-
Notifications
You must be signed in to change notification settings - Fork 89
/
Copy pathmultinest_marginals_fancy.py
1682 lines (1446 loc) · 62.6 KB
/
multinest_marginals_fancy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import, unicode_literals, print_function, division
__doc__ = """
Script that does default visualizations (marginal plots, 1-d and 2-d).
Author: Johannes Buchner (C) 2013-2019
Author: Josh Speagle (MIT licensed)
"""
import numpy
from numpy import exp, log
import matplotlib.pyplot as plt
import sys, os
import json
import pymultinest
# code from dynesty (MIT licensed)
from six.moves import range
import logging
import types
import math
import numpy as np
import matplotlib.pyplot as pl
from matplotlib.ticker import MaxNLocator, NullLocator
from matplotlib.colors import LinearSegmentedColormap, colorConverter
from matplotlib.ticker import ScalarFormatter
from scipy import spatial
from scipy.ndimage import gaussian_filter as norm_kde
from scipy.stats import gaussian_kde
import warnings
try:
str_type = types.StringTypes
float_type = types.FloatType
int_type = types.IntType
except:
str_type = str
float_type = float
int_type = int
SQRTEPS = math.sqrt(float(np.finfo(np.float64).eps))
def _quantile(x, q, weights=None):
"""
Compute (weighted) quantiles from an input set of samples.
Parameters
----------
x : `~numpy.ndarray` with shape (nsamps,)
Input samples.
q : `~numpy.ndarray` with shape (nquantiles,)
The list of quantiles to compute from `[0., 1.]`.
weights : `~numpy.ndarray` with shape (nsamps,), optional
The associated weight from each sample.
Returns
-------
quantiles : `~numpy.ndarray` with shape (nquantiles,)
The weighted sample quantiles computed at `q`.
"""
# Initial check.
x = np.atleast_1d(x)
q = np.atleast_1d(q)
# Quantile check.
if np.any(q < 0.0) or np.any(q > 1.0):
raise ValueError("Quantiles must be between 0. and 1.")
if weights is None:
# If no weights provided, this simply calls `np.percentile`.
return np.percentile(x, list(100.0 * q))
else:
# If weights are provided, compute the weighted quantiles.
weights = np.atleast_1d(weights)
if len(x) != len(weights):
raise ValueError("Dimension mismatch: len(weights) != len(x).")
idx = np.argsort(x) # sort samples
sw = weights[idx] # sort weights
cdf = np.cumsum(sw)[:-1] # compute CDF
cdf /= cdf[-1] # normalize CDF
cdf = np.append(0, cdf) # ensure proper span
quantiles = np.interp(q, cdf, x[idx]).tolist()
return quantiles
def resample_equal(samples, weights, rstate=None):
"""
Resample a new set of points from the weighted set of inputs
such that they all have equal weight.
Each input sample appears in the output array either
`floor(weights[i] * nsamples)` or `ceil(weights[i] * nsamples)` times,
with `floor` or `ceil` randomly selected (weighted by proximity).
Parameters
----------
samples : `~numpy.ndarray` with shape (nsamples,)
Set of unequally weighted samples.
weights : `~numpy.ndarray` with shape (nsamples,)
Corresponding weight of each sample.
rstate : `~numpy.random.RandomState`, optional
`~numpy.random.RandomState` instance.
Returns
-------
equal_weight_samples : `~numpy.ndarray` with shape (nsamples,)
New set of samples with equal weights.
Examples
--------
>>> x = np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])
>>> w = np.array([0.6, 0.2, 0.15, 0.05])
>>> utils.resample_equal(x, w)
array([[ 1., 1.],
[ 1., 1.],
[ 1., 1.],
[ 3., 3.]])
Notes
-----
Implements the systematic resampling method described in `Hol, Schon, and
Gustafsson (2006) <doi:10.1109/NSSPW.2006.4378824>`_.
"""
if rstate is None:
rstate = np.random
if abs(np.sum(weights) - 1.) > SQRTEPS: # same tol as in np.random.choice.
raise ValueError("Weights do not sum to 1.")
