/RealSRSet+5images/dog.png b/testsets/RealSRSet+5images/dog.png new file mode 100644 index 000000000..1b5ae679e Binary files /dev/null and b/testsets/RealSRSet+5images/dog.png differ diff --git a/testsets/RealSRSet+5images/dped_crop00061.png b/testsets/RealSRSet+5images/dped_crop00061.png new file mode 100644 index 000000000..028cd2fc8 Binary files /dev/null and b/testsets/RealSRSet+5images/dped_crop00061.png differ diff --git a/testsets/RealSRSet+5images/foreman.png b/testsets/RealSRSet+5images/foreman.png new file mode 100644 index 000000000..cf6a026c8 Binary files /dev/null and b/testsets/RealSRSet+5images/foreman.png differ diff --git a/testsets/RealSRSet+5images/frog.png b/testsets/RealSRSet+5images/frog.png new file mode 100644 index 000000000..35471d4cd Binary files /dev/null and b/testsets/RealSRSet+5images/frog.png differ diff --git a/testsets/RealSRSet+5images/oldphoto2.png b/testsets/RealSRSet+5images/oldphoto2.png new file mode 100644 index 000000000..1669ded98 Binary files /dev/null and b/testsets/RealSRSet+5images/oldphoto2.png differ diff --git a/testsets/RealSRSet+5images/oldphoto3.png b/testsets/RealSRSet+5images/oldphoto3.png new file mode 100644 index 000000000..900ae605d Binary files /dev/null and b/testsets/RealSRSet+5images/oldphoto3.png differ diff --git a/testsets/RealSRSet+5images/oldphoto6.png b/testsets/RealSRSet+5images/oldphoto6.png new file mode 100644 index 000000000..8d0b76d9f Binary files /dev/null and b/testsets/RealSRSet+5images/oldphoto6.png differ diff --git a/testsets/RealSRSet+5images/painting.png b/testsets/RealSRSet+5images/painting.png new file mode 100644 index 000000000..12f3d5040 Binary files /dev/null and b/testsets/RealSRSet+5images/painting.png differ diff --git a/testsets/RealSRSet+5images/pattern.png b/testsets/RealSRSet+5images/pattern.png new file mode 100644 index 000000000..76a7348bc Binary files /dev/null and b/testsets/RealSRSet+5images/pattern.png differ diff --git a/testsets/RealSRSet+5images/ppt3.png b/testsets/RealSRSet+5images/ppt3.png new file mode 100644 index 000000000..60ba3256a Binary files /dev/null and b/testsets/RealSRSet+5images/ppt3.png differ diff --git a/testsets/RealSRSet+5images/tiger.png b/testsets/RealSRSet+5images/tiger.png new file mode 100644 index 000000000..eba29bf3a Binary files /dev/null and b/testsets/RealSRSet+5images/tiger.png differ diff --git a/testsets/Set12/01.png b/testsets/Set12/01.png new file mode 100644 index 000000000..795f98729 Binary files /dev/null and b/testsets/Set12/01.png differ diff --git a/testsets/Set12/02.png b/testsets/Set12/02.png new file mode 100644 index 000000000..ecc66936e Binary files /dev/null and b/testsets/Set12/02.png differ diff --git a/testsets/Set12/03.png b/testsets/Set12/03.png new file mode 100644 index 000000000..bc20886a2 Binary files /dev/null and b/testsets/Set12/03.png differ diff --git a/testsets/Set12/04.png b/testsets/Set12/04.png new file mode 100644 index 000000000..2a80fdb3d Binary files /dev/null and b/testsets/Set12/04.png differ diff --git a/testsets/Set12/05.png b/testsets/Set12/05.png new file mode 100644 index 000000000..ece8444da Binary files /dev/null and b/testsets/Set12/05.png differ diff --git a/testsets/Set12/06.png b/testsets/Set12/06.png new file mode 100644 index 000000000..72a8a6be1 Binary files /dev/null and b/testsets/Set12/06.png differ diff --git a/testsets/Set12/07.png b/testsets/Set12/07.png new file mode 100644 index 000000000..ea9f17d90 Binary files /dev/null and b/testsets/Set12/07.png differ diff --git a/testsets/Set12/08.png b/testsets/Set12/08.png new file mode 100644 index 000000000..df777bd83 Binary files /dev/null and b/testsets/Set12/08.png differ diff --git a/testsets/Set12/09.png b/testsets/Set12/09.png