-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodels.py
247 lines (193 loc) · 8.97 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import numpy as np
import os
import tensorflow as tf
from tensorflow.keras.layers import (Conv2D,
Conv3D,
Dense,
Conv2DTranspose,
Conv3DTranspose,
Reshape,
BatchNormalization,
LeakyReLU,
Activation,
Flatten,
Dropout)
from tensorflow.keras import Sequential
#################################################
#### Generator & Discriminator ####
#################################################
def generator3d(img_shape=(75, 64, 64, 1),
noise_shape = (100, ),
kernel_size = (4, 4, 4),
strides = (1, 2, 2),
upsample_layers = 4,
starting_filters = 512,
weight_initializer = None):
"""
Generator3D for a Deep Convolutional GAN.
The generator uses Transposed Convolution Layers (upsampling) to generate the 3D image from random noise.
Models starts with a Dense layer and then upsamples few times in order to reach the desired image size.
The ELu activation was used after Dense layer and the ReLU activation after the next convolutional layers
except from the last one. The Batch Normalization techinique was used, as well.
The number of output filters from each convolutional layer is decreased twice for each new layer,
except for the last layer, where the only one filter is returned. Padding was set as 'same'.
Parameters
----------
img_shape : {tuple of 4 elements} -
Shape of an input image. Default shape is (75, 64, 64, 1).
noise_shape : {tuple} -
Shape of a noise vector. Default shape is (100, ).
kernel_size : {an integer or tuple/list of 3 integers} -
Specifies the depth, height and width of the 3D convolution window.
Can be a single integer to specify the same value for all spatial dimensions..
Default is (4, 4, 4).
strides : {an integer or tuple/list of 3 integers} -
Specifies the strides of the convolution along the depth, height and width.
Can be a single integer to specify the same value for all spatial dimensions.
Default is (1, 2, 2).
upsample_layers : {int} -
Number of the Transposed Convolution Layers.
Default is 4.
starting_filters : {integer} -
Dimensionality of the output space after the initial dense layer.
Default is 512.
weight_initializer - Kernel initializer for a dense layer.
"""
filters = starting_filters
model = Sequential()
model.add(
Dense(np.int32(starting_filters * (img_shape[0]) * (img_shape[1] / (2 ** upsample_layers)) * (img_shape[2] / (2 ** upsample_layers))),
input_shape=noise_shape, kernel_initializer=weight_initializer)) #use_bias=False
model.add(BatchNormalization())
model.add(Activation("elu"))
model.add(Reshape(((img_shape[0]),
np.int((img_shape[1] // (2 ** upsample_layers))),
np.int((img_shape[2] // (2 ** upsample_layers))),
starting_filters)))
## 3 Hidden Convolution Layers
for l in range(upsample_layers-1):
filters = int(filters/2)
model.add(Conv3DTranspose(filters, kernel_size, strides,
padding='same', use_bias=False))
model.add(BatchNormalization())
model.add(Activation("relu"))
## 4th Convolution Layer
model.add(Conv3DTranspose(1, kernel_size, strides,
padding='same', use_bias=False))
return model
def discriminator3d(input_shape=(75, 64, 64, 1),
kernel_size = (4, 4, 4),
strides = (1, 2, 2),
downsample_layers = 4,
weight_initializer = None):
"""
Discriminator3D for a Deep Convolutional GAN.
The discriminator uses Convolution Layers (downsampling) to classify the generated images as real (positive output)
or fake (negative values).
The LeakyRelLU activation was used after the each convolutional layer.
Padding was set as 'same'.
The Dropout techinique with rate 0.2 was used for a more stable training.
Parameters
----------
img_shape : {tuple of 4 elements} -
Shape of an input image. Default shape is (75, 64, 64, 1).
kernel_size : {an integer or tuple/list of 3 integers} -
Specifies the depth, height and width of the 3D convolution window.
Can be a single integer to specify the same value for all spatial dimensions..
Default is (4, 4, 4).
strides : {an integer or tuple/list of 3 integers} -
Specifies the strides of the convolution along the depth, height and width.
Can be a single integer to specify the same value for all spatial dimensions.
Default is (1, 2, 2).
downsample_layers : {int} -
Number of the Convolution Layers.
Default is 4.
weight_initializer - Kernel initializer.
"""
rate = 0.2
filters = input_shape[1]
model = Sequential()
model.add(Conv3D(strides=strides,
kernel_size = kernel_size,
filters = filters,
input_shape=input_shape,
padding='same',
kernel_initializer=weight_initializer))
model.add(LeakyReLU())
model.add(Dropout(rate=rate))
for l in range(downsample_layers-1):
filters = int(filters*2)
model.add(Conv3D(strides=strides,
kernel_size = kernel_size,
filters = filters,
padding='same'))
model.add(LeakyReLU())
model.add(Dropout(rate=rate))
model.add(Flatten())
model.add(Dense(1))
return model
##############################
#### Losses ####
##############################
# Label smoothing technique:
def smooth_positive_labels(y):
"""
Instead of 1 for a positive class it assigns a random integer in range (0.7, 1)
"""
return y - 0.3 + (np.random.random(y.shape) * 0.5)
def smooth_negative_labels(y):
"""
Instead of 0 for a negative class it assigns a random integer in range (0, 0.3)
"""
return y + np.random.random(y.shape) * 0.3
# Random flippling of some labels:
def noisy_labels(y, p_flip):
"""
Add some noise to labels by flipping randomly selected ones.
Parameters:
-----------
y : {array-like} - Labels
p_flip : {float} - Probability of flipping
"""
n_selected = int(p_flip * int(y.shape[0]))
flip_ix = np.random.choice([i for i in range(int(y.shape[0]))], size=n_selected)
op_list = []
for i in range(int(y.shape[0])):
if i in flip_ix:
op_list.append(tf.subtract(1, y[i]))
else:
op_list.append(y[i])
outputs = tf.stack(op_list)
return outputs
def generator_loss(fake_output, apply_label_smoothing=True):
"""
Generator Loss measures how well it was able to cheat on the discriminator.
Uses the Cross Entropy Loss.
apply_label_smoothing : {boolen} - Determines if to apply the label smoothing.
"""
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
if apply_label_smoothing:
fake_output_smooth = smooth_negative_labels(tf.ones_like(fake_output))
return cross_entropy(tf.ones_like(fake_output_smooth), fake_output)
else:
return cross_entropy(tf.ones_like(fake_output), fake_output)
def discriminator_loss(real_output, fake_output, apply_label_smoothing=True, label_noise=True):
"""
Discriminator Loss measures how well the discriminator was able to distinguish real and fake images.
Uses the Cross Entropy Loss.
apply_label_smoothing : {boolen} - Determines if to apply the label smoothing.
label_noise : {boolean} - Determines if to add some noise to labels
"""
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
if label_noise and apply_label_smoothing:
real_output_noise = noisy_labels(tf.ones_like(real_output), 0.05)
fake_output_noise = noisy_labels(tf.zeros_like(fake_output), 0.05)
real_output_smooth = smooth_positive_labels(real_output_noise)
fake_output_smooth = smooth_negative_labels(fake_output_noise)
real_loss = cross_entropy(tf.ones_like(real_output_smooth), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output_smooth), fake_output)
else:
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
loss = fake_loss + real_loss
return loss