# Make N subdivisions and choose positions with a consistent random offset.
nsamples = len(weights)
positions = (rstate.random() + np.arange(nsamples)) / nsamples
# Resample the data.
idx = np.zeros(nsamples, dtype=int)
cumulative_sum = np.cumsum(weights)
i, j = 0, 0
while i < nsamples:
if positions[i] < cumulative_sum[j]:
idx[i] = j
i += 1
else:
j += 1
return samples[idx]
def runplot(results, span=None, logplot=False, kde=True, nkde=1000,
color='blue', plot_kwargs=None, label_kwargs=None, lnz_error=True,
lnz_truth=None, truth_color='red', truth_kwargs=None,
max_x_ticks=8, max_y_ticks=3, use_math_text=True,
mark_final_live=True, fig=None):
"""
Plot live points, ln(likelihood), ln(weight), and ln(evidence)
as a function of ln(prior volume).
Parameters
----------
results : :class:`~dynesty.results.Results` instance
A :class:`~dynesty.results.Results` instance from a nested
sampling run.
span : iterable with shape (4,), optional
A list where each element is either a length-2 tuple containing
lower and upper bounds *or* a float from `(0., 1.]` giving the
fraction below the maximum. If a fraction is provided,
the bounds are chosen to be equal-tailed. An example would be::
span = [(0., 10.), 0.001, 0.2, (5., 6.)]
Default is `(0., 1.05 * max(data))` for each element.
logplot : bool, optional
Whether to plot the evidence on a log scale. Default is `False`.
kde : bool, optional
Whether to use kernel density estimation to estimate and plot
the PDF of the importance weights as a function of log-volume
(as opposed to the importance weights themselves). Default is
`True`.
nkde : int, optional
The number of grid points used when plotting the kernel density
estimate. Default is `1000`.
color : str or iterable with shape (4,), optional
A `~matplotlib`-style color (either a single color or a different
value for each subplot) used when plotting the lines in each subplot.
Default is `'blue'`.
plot_kwargs : dict, optional
Extra keyword arguments that will be passed to `plot`.
label_kwargs : dict, optional
Extra keyword arguments that will be sent to the
`~matplotlib.axes.Axes.set_xlabel` and
`~matplotlib.axes.Axes.set_ylabel` methods.
lnz_error : bool, optional
Whether to plot the 1, 2, and 3-sigma approximate error bars
derived from the ln(evidence) error approximation over the course
of the run. Default is `True`.
lnz_truth : float, optional
A reference value for the evidence that will be overplotted on the
evidence subplot if provided.
truth_color : str or iterable with shape (ndim,), optional
A `~matplotlib`-style color used when plotting :data:`lnz_truth`.
Default is `'red'`.
truth_kwargs : dict, optional
Extra keyword arguments that will be used for plotting
:data:`lnz_truth`.
max_x_ticks : int, optional
Maximum number of ticks allowed for the x axis. Default is `8`.
max_y_ticks : int, optional
Maximum number of ticks allowed for the y axis. Default is `4`.
use_math_text : bool, optional
Whether the axis tick labels for very large/small exponents should be
displayed as powers of 10 rather than using `e`. Default is `False`.
mark_final_live : bool, optional
Whether to indicate the final addition of recycled live points
(if they were added to the resulting samples) using
a dashed vertical line. Default is `True`.
fig : (`~matplotlib.figure.Figure`, `~matplotlib.axes.Axes`), optional
If provided, overplot the run onto the provided figure.
Otherwise, by default an internal figure is generated.
Returns
-------
runplot : (`~matplotlib.figure.Figure`, `~matplotlib.axes.Axes`)
Output summary plot.
"""
# Initialize values.
if label_kwargs is None:
label_kwargs = dict()
if plot_kwargs is None:
plot_kwargs = dict()
if truth_kwargs is None:
truth_kwargs = dict()
# Set defaults.
plot_kwargs['linewidth'] = plot_kwargs.get('linewidth', 5)
plot_kwargs['alpha'] = plot_kwargs.get('alpha', 0.7)
truth_kwargs['linestyle'] = truth_kwargs.get('linestyle', 'solid')
truth_kwargs['linewidth'] = truth_kwargs.get('linewidth', 3)
# Extract results.
niter = results['niter'] # number of iterations
logvol = results['logvol'] # ln(prior volume)
logl = results['logl'] - max(results['logl']) # ln(normalized likelihood)
logwt = results['logwt'] - results['logz'][-1] # ln(importance weight)
logz = results['logz'] # ln(evidence)
logzerr = results['logzerr'] # error in ln(evidence)
logzerr[~np.isfinite(logzerr)] = 0.