new file mode 100644 index 000000000..3b6a71bc2 Binary files /dev/null and b/testsets/Set12/09.png differ diff --git a/testsets/Set12/10.png b/testsets/Set12/10.png new file mode 100644 index 000000000..931cfa1f6 Binary files /dev/null and b/testsets/Set12/10.png differ diff --git a/testsets/Set12/11.png b/testsets/Set12/11.png new file mode 100644 index 000000000..d65b82cee Binary files /dev/null and b/testsets/Set12/11.png differ diff --git a/testsets/Set12/12.png b/testsets/Set12/12.png new file mode 100644 index 000000000..b9019ad32 Binary files /dev/null and b/testsets/Set12/12.png differ diff --git a/testsets/Set5/HR/baby.png b/testsets/Set5/HR/baby.png new file mode 100644 index 000000000..d5b91f6b0 Binary files /dev/null and b/testsets/Set5/HR/baby.png differ diff --git a/testsets/Set5/HR/bird.png b/testsets/Set5/HR/bird.png new file mode 100644 index 000000000..13bf5e1bc Binary files /dev/null and b/testsets/Set5/HR/bird.png differ diff --git a/testsets/Set5/HR/butterfly.png b/testsets/Set5/HR/butterfly.png new file mode 100644 index 000000000..f6acb9a57 Binary files /dev/null and b/testsets/Set5/HR/butterfly.png differ diff --git a/testsets/Set5/HR/head.png b/testsets/Set5/HR/head.png new file mode 100644 index 000000000..c14b1fdbc Binary files /dev/null and b/testsets/Set5/HR/head.png differ diff --git a/testsets/Set5/HR/woman.png b/testsets/Set5/HR/woman.png new file mode 100644 index 000000000..e6d553825 Binary files /dev/null and b/testsets/Set5/HR/woman.png differ diff --git a/testsets/Set5/LR_bicubic/X2/babyx2.png b/testsets/Set5/LR_bicubic/X2/babyx2.png new file mode 100644 index 000000000..0650d46ff Binary files /dev/null and b/testsets/Set5/LR_bicubic/X2/babyx2.png differ diff --git a/testsets/Set5/LR_bicubic/X2/birdx2.png b/testsets/Set5/LR_bicubic/X2/birdx2.png new file mode 100644 index 000000000..cd5603d65 Binary files /dev/null and b/testsets/Set5/LR_bicubic/X2/birdx2.png differ diff --git a/testsets/Set5/LR_bicubic/X2/butterflyx2.png b/testsets/Set5/LR_bicubic/X2/butterflyx2.png new file mode 100644 index 000000000..a9557514b Binary files /dev/null and b/testsets/Set5/LR_bicubic/X2/butterflyx2.png differ diff --git a/testsets/Set5/LR_bicubic/X2/headx2.png b/testsets/Set5/LR_bicubic/X2/headx2.png new file mode 100644 index 000000000..26a13e279 Binary files /dev/null and b/testsets/Set5/LR_bicubic/X2/headx2.png differ diff --git a/testsets/Set5/LR_bicubic/X2/womanx2.png b/testsets/Set5/LR_bicubic/X2/womanx2.png new file mode 100644 index 000000000..be24dc1e4 Binary files /dev/null and b/testsets/Set5/LR_bicubic/X2/womanx2.png differ diff --git a/testsets/Set5/LR_bicubic/X3/babyx3.png b/testsets/Set5/LR_bicubic/X3/babyx3.png new file mode 100644 index 000000000..e6bf244e4 Binary files /dev/null and b/testsets/Set5/LR_bicubic/X3/babyx3.png differ diff --git a/testsets/Set5/LR_bicubic/X3/birdx3.png b/testsets/Set5/LR_bicubic/X3/birdx3.png new file mode 100644 index 000000000..d449ade59 Binary files /dev/null and b/testsets/Set5/LR_bicubic/X3/birdx3.png differ diff --git a/testsets/Set5/LR_bicubic/X3/butterflyx3.png b/testsets/Set5/LR_bicubic/X3/butterflyx3.png new file mode 100644 index 000000000..ecbfda94e Binary files /dev/null and b/testsets/Set5/LR_bicubic/X3/butterflyx3.png differ diff --git a/testsets/Set5/LR_bicubic/X3/headx3.png b/testsets/Set5/LR_bicubic/X3/headx3.png new file mode 100644 index 000000000..8538d141f Binary files /dev/null and b/testsets/Set5/LR_bicubic/X3/headx3.png differ diff --git a/testsets/Set5/LR_bicubic/X3/womanx3.png b/testsets/Set5/LR_bicubic/X3/womanx3.png new file mode 100644 index 000000000..f4312bc85 Binary files /dev/null and b/testsets/Set5/LR_bicubic/X3/womanx3.png differ diff --git