Skip to content

JoelsonSartoriJr/Machine_Learning

Repository files navigation

Machine Learning

Udemy Machine Learning A-Z

Thinking about data

  • Data Processing

  • Regression:

    • Simple Linear Regression
    • Multiple Linear Regression
    • Polynomial Regression
    • Support Vector Regression (SVR)
    • Decision Tree Regression
    • Random Forest Regression
    • Evaluating Regression Models Performance
    • Regularization Methods
  • Classification:

    • Logistic Regression
    • K-Nearest Neighbors (K-NN)
    • Support Vector Machine (SVM)
    • Kernel SVM
    • Naive Bayes
    • Decision Tree Classification
    • Random Forest Classification
    • Evaluating Classification Models Performance
  • Clustering:

    • K-Means Clustering
    • Hierarchical Clustering
  • Association Rule Learning:

    • Apriori
    • Eclat
  • Reinforcement Learning:

    • Upper Confidence Bound (UCB)
    • Thompson Sampling
  • Natural Language Processing:

    • Natural Language Processing Algorithms
  • Deep Learning:

    • Artificial Neural Networks (ANN)
    • Convolutional Neural Networks (CNN)
  • Dimensionality Reduction:

    • Principal Component Analysis (PCA)
    • Linear Discriminant Analysis (LDA)
    • Kernel PCA
  • Model Selection:

    • Model Selection
    • XGBoost

About

Machine Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published