nsamps = len(logwt) # number of samples
# Check whether the run was "static" or "dynamic".
try:
nlive = results['samples_n']
mark_final_live = False
except:
nlive = np.ones(niter) * results['nlive']
if nsamps - niter == results['nlive']:
nlive_final = np.arange(1, results['nlive'] + 1)[::-1]
nlive = np.append(nlive, nlive_final)
# Check if the final set of live points were added to the results.
if mark_final_live:
if nsamps - niter == results['nlive']:
live_idx = niter
else:
warnings.warn("The number of iterations and samples differ "
"by an amount that isn't the number of final "
"live points. `mark_final_live` has been disabled.")
mark_final_live = False
# Determine plotting bounds for each subplot.
data = [nlive, np.exp(logl), np.exp(logwt), np.exp(logz)]
if kde:
# Derive kernel density estimate.
wt_kde = gaussian_kde(resample_equal(-logvol, data[2])) # KDE
logvol_new = np.linspace(logvol[0], logvol[-1], nkde) # resample
data[2] = wt_kde.pdf(-logvol_new) # evaluate KDE PDF
if span is None:
span = [(0., 1.05 * max(d)) for d in data]
no_span = True
else:
no_span = False
span = list(span)
if len(span) != 4:
raise ValueError("More bounds provided in `span` than subplots!")
for i, _ in enumerate(span):
try:
ymin, ymax = span[i]
except:
span[i] = (max(data[i]) * span[i], max(data[i]))
if lnz_error and no_span:
if logplot:
zspan = (np.exp(logz[-1] - 1.3 * 3. * logzerr[-1]),
np.exp(logz[-1] + 1.3 * 3. * logzerr[-1]))
else:
zspan = (0., 1.05 * np.exp(logz[-1] + 3. * logzerr[-1]))
span[3] = zspan
# Setting up default plot layout.
if fig is None:
fig, axes = pl.subplots(4, 1, figsize=(16, 16))
xspan = [(0., -min(logvol)) for ax in axes]
yspan = span
else:
fig, axes = fig
try:
axes.reshape(4, 1)
except:
raise ValueError("Provided axes do not match the required shape "
"for plotting samples.")
# If figure is provided, keep previous bounds if they were larger.
xspan = [ax.get_xlim() for ax in axes]
yspan = [ax.get_ylim() for ax in axes]
# One exception: if the bounds are the plotting default `(0., 1.)`,
# overwrite them.
xspan = [t if t != (0., 1.) else (None, None) for t in xspan]
yspan = [t if t != (0., 1.) else (None, None) for t in yspan]
# Set up bounds for plotting.
[axes[i].set_xlim([min(0., xspan[i][0]),
max(-min(logvol), xspan[i][1])])
for i in range(4)]
[axes[i].set_ylim([min(span[i][0], yspan[i][0]),
max(span[i][1], yspan[i][1])])
for i in range(4)]
# Plotting.
labels = ['Live Points', 'Likelihood\n(normalized)',
'Importance\nWeight', 'Evidence']
if kde:
labels[2] += ' PDF'
for i, d in enumerate(data):
# Establish axes.
ax = axes[i]
# Set color(s)/colormap(s).
if isinstance(color, str_type):
c = color
else:
c = color[i]
# Setup axes.
if max_x_ticks == 0:
ax.xaxis.set_major_locator(NullLocator())
else:
ax.xaxis.set_major_locator(MaxNLocator(max_x_ticks))
if max_y_ticks == 0:
ax.yaxis.set_major_locator(NullLocator())
else:
ax.yaxis.set_major_locator(MaxNLocator(max_y_ticks))
# Label axes.
sf = ScalarFormatter(useMathText=use_math_text)
ax.yaxis.set_major_formatter(sf)
ax.set_xlabel(r"$-\ln X$", **label_kwargs)
ax.set_ylabel(labels[i], **label_kwargs)
# Plot run.
if logplot and i == 3:
ax.semilogy(-logvol, d, color=c, **plot_kwargs)
yspan = [ax.get_ylim() for ax in axes]
elif kde and i == 2:
ax.plot(-logvol_new, d, color=c, **plot_kwargs)
else:
ax.plot(-logvol, d, color=c, **plot_kwargs)
if i == 3 and lnz_error:
[ax.fill_between(-logvol, np.exp(logz + s*logzerr),
np.exp(logz - s*logzerr), color=c, alpha=0.2)
for s in range(1, 4)]
