-
Notifications
You must be signed in to change notification settings - Fork 34
/
PF_caller_TaRB.m
69 lines (59 loc) · 2.97 KB
/
PF_caller_TaRB.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
function [minus_logpost,x_hat,x_std,Eff_particle]=PF_caller_TaRB_minimizer(optpar,draw,parameterindices,observable_series,num_sim_filter,num_sim_smoother,smoother_dummy,name)
% [minus_logpost,x_hat,x_std,Eff_particle]=PF_caller(draw,observable_series,num_sim_filter,num_sim_smoother,smoother_dummy,name)
%Inputs:
% optpar [n_block by 1] vector vector of estimated
% parameters in current block
% draw [4 by 1] vector vector of estimated parameters
% parameterindices [n_block by 1] vector indices of
% estimated parameters in current block
% observable_series [T by 1] vector observed data
% num_sim_filter scalar number of particles
% num_sim_smoother scalar number of particles for smoother
% smoother_dummy scalar dummy to call smoother
% name string name of the file under which to save
% from smoother
%
% Output
% minus_logpost scalar minus log-posterior
% x_hat [T by 1] vector the posterior state estimate
% x_t|T
% x_std [T by 1] vector standard deviation of the posterior
% Eff_particle [T by 1] vector A measure of the effective sample size
%
% Copyright (C) 2013-2018 Benjamin Born + Johannes Pfeifer
%
% This is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% It is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% See <http://www.gnu.org/licenses/>.
if nargin<8
name='smootherresults';
end
draw(parameterindices,:)=optpar;
%initialize variables
T=length(observable_series);
x_hat=NaN(T,1);
x_std=NaN(T,1);
Eff_particle=NaN(T,1);
rho_sigma=draw(1);
rho=draw(2);
eta_sigma=draw(3);
sigma_bar=draw(4);
[rho_sigma,rho,eta_sigma,sigma_bar]=par_retransform_AR1(rho_sigma,rho,eta_sigma,sigma_bar);
[priorval,alarm]=evaluate_prior_AR1([rho_sigma,rho,eta_sigma,sigma_bar]);
if alarm
minus_logpost=Inf;
return
end
% *********************** Filtering/Smoothing ***************************************
x0 = sigma_bar+eta_sigma*randn(num_sim_filter,1); % The starting values for filtering from initial distribution
[LogL,Eff_particle,x_hat,x_std] = PF_basefunction_with_smoother_AR1(@PF_AR1_density,x0,observable_series,num_sim_filter,num_sim_smoother,rho_sigma,rho,sigma_bar,eta_sigma,name,smoother_dummy);
% add prior
minus_logpost=-(sum(LogL)+priorval);