a/testsets/Set5/LR_bicubic/X4/babyx4.png b/testsets/Set5/LR_bicubic/X4/babyx4.png new file mode 100644 index 000000000..1ecbb31fe Binary files /dev/null and b/testsets/Set5/LR_bicubic/X4/babyx4.png differ diff --git a/testsets/Set5/LR_bicubic/X4/birdx4.png b/testsets/Set5/LR_bicubic/X4/birdx4.png new file mode 100644 index 000000000..f3037c864 Binary files /dev/null and b/testsets/Set5/LR_bicubic/X4/birdx4.png differ diff --git a/testsets/Set5/LR_bicubic/X4/butterflyx4.png b/testsets/Set5/LR_bicubic/X4/butterflyx4.png new file mode 100644 index 000000000..b55686b45 Binary files /dev/null and b/testsets/Set5/LR_bicubic/X4/butterflyx4.png differ diff --git a/testsets/Set5/LR_bicubic/X4/headx4.png b/testsets/Set5/LR_bicubic/X4/headx4.png new file mode 100644 index 000000000..8926d01aa Binary files /dev/null and b/testsets/Set5/LR_bicubic/X4/headx4.png differ diff --git a/testsets/Set5/LR_bicubic/X4/womanx4.png b/testsets/Set5/LR_bicubic/X4/womanx4.png new file mode 100644 index 000000000..ca7de118f Binary files /dev/null and b/testsets/Set5/LR_bicubic/X4/womanx4.png differ diff --git a/testsets/Set5/LR_bicubic/X8/babyx8.png b/testsets/Set5/LR_bicubic/X8/babyx8.png new file mode 100644 index 000000000..bb7230c60 Binary files /dev/null and b/testsets/Set5/LR_bicubic/X8/babyx8.png differ diff --git a/testsets/Set5/LR_bicubic/X8/birdx8.png b/testsets/Set5/LR_bicubic/X8/birdx8.png new file mode 100644 index 000000000..08212f8fb Binary files /dev/null and b/testsets/Set5/LR_bicubic/X8/birdx8.png differ diff --git a/testsets/Set5/LR_bicubic/X8/butterflyx8.png b/testsets/Set5/LR_bicubic/X8/butterflyx8.png new file mode 100644 index 000000000..51aac3832 Binary files /dev/null and b/testsets/Set5/LR_bicubic/X8/butterflyx8.png differ diff --git a/testsets/Set5/LR_bicubic/X8/headx8.png b/testsets/Set5/LR_bicubic/X8/headx8.png new file mode 100644 index 000000000..f7aa8b165 Binary files /dev/null and b/testsets/Set5/LR_bicubic/X8/headx8.png differ diff --git a/testsets/Set5/LR_bicubic/X8/womanx8.png b/testsets/Set5/LR_bicubic/X8/womanx8.png new file mode 100644 index 000000000..f4647baaf Binary files /dev/null and b/testsets/Set5/LR_bicubic/X8/womanx8.png differ diff --git a/testsets/classic5/baboon.bmp b/testsets/classic5/baboon.bmp new file mode 100644 index 000000000..597bffef5 Binary files /dev/null and b/testsets/classic5/baboon.bmp differ diff --git a/testsets/classic5/barbara.bmp b/testsets/classic5/barbara.bmp new file mode 100644 index 000000000..f1872c857 Binary files /dev/null and b/testsets/classic5/barbara.bmp differ diff --git a/testsets/classic5/boats.bmp b/testsets/classic5/boats.bmp new file mode 100644 index 000000000..84f43e824 Binary files /dev/null and b/testsets/classic5/boats.bmp differ diff --git a/testsets/classic5/lena.bmp b/testsets/classic5/lena.bmp new file mode 100644 index 000000000..89496feff Binary files /dev/null and b/testsets/classic5/lena.bmp differ diff --git a/testsets/classic5/peppers.bmp b/testsets/classic5/peppers.bmp new file mode 100644 index 000000000..dd05a1b06 Binary files /dev/null and b/testsets/classic5/peppers.bmp differ diff --git a/utils/util_calculate_psnr_ssim.py b/utils/util_calculate_psnr_ssim.py new file mode 100644 index 000000000..1a8fb2716 --- /dev/null +++ b/utils/util_calculate_psnr_ssim.py @@ -0,0 +1,346 @@ +import cv2 +import numpy as np +import torch + + +def calculate_psnr(img1, img2, crop_border, input_order='HWC', test_y_channel=False): + """Calculate PSNR (Peak Signal-to-Noise Ratio). + + Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio + + Args: + img1 (ndarray): Images with range [0, 255]. + img2 (ndarray): Images with range [0, 255]. + crop_border (int): Cropped pixels in each edge of an image. These + pixels are