# Mark addition of final live points.
if mark_final_live:
ax.axvline(-logvol[live_idx], color=c, ls="dashed", lw=2,
**plot_kwargs)
if i == 0:
ax.axhline(live_idx, color=c, ls="dashed", lw=2,
**plot_kwargs)
# Add truth value(s).
if i == 3 and lnz_truth is not None:
ax.axhline(np.exp(lnz_truth), color=truth_color, **truth_kwargs)
return fig, axes
def traceplot(results, span=None, quantiles=[0.025, 0.5, 0.975], smooth=0.02,
post_color='blue', post_kwargs=None, kde=True, nkde=1000,
trace_cmap='plasma', trace_color=None, trace_kwargs=None,
connect=False, connect_highlight=10, connect_color='red',
connect_kwargs=None, max_n_ticks=5, use_math_text=False,
labels=None, label_kwargs=None,
show_titles=False, title_fmt=".2f", title_kwargs=None,
truths=None, truth_color='red', truth_kwargs=None,
verbose=False, fig=None):
"""
Plot traces and marginalized posteriors for each parameter.
Parameters
----------
results : :class:`~dynesty.results.Results` instance
A :class:`~dynesty.results.Results` instance from a nested
sampling run. **Compatible with results derived from**
`nestle <http://kylebarbary.com/nestle/>`_.
span : iterable with shape (ndim,), optional
A list where each element is either a length-2 tuple containing
lower and upper bounds or a float from `(0., 1.]` giving the
fraction of (weighted) samples to include. If a fraction is provided,
the bounds are chosen to be equal-tailed. An example would be::
span = [(0., 10.), 0.95, (5., 6.)]
Default is `0.999999426697` (5-sigma credible interval) for each
parameter.
quantiles : iterable, optional
A list of fractional quantiles to overplot on the 1-D marginalized
posteriors as vertical dashed lines. Default is `[0.025, 0.5, 0.975]`
(the 95%/2-sigma credible interval).
smooth : float or iterable with shape (ndim,), optional
The standard deviation (either a single value or a different value for
each subplot) for the Gaussian kernel used to smooth the 1-D
marginalized posteriors, expressed as a fraction of the span.
Default is `0.02` (2% smoothing). If an integer is provided instead,
this will instead default to a simple (weighted) histogram with
`bins=smooth`.
post_color : str or iterable with shape (ndim,), optional
A `~matplotlib`-style color (either a single color or a different
value for each subplot) used when plotting the histograms.
Default is `'blue'`.
post_kwargs : dict, optional
Extra keyword arguments that will be used for plotting the
marginalized 1-D posteriors.
kde : bool, optional
Whether to use kernel density estimation to estimate and plot
the PDF of the importance weights as a function of log-volume
(as opposed to the importance weights themselves). Default is
`True`.
nkde : int, optional
The number of grid points used when plotting the kernel density
estimate. Default is `1000`.
trace_cmap : str or iterable with shape (ndim,), optional
A `~matplotlib`-style colormap (either a single colormap or a
different colormap for each subplot) used when plotting the traces,
where each point is colored according to its weight. Default is
`'plasma'`.
trace_color : str or iterable with shape (ndim,), optional
A `~matplotlib`-style color (either a single color or a
different color for each subplot) used when plotting the traces.
This overrides the `trace_cmap` option by giving all points
the same color. Default is `None` (not used).
trace_kwargs : dict, optional
Extra keyword arguments that will be used for plotting the traces.
connect : bool, optional
Whether to draw lines connecting the paths of unique particles.
Default is `False`.
connect_highlight : int or iterable, optional
If `connect=True`, highlights the paths of a specific set of
particles. If an integer is passed, :data:`connect_highlight`
random particle paths will be highlighted. If an iterable is passed,
then the particle paths corresponding to the provided indices
will be highlighted.
connect_color : str, optional
The color of the highlighted particle paths. Default is `'red'`.
connect_kwargs : dict, optional
Extra keyword arguments used for plotting particle paths.
max_n_ticks : int, optional
Maximum number of ticks allowed. Default is `5`.
use_math_text : bool, optional
Whether the axis tick labels for very large/small exponents should be
displayed as powers of 10 rather than using `e`. Default is `False`.
labels : iterable with shape (ndim,), optional
A list of names for each parameter. If not provided, the default name
used when plotting will follow :math:`x_i` style.
label_kwargs : dict, optional
Extra keyword arguments that will be sent to the
`~matplotlib.axes.Axes.set_xlabel` and
`~matplotlib.axes.Axes.set_ylabel` methods.
show_titles : bool, optional
Whether to display a title above each 1-D marginalized posterior
showing the 0.5 quantile along with the upper/lower bounds associated
with the 0.025 and 0.975 (95%/2-sigma credible interval) quantiles.
