This is an anonymous repository for holding the sample code of the abductive learning framework for handwritten equation decipherment experiments in Bridging Machine Learning and Logical Reasoning by Abductive Learning submitted to NeurIPS 2019.
This code is only tested in Linux environment.
- Swi-Prolog
- Python3 with Numpy, Tensorflow and Keras
- ZOOpt (as a submodule)
http://www.swi-prolog.org/build/unix.html
https://wiki.python.org/moin/BeginnersGuide/Download
#install numpy tensorflow keras
pip3 install numpy
pip3 install tensorflow
pip3 intall keras
Set environment variables(Should change file path according to your situation)
# cd to ABL-HED
git submodule update --init --recursive
export ABL_HOME=$PWD
cp /usr/local/lib/swipl/lib/x86_64-linux/libswipl.so $ABL_HOME/src/logic/lib/
export LD_LIBRARY_PATH=$ABL_HOME/src/logic/lib
export SWI_HOME_DIR=/usr/local/lib/swipl/
# for GPU user
export LD_LIBRARY_PATH=$ABL_HOME/src/logic/lib:/usr/local/cuda:$LD_LIBRARY_PATH
First change the swipl_include_dir
and swipl_lib_dir
in setup.py
to your own SWI-Prolog path.
cd src/logic/prolog
python3 setup.py install
Build ZOOpt
cd src/logic/lib/ZOOpt
python3 setup.py build
cp -r build/lib/zoopt ../
Change directory to ABL-HED
, and run equaiton generator to get the training data
cd src/
python3 equation_generator.py
Run abductive learning code
cd src/
python3 main.py
or
python3 main.py --help
To test the RBA example, please specify the src_data_name
and src_data_file
together, e.g.,
python main.py --src_data_name random_images --src_data_file random_equation_data_train_len_26_test_len_26_sys_2_.pk
- It is possible that the logic abduction finds a trivial but consistent
solution: all equations are
0000+0000=0000
with the only rulemy_op([0],[0],[0])
. If it happens, don't hesitate and kill the program, just re-run it and give it another chance :) - The mapping from CNN to symbolic primitive symbols are learned, so it is fine
if ABL learns
0+0=01
and1+1=1
, it just swaps the semantics of0
and1
.