not involved in the PSNR calculation. + input_order (str): Whether the input order is 'HWC' or 'CHW'. + Default: 'HWC'. + test_y_channel (bool): Test on Y channel of YCbCr. Default: False. + + Returns: + float: psnr result. + """ + + assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') + if input_order not in ['HWC', 'CHW']: + raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') + img1 = reorder_image(img1, input_order=input_order) + img2 = reorder_image(img2, input_order=input_order) + img1 = img1.astype(np.float64) + img2 = img2.astype(np.float64) + + if crop_border != 0: + img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] + img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] + + if test_y_channel: + img1 = to_y_channel(img1) + img2 = to_y_channel(img2) + + mse = np.mean((img1 - img2) ** 2) + if mse == 0: + return float('inf') + return 20. * np.log10(255. / np.sqrt(mse)) + + +def _ssim(img1, img2): + """Calculate SSIM (structural similarity) for one channel images. + + It is called by func:`calculate_ssim`. + + Args: + img1 (ndarray): Images with range [0, 255] with order 'HWC'. + img2 (ndarray): Images with range [0, 255] with order 'HWC'. + + Returns: + float: ssim result. + """ + + C1 = (0.01 * 255) ** 2 + C2 = (0.03 * 255) ** 2 + + img1 = img1.astype(np.float64) + img2 = img2.astype(np.float64) + kernel = cv2.getGaussianKernel(11, 1.5) + window = np.outer(kernel, kernel.transpose()) + + mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] + mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] + mu1_sq = mu1 ** 2 + mu2_sq = mu2 ** 2 + mu1_mu2 = mu1 * mu2 + sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq + sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq + sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 + + ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) + return ssim_map.mean() + + +def calculate_ssim(img1, img2, crop_border, input_order='HWC', test_y_channel=False): + """Calculate SSIM (structural similarity). + + Ref: + Image quality assessment: From error visibility to structural similarity + + The results are the same as that of the official released MATLAB code in + https://ece.uwaterloo.ca/~z70wang/research/ssim/. + + For three-channel images, SSIM is calculated for each channel and then + averaged. + + Args: + img1 (ndarray): Images with range [0, 255]. + img2 (ndarray): Images with range [0, 255]. + crop_border (int): Cropped pixels in each edge of an image. These + pixels are not involved in the SSIM calculation. + input_order (str): Whether the input order is 'HWC' or 'CHW'. + Default: 'HWC'. + test_y_channel (bool): Test on Y channel of YCbCr. Default: False. + + Returns: + float: ssim result. + """ + + assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') + if input_order not in ['HWC', 'CHW']: + raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') + img1 = reorder_image(img1, input_order=input_order) + img2 = reorder_image(img2, input_order=input_order) + img1 = img1.astype(np.float64) + img2 = img2.astype(np.float64) + + if crop_border != 0: + img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] + img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] + + if test_y_channel: + img1 = to_y_channel(img1) + img2 = to_y_channel(img2) + + ssims = [] + for i in range(img1.shape[2]): + ssims.append(_ssim(img1[..., i], img2[..., i])) + return np.array(ssims).mean() + + +def _blocking_effect_factor(im): + block_size = 8 + + block_horizontal_positions = torch.arange(7, im.shape[3] - 1, 8) + block_vertical_positions = torch.arange(7, im.shape[2] - 1, 8) + + horizontal_block_difference = ( + (im[:, :, :, block_horizontal_positions] - im[:, :, :, block_horizontal_positions + 1]) ** 