Default is `True`.
title_fmt : str, optional
The format string for the quantiles provided in the title. Default is
`'.2f'`.
title_kwargs : dict, optional
Extra keyword arguments that will be sent to the
`~matplotlib.axes.Axes.set_title` command.
truths : iterable with shape (ndim,), optional
A list of reference values that will be overplotted on the traces and
marginalized 1-D posteriors as solid horizontal/vertical lines.
Individual values can be exempt using `None`. Default is `None`.
truth_color : str or iterable with shape (ndim,), optional
A `~matplotlib`-style color (either a single color or a different
value for each subplot) used when plotting `truths`.
Default is `'red'`.
truth_kwargs : dict, optional
Extra keyword arguments that will be used for plotting the vertical
and horizontal lines with `truths`.
verbose : bool, optional
Whether to print the values of the computed quantiles associated with
each parameter. Default is `False`.
fig : (`~matplotlib.figure.Figure`, `~matplotlib.axes.Axes`), optional
If provided, overplot the traces and marginalized 1-D posteriors
onto the provided figure. Otherwise, by default an
internal figure is generated.
Returns
-------
traceplot : (`~matplotlib.figure.Figure`, `~matplotlib.axes.Axes`)
Output trace plot.
"""
# Initialize values.
if title_kwargs is None:
title_kwargs = dict()
if label_kwargs is None:
label_kwargs = dict()
if trace_kwargs is None:
trace_kwargs = dict()
if connect_kwargs is None:
connect_kwargs = dict()
if post_kwargs is None:
post_kwargs = dict()
if truth_kwargs is None:
truth_kwargs = dict()
# Set defaults.
connect_kwargs['alpha'] = connect_kwargs.get('alpha', 0.7)
post_kwargs['alpha'] = post_kwargs.get('alpha', 0.6)
trace_kwargs['s'] = trace_kwargs.get('s', 3)
truth_kwargs['linestyle'] = truth_kwargs.get('linestyle', 'solid')
truth_kwargs['linewidth'] = truth_kwargs.get('linewidth', 2)
# Extract weighted samples.
samples = results['samples']
logvol = results['logvol']
try:
weights = np.exp(results['logwt'] - results['logz'][-1])
except:
weights = results['weights']
if kde:
# Derive kernel density estimate.
wt_kde = gaussian_kde(resample_equal(-logvol, weights)) # KDE
logvol_grid = np.linspace(logvol[0], logvol[-1], nkde) # resample
wt_grid = wt_kde.pdf(-logvol_grid) # evaluate KDE PDF
wts = np.interp(-logvol, -logvol_grid, wt_grid) # interpolate
else:
wts = weights
# Deal with 1D results. A number of extra catches are also here
# in case users are trying to plot other results besides the `Results`
# instance generated by `dynesty`.
samples = np.atleast_1d(samples)
if len(samples.shape) == 1:
samples = np.atleast_2d(samples)
else:
assert len(samples.shape) == 2, "Samples must be 1- or 2-D."
samples = samples.T
assert samples.shape[0] <= samples.shape[1], "There are more " \
"dimensions than samples!"
ndim, nsamps = samples.shape
# Check weights.
if weights.ndim != 1:
raise ValueError("Weights must be 1-D.")
if nsamps != weights.shape[0]:
raise ValueError("The number of weights and samples disagree!")
# Check ln(volume).
if logvol.ndim != 1:
raise ValueError("Ln(volume)'s must be 1-D.")
if nsamps != logvol.shape[0]:
raise ValueError("The number of ln(volume)'s and samples disagree!")
