Skip to content

High-performance numerical linear algebra library for developing on cluster of distributed Docker containers with NVIDIA CUDA, MPICH, and Docker Compose.

License

Notifications You must be signed in to change notification settings

JohnSell620/HPC-Library

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Overview

This library consists mainly of various matrix classes with computational methods like QR factorization, matrix-vector and matrix-matrix multiplication, etc. Testing of MPI and GPU computations is done using Nvidia CUDA, MPICH, and Docker Compose.

Credit to Nikyle Nguyen for a cluster implementation model on Alpine Linux using Docker Compose. See his project here.

Using Docker Images

Both Docker and Docker Compose must be installed on the host machine. Then do the following:

$ git clone https://github.com/JohnSell620/HPC-Library.git
$ cd HPC-Library
$ ./cluster.sh up [size=10]

This will pull the Docker images jhnns/ubuntu-cuda-mpich:latest and jhnns/ubuntu-cuda-mpich:onbuild from Docker Hub.

Use the following command to ssh into the master node:

$ ssh -o "StrictHostKeyChecking no" -i ssh/id_rsa -p 22 mpi@$(docker inspect -f '{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' hpc-library_master_1)

To exit master node and shutdown cluster:

$ exit
$ ./cluster down

Building Without Docker Containers

Install OpenMPI

Some benchmarking programs depend on Open MPI, but it's not required for most programs. Skip steps 1 through 3 if using these is not desired.

  1. Download Open MPI (extracting contents in /usr/local recommended).
  2. Run the following command (which may require sudo).
$ wget https://download.open-mpi.org/release/open-mpi/v3.1/openmpi-3.1.3.tar.gz && \
     tar -xzvf openmpi-* && \
     cd openmpi-* && \
     ./configure --prefix=$HOME/openmpi --enable-mpi-cxx && \
     make all && \
     make install
  1. In ~/.bashrc file, add the following lines.
export PATH=/path/to/openmpi/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/path/to/openmpi/lib\${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

Install CUDA

Installation instruction at NVIDIA's website.

Building and Using the library

Run the following commands to build the HPCLibrary library.

$ clone https://github.com/JohnSell620/HPC-Library.git
$ cd HPC-Library/HPCLibrary
$ mkdir obj exe lib
$ make classes
$ ar rcs lib/libHPCLibrary.a obj/*.o

The following command links the static library to main.cpp:

$ c++ -std=c++11 -I ./inc -L ./lib -static ./tests/main.cpp -lHPCLibrary -o ./exe/libHPCLibraryClient

Now run $ ./exe/libHPCLibraryClient to see the output of main.cpp. To build the benchmarking tests, just run $ make.

Run $ make precomp_headers to pre-compile the .hpp files, and include these to optimize programs.

Usage

Try these commands from the HPC-Library/HPCLibrary directory after running make all.

$ export PATH=/path/to/HPC-Library/HPCLibrary/exe:$PATH
$ bench
$ csrbench
$ sparsebench

Benchmarking Results

Coordinate sparse matrix storage (array of structs) versus struct of arrays doing matrix-vector multiplication. AOSvsCOO

Compressed sparse column versus coordinate sparse (array of structs) storage doing matrix-vect or multiplication. CSCvsCOO

TODO

  1. Fix gpu_densebench.cu timing issue.
  2. Add examples (e.g., 2-D Heat Eq.).

About

High-performance numerical linear algebra library for developing on cluster of distributed Docker containers with NVIDIA CUDA, MPICH, and Docker Compose.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published