2).sum( + 3).sum(2).sum(1) + vertical_block_difference = ( + (im[:, :, block_vertical_positions, :] - im[:, :, block_vertical_positions + 1, :]) ** 2).sum(3).sum( + 2).sum(1) + + nonblock_horizontal_positions = np.setdiff1d(torch.arange(0, im.shape[3] - 1), block_horizontal_positions) + nonblock_vertical_positions = np.setdiff1d(torch.arange(0, im.shape[2] - 1), block_vertical_positions) + + horizontal_nonblock_difference = ( + (im[:, :, :, nonblock_horizontal_positions] - im[:, :, :, nonblock_horizontal_positions + 1]) ** 2).sum( + 3).sum(2).sum(1) + vertical_nonblock_difference = ( + (im[:, :, nonblock_vertical_positions, :] - im[:, :, nonblock_vertical_positions + 1, :]) ** 2).sum( + 3).sum(2).sum(1) + + n_boundary_horiz = im.shape[2] * (im.shape[3] // block_size - 1) + n_boundary_vert = im.shape[3] * (im.shape[2] // block_size - 1) + boundary_difference = (horizontal_block_difference + vertical_block_difference) / ( + n_boundary_horiz + n_boundary_vert) + + n_nonboundary_horiz = im.shape[2] * (im.shape[3] - 1) - n_boundary_horiz + n_nonboundary_vert = im.shape[3] * (im.shape[2] - 1) - n_boundary_vert + nonboundary_difference = (horizontal_nonblock_difference + vertical_nonblock_difference) / ( + n_nonboundary_horiz + n_nonboundary_vert) + + scaler = np.log2(block_size) / np.log2(min([im.shape[2], im.shape[3]])) + bef = scaler * (boundary_difference - nonboundary_difference) + + bef[boundary_difference <= nonboundary_difference] = 0 + return bef + + +def calculate_psnrb(img1, img2, crop_border, input_order='HWC', test_y_channel=False): + """Calculate PSNR-B (Peak Signal-to-Noise Ratio). + + Ref: Quality assessment of deblocked images, for JPEG image deblocking evaluation + # https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py + + Args: + img1 (ndarray): Images with range [0, 255]. + img2 (ndarray): Images with range [0, 255]. + crop_border (int): Cropped pixels in each edge of an image. These + pixels are not involved in the PSNR calculation. + input_order (str): Whether the input order is 'HWC' or 'CHW'. + Default: 'HWC'. + test_y_channel (bool): Test on Y channel of YCbCr. Default: False. + + Returns: + float: psnr result. + """ + + assert img1.shape == img2.shape, (f'Image shapes are differnet: {img1.shape}, {img2.shape}.') + if input_order not in ['HWC', 'CHW']: + raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' '"HWC" and "CHW"') + img1 = reorder_image(img1, input_order=input_order) + img2 = reorder_image(img2, input_order=input_order) + img1 = img1.astype(np.float64) + img2 = img2.astype(np.float64) + + if crop_border != 0: + img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] + img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] + + if test_y_channel: + img1 = to_y_channel(img1) + img2 = to_y_channel(img2) + + # follow https://gitlab.com/Queuecumber/quantization-guided-ac/-/blob/master/metrics/psnrb.py + img1 = torch.from_numpy(img1).permute(2, 0, 1).unsqueeze(0) / 255. + img2 = torch.from_numpy(img2).permute(2, 0, 1).unsqueeze(0) / 255. + + total = 0 + for c in range(img1.shape[1]): + mse = torch.nn.functional.mse_loss(img1[:, c:c + 1, :, :], img2[:, c:c + 1, :, :], reduction='none') + bef = _blocking_effect_factor(img1[:, c:c + 1, :, :]) + + mse = mse.view(mse.shape[0], -1).mean(1) + total += 10 * torch.log10(1 / (mse + bef)) + + return float(total) / img1.shape[1] + + +def reorder_image(img, input_order='HWC'): + """Reorder images to 'HWC' order. + + If the input_order is (h, w), return (h, w, 1); + If the input_order is (c, h, w), return (h, w, c); + If the input_order is (h, w, c), return as it is. + + Args: + img (ndarray): Input image. + input_order (str): Whether the input order is 'HWC' or 'CHW'. + If the input image