# Check sample IDs.
if connect:
try:
samples_id = results['samples_id']
uid = np.unique(samples_id)
except:
raise ValueError("Sample IDs are not defined!")
try:
ids = connect_highlight[0]
ids = connect_highlight
except:
ids = np.random.choice(uid, size=connect_highlight, replace=False)
# Determine plotting bounds for marginalized 1-D posteriors.
if span is None:
span = [0.999999426697 for i in range(ndim)]
span = list(span)
if len(span) != ndim:
raise ValueError("Dimension mismatch between samples and span.")
for i, _ in enumerate(span):
try:
xmin, xmax = span[i]
except:
q = [0.5 - 0.5 * span[i], 0.5 + 0.5 * span[i]]
span[i] = _quantile(samples[i], q, weights=weights)
# Setting up labels.
if labels is None:
labels = [r"$x_{"+str(i+1)+"}$" for i in range(ndim)]
# Setting up smoothing.
if (isinstance(smooth, int_type) or isinstance(smooth, float_type)):
smooth = [smooth for i in range(ndim)]
# Setting up default plot layout.
if fig is None:
fig, axes = pl.subplots(ndim, 2, figsize=(12, 3*ndim))
else:
fig, axes = fig
try:
axes.reshape(ndim, 2)
except:
raise ValueError("Provided axes do not match the required shape "
"for plotting samples.")
# Plotting.
for i, x in enumerate(samples):
# Plot trace.
# Establish axes.
if np.shape(samples)[0] == 1:
ax = axes[1]
else:
ax = axes[i, 0]
# Set color(s)/colormap(s).
if trace_color is not None:
if isinstance(trace_color, str_type):
color = trace_color
else:
color = trace_color[i]
else:
color = wts
if isinstance(trace_cmap, str_type):
cmap = trace_cmap
else:
cmap = trace_cmap[i]
# Setup axes.
ax.set_xlim([0., -min(logvol)])
ax.set_ylim([min(x), max(x)])
if max_n_ticks == 0:
ax.xaxis.set_major_locator(NullLocator())
ax.yaxis.set_major_locator(NullLocator())
else:
ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks))
ax.yaxis.set_major_locator(MaxNLocator(max_n_ticks))
# Label axes.
sf = ScalarFormatter(useMathText=use_math_text)
ax.yaxis.set_major_formatter(sf)
ax.set_xlabel(r"$-\ln X$", **label_kwargs)
ax.set_ylabel(labels[i], **label_kwargs)
# Generate scatter plot.
ax.scatter(-logvol, x, c=color, cmap=cmap, **trace_kwargs)
if connect:
# Add lines highlighting specific particle paths.
for j in ids:
sel = (samples_id == j)
ax.plot(-logvol[sel], x[sel], color=connect_color,
**connect_kwargs)
# Add truth value(s).
if truths is not None and truths[i] is not None:
try:
[ax.axhline(t, color=truth_color, **truth_kwargs)
for t in truths[i]]
except:
ax.axhline(truths[i], color=truth_color, **truth_kwargs)
# Plot marginalized 1-D posterior.
# Establish axes.
if np.shape(samples)[0] == 1:
ax = axes[0]
else:
ax = axes[i, 1]
# Set color(s).
if isinstance(post_color, str_type):
color = post_color
else:
color = post_color[i]
# Setup axes
ax.set_xlim(span[i])
if max_n_ticks == 0:
ax.xaxis.set_major_locator(NullLocator())
ax.yaxis.set_major_locator(NullLocator())
else:
ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks))
ax.yaxis.set_major_locator(NullLocator())
# Label axes.
sf = ScalarFormatter(useMathText=use_math_text)
ax.xaxis.set_major_formatter(sf)
ax.set_xlabel(labels[i], **label_kwargs)
# Generate distribution.
s = smooth[i]
if isinstance(s, int_type):
# If `s` is an integer, plot a weighted histogram with
# `s` bins within the provided bounds.
n, b, _ = ax.hist(x, bins=s, weights=weights, color=color,
range=np.sort(span[i]), **post_kwargs)
x0 = np.array(list(zip(b[:-1], b[1:]))).flatten()
y0 = np.array(list(zip(n, n))).flatten()
else:
# If `s` is a float, oversample the data relative to the
# smoothing filter by a factor of 10, then use a Gaussian
# filter to smooth the results.
bins = int(round(10. / s))
n, b = np.histogram(x, bins=bins, weights=weights,
range=np.sort(span[i]))
n = norm_kde(n, 10.)
x0 = 0.5 * (b[1:] + b[:-1])
y0 = n
ax.fill_between(x0, y0, color=color, **post_kwargs)
ax.set_ylim([0., max(y0) * 1.05])
# Plot quantiles.
if quantiles is not None and len(quantiles) > 0:
qs = _quantile(x, quantiles, weights=weights)
for q in qs:
ax.axvline(q, lw=1, ls="dashed", color=color)
if verbose:
print("Quantiles:")
print(labels[i], [blob for blob in zip(quantiles, qs)])
# Add truth value(s).
if truths is not None and truths[i] is not None:
try:
[ax.axvline(t, color=truth_color, **truth_kwargs)
for t in truths[i]]
except:
ax.axvline(truths[i], color=truth_color, **truth_kwargs)
# Set titles.
if show_titles:
title = None
if title_fmt is not None:
ql, qm, qh = _quantile(x, [0.025, 0.5, 0.975], weights=weights)
q_minus, q_plus = qm - ql, qh - qm
fmt = "{{0:{0}}}".format(title_fmt).format
title = r"${{{0}}}_{{-{1}}}^{{+{2}}}$"
title = title.format(fmt(qm), fmt(q_minus), fmt(q_plus))
title = "{0} = {1}".format(labels[i], title)
ax.set_title(title, **title_kwargs)
return fig, axes
def cornerpoints(results, thin=1, span=None, cmap='plasma', color=None,
kde=True, nkde=1000, plot_kwargs=None, labels=None,
label_kwargs=None, truths=None, truth_color='red',
truth_kwargs=None, max_n_ticks=5, use_math_text=False,
fig=None):
"""
Generate a (sub-)corner plot of (weighted) samples.
Parameters
----------
results : :class:`~dynesty.results.Results` instance
A :class:`~dynesty.results.Results` instance from a nested
sampling run. **Compatible with results derived from**
`nestle <http://kylebarbary.com/nestle/>`_.
thin : int, optional
Thin the samples so that only each `thin`-th sample is plotted.
Default is `1` (no thinning).
span : iterable with shape (ndim,), optional
A list where each element is either a length-2 tuple containing
lower and upper bounds or a float from `(0., 1.]` giving the
fraction of (weighted) samples to include. If a fraction is provided,
the bounds are chosen to be equal-tailed. An example would be::
span = [(0., 10.), 0.95, (5., 6.)]
Default is `1.` for all parameters (no bound).
cmap : str, optional
A `~matplotlib`-style colormap used when plotting the points,
where each point is colored according to its weight. Default is
`'plasma'`.
color : str, optional
A `~matplotlib`-style color used when plotting the points.
This overrides the `cmap` option by giving all points
the same color. Default is `None` (not used).
kde : bool, optional
Whether to use kernel density estimation to estimate and plot
the PDF of the importance weights as a function of log-volume
(as opposed to the importance weights themselves). Default is
`True`.
nkde : int, optional
The number of grid points used when plotting the kernel density
estimate. Default is `1000`.
plot_kwargs : dict, optional
Extra keyword arguments that will be used for plotting the points.
labels : iterable with shape (ndim,), optional
A list of names for each parameter. If not provided, the default name
used when plotting will follow :math:`x_i` style.
label_kwargs : dict, optional
Extra keyword arguments that will be sent to the
`~matplotlib.axes.Axes.set_xlabel` and
`~matplotlib.axes.Axes.set_ylabel` methods.
truths : iterable with shape (ndim,), optional
A list of reference values that will be overplotted on the traces and
marginalized 1-D posteriors as solid horizontal/vertical lines.
Individual values can be exempt using `None`. Default is `None`.
truth_color : str or iterable with shape (ndim,), optional
A `~matplotlib`-style color (either a single color or a different
value for each subplot) used when plotting `truths`.
Default is `'red'`.
truth_kwargs : dict, optional
Extra keyword arguments that will be used for plotting the vertical
and horizontal lines with `truths`.
max_n_ticks : int, optional
Maximum number of ticks allowed. Default is `5`.
use_math_text : bool, optional
Whether the axis tick labels for very large/small exponents should be
displayed as powers of 10 rather than using `e`. Default is `False`.
fig : (`~matplotlib.figure.Figure`, `~matplotlib.axes.Axes`), optional
If provided, overplot the points onto the provided figure object.
Otherwise, by default an internal figure is generated.
Returns
-------
cornerpoints : (`~matplotlib.figure.Figure`, `~matplotlib.axes.Axes`)
Output (sub-)corner plot of (weighted) samples.