shape is (h, w), input_order will not have + effects. Default: 'HWC'. + + Returns: + ndarray: reordered image. + """ + + if input_order not in ['HWC', 'CHW']: + raise ValueError(f'Wrong input_order {input_order}. Supported input_orders are ' "'HWC' and 'CHW'") + if len(img.shape) == 2: + img = img[..., None] + if input_order == 'CHW': + img = img.transpose(1, 2, 0) + return img + + +def to_y_channel(img): + """Change to Y channel of YCbCr. + + Args: + img (ndarray): Images with range [0, 255]. + + Returns: + (ndarray): Images with range [0, 255] (float type) without round. + """ + img = img.astype(np.float32) / 255. + if img.ndim == 3 and img.shape[2] == 3: + img = bgr2ycbcr(img, y_only=True) + img = img[..., None] + return img * 255. + + +def _convert_input_type_range(img): + """Convert the type and range of the input image. + + It converts the input image to np.float32 type and range of [0, 1]. + It is mainly used for pre-processing the input image in colorspace + convertion functions such as rgb2ycbcr and ycbcr2rgb. + + Args: + img (ndarray): The input image. It accepts: + 1. np.uint8 type with range [0, 255]; + 2. np.float32 type with range [0, 1]. + + Returns: + (ndarray): The converted image with type of np.float32 and range of + [0, 1]. + """ + img_type = img.dtype + img = img.astype(np.float32) + if img_type == np.float32: + pass + elif img_type == np.uint8: + img /= 255. + else: + raise TypeError('The img type should be np.float32 or np.uint8, ' f'but got {img_type}') + return img + + +def _convert_output_type_range(img, dst_type): + """Convert the type and range of the image according to dst_type. + + It converts the image to desired type and range. If `dst_type` is np.uint8, + images will be converted to np.uint8 type with range [0, 255]. If + `dst_type` is np.float32, it converts the image to np.float32 type with + range [0, 1]. + It is mainly used for post-processing images in colorspace convertion + functions such as rgb2ycbcr and ycbcr2rgb. + + Args: + img (ndarray): The image to be converted with np.float32 type and + range [0, 255]. + dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it + converts the image to np.uint8 type with range [0, 255]. If + dst_type is np.float32, it converts the image to np.float32 type + with range [0, 1]. + + Returns: + (ndarray): The converted image with desired type and range. + """ + if dst_type not in (np.uint8, np.float32): + raise TypeError('The dst_type should be np.float32 or np.uint8, ' f'but got {dst_type}') + if dst_type == np.uint8: + img = img.round() + else: + img /= 255. + return img.astype(dst_type) + + +def bgr2ycbcr(img, y_only=False): + """Convert a BGR image to YCbCr image. + + The bgr version of rgb2ycbcr. + It implements the ITU-R BT.601 conversion for standard-definition + television. See more details in + https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion. + + It differs from a similar function in cv2.cvtColor: `BGR <-> YCrCb`. + In OpenCV, it implements a JPEG conversion. See more details in + https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion. + + Args: + img (ndarray): The input image. It accepts: + 1. np.uint8 type with range [0, 255]; + 2. np.float32 type with range [0, 1]. + y_only (bool): Whether to only return Y channel. Default: False. + + Returns: + ndarray: The converted YCbCr image. The output image has the same type + and range as input image. + """ + img_type = img.dtype + img = _convert_input_type_range(img) + if y_only: + out_img = np.dot(img, [24.966, 128.553, 65.481]) + 16.0 + else: + out_img = np.matmul( + img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) + [16, 128, 128] + out_img = _convert_output_type_range(out_img, img_type) + return out_img