"""
# Initialize values.
if truth_kwargs is None:
truth_kwargs = dict()
if label_kwargs is None:
label_kwargs = dict()
if plot_kwargs is None:
plot_kwargs = dict()
# Set defaults.
plot_kwargs['s'] = plot_kwargs.get('s', 1)
truth_kwargs['linestyle'] = truth_kwargs.get('linestyle', 'solid')
truth_kwargs['linewidth'] = truth_kwargs.get('linewidth', 2)
truth_kwargs['alpha'] = truth_kwargs.get('alpha', 0.7)
# Extract weighted samples.
samples = results['samples']
logvol = results['logvol']
try:
weights = np.exp(results['logwt'] - results['logz'][-1])
except:
weights = results['weights']
if kde:
# Derive kernel density estimate.
wt_kde = gaussian_kde(resample_equal(-logvol, weights)) # KDE
logvol_grid = np.linspace(logvol[0], logvol[-1], nkde) # resample
wt_grid = wt_kde.pdf(-logvol_grid) # evaluate KDE PDF
weights = np.interp(-logvol, -logvol_grid, wt_grid) # interpolate
# Deal with 1D results. A number of extra catches are also here
# in case users are trying to plot other results besides the `Results`
# instance generated by `dynesty`.
samples = np.atleast_1d(samples)
if len(samples.shape) == 1:
samples = np.atleast_2d(samples)
else:
assert len(samples.shape) == 2, "Samples must be 1- or 2-D."
samples = samples.T
assert samples.shape[0] <= samples.shape[1], "There are more " \
"dimensions than samples!"
ndim, nsamps = samples.shape
# Check weights.
if weights.ndim != 1:
raise ValueError("Weights must be 1-D.")
if nsamps != weights.shape[0]:
raise ValueError("The number of weights and samples disagree!")
# Determine plotting bounds.
if span is not None:
if len(span) != ndim:
raise ValueError("Dimension mismatch between samples and span.")
for i, _ in enumerate(span):
try:
xmin, xmax = span[i]
except:
q = [0.5 - 0.5 * span[i], 0.5 + 0.5 * span[i]]
span[i] = _quantile(samples[i], q, weights=weights)
# Set labels
if labels is None:
labels = [r"$x_{"+str(i+1)+"}$" for i in range(ndim)]
# Set colormap.
if color is None:
color = weights
# Setup axis layout (from `corner.py`).
factor = 2.0 # size of side of one panel
lbdim = 0.5 * factor # size of left/bottom margin
trdim = 0.2 * factor # size of top/right margin
whspace = 0.05 # size of width/height margin
plotdim = factor * (ndim - 1.) + factor * (ndim - 2.) * whspace
dim = lbdim + plotdim + trdim # total size
# Initialize figure.
if fig is None:
fig, axes = pl.subplots(ndim - 1, ndim - 1, figsize=(dim, dim))
else:
try:
fig, axes = fig
axes = np.array(axes).reshape((ndim - 1, ndim - 1))
except:
raise ValueError("Mismatch between axes and dimension.")
# Format figure.
lb = lbdim / dim
tr = (lbdim + plotdim) / dim
fig.subplots_adjust(left=lb, bottom=lb, right=tr, top=tr,
wspace=whspace, hspace=whspace)
# Plot the 2-D projected samples.
for i, x in enumerate(samples[1:]):
for j, y in enumerate(samples[:-1]):
ax = axes[i, j]
# Setup axes.
if span is not None:
ax.set_xlim(span[j])
ax.set_ylim(span[i])
if j > i:
ax.set_frame_on(False)
ax.set_xticks([])
ax.set_yticks([])
continue
if max_n_ticks == 0:
ax.xaxis.set_major_locator(NullLocator())
ax.yaxis.set_major_locator(NullLocator())
else:
ax.xaxis.set_major_locator(MaxNLocator(max_n_ticks,
prune="lower"))
ax.yaxis.set_major_locator(MaxNLocator(max_n_ticks,
prune="lower"))
# Label axes.
sf = ScalarFormatter(useMathText=use_math_text)
ax.xaxis.set_major_formatter(sf)
ax.yaxis.set_major_formatter(sf)
if i < ndim - 2:
ax.set_xticklabels([])
else:
[l.set_rotation(45) for l in ax.get_xticklabels()]
ax.set_xlabel(labels[j], **label_kwargs)
ax.xaxis.set_label_coords(0.5, -0.3)
if j > 0:
ax.set_yticklabels([])
else:
[l.set_rotation(45) for l in ax.get_yticklabels()]
ax.set_ylabel(labels[i+1], **label_kwargs)
ax.yaxis.set_label_coords(-0.3, 0.5)