-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtransfer.py
385 lines (331 loc) · 12.4 KB
/
transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import math
import os
import time
from typing import Literal
import torch
import tyro
from gsplat import rasterization
import pycolmap_scene_manager as pycolmap
import numpy as np
import matplotlib
matplotlib.use("TkAgg") # To avoid conflict with cv2
from tqdm import tqdm
from lseg import LSegNet
def torch_to_cv(tensor):
img_cv = tensor.detach().cpu().numpy()[..., ::-1]
img_cv = np.clip(img_cv * 255, 0, 255).astype(np.uint8)
return img_cv
def _detach_tensors_from_dict(d, inplace=True):
if not inplace:
d = d.copy()
for key in d:
if isinstance(d[key], torch.Tensor):
d[key] = d[key].detach()
return d
def load_checkpoint(
checkpoint: str,
data_dir: str,
rasterizer: Literal["inria", "gsplat"] = "inria",
data_factor: int = 1,
):
colmap_dir = os.path.join(data_dir, "sparse/0/")
if not os.path.exists(colmap_dir):
colmap_dir = os.path.join(data_dir, "sparse")
assert os.path.exists(colmap_dir), f"COLMAP directory {colmap_dir} does not exist."
colmap_project = pycolmap.SceneManager(colmap_dir)
colmap_project.load_cameras()
colmap_project.load_images()
colmap_project.load_points3D()
model = torch.load(checkpoint) # Make sure it is generated by 3DGS original repo
if rasterizer == "inria":
model_params, _ = model
splats = {
"active_sh_degree": model_params[0],
"means": model_params[1],
"features_dc": model_params[2],
"features_rest": model_params[3],
"scaling": model_params[4],
"rotation": model_params[5],
"opacity": model_params[6].squeeze(1),
}
elif rasterizer == "gsplat":
print(model["splats"].keys())
model_params = model["splats"]
splats = {
"active_sh_degree": 3,
"means": model_params["means"],
"features_dc": model_params["sh0"],
"features_rest": model_params["shN"],
"scaling": model_params["scales"],
"rotation": model_params["quats"],
"opacity": model_params["opacities"],
}
else:
raise ValueError("Invalid rasterizer")
_detach_tensors_from_dict(splats)
# Assuming only one camera
for camera in colmap_project.cameras.values():
camera_matrix = torch.tensor(
[
[camera.fx, 0, camera.cx],
[0, camera.fy, camera.cy],
[0, 0, 1],
]
)
break
camera_matrix[:2, :3] /= data_factor
splats["camera_matrix"] = camera_matrix
splats["colmap_project"] = colmap_project
splats["colmap_dir"] = data_dir
return splats
def get_viewmat_from_colmap_image(image):
viewmat = torch.eye(4).float() # .to(device)
viewmat[:3, :3] = torch.tensor(image.R()).float() # .to(device)
viewmat[:3, 3] = torch.tensor(image.t).float() # .to(device)
return viewmat
def prune_by_gradients(splats):
colmap_project = splats["colmap_project"]
frame_idx = 0
means = splats["means"]
colors_dc = splats["features_dc"]
colors_rest = splats["features_rest"]
colors = torch.cat([colors_dc, colors_rest], dim=1)
opacities = torch.sigmoid(splats["opacity"])
scales = torch.exp(splats["scaling"])
quats = splats["rotation"]
K = splats["camera_matrix"]
colors.requires_grad = True
gaussian_grads = torch.zeros(colors.shape[0], device=colors.device)
for image in sorted(colmap_project.images.values(), key=lambda x: x.name):
viewmat = get_viewmat_from_colmap_image(image)
output, _, _ = rasterization(
means,
quats,
scales,
opacities,
colors[:, 0, :],
viewmats=viewmat[None],
Ks=K[None],
# sh_degree=3,
width=K[0, 2] * 2,
height=K[1, 2] * 2,
)
frame_idx += 1
pseudo_loss = ((output.detach() + 1 - output) ** 2).mean()
pseudo_loss.backward()
# print(colors.grad.shape)
gaussian_grads += (colors.grad[:, 0]).norm(dim=[1])
colors.grad.zero_()
mask = gaussian_grads > 0
print("Total splats", len(gaussian_grads))
print("Pruned", (~mask).sum(), "splats")
print("Remaining", mask.sum(), "splats")
splats = splats.copy()
splats["means"] = splats["means"][mask]
splats["features_dc"] = splats["features_dc"][mask]
splats["features_rest"] = splats["features_rest"][mask]
splats["scaling"] = splats["scaling"][mask]
splats["rotation"] = splats["rotation"][mask]
splats["opacity"] = splats["opacity"][mask]
return splats
def test_proper_pruning(splats, splats_after_pruning):
colmap_project = splats["colmap_project"]
frame_idx = 0
means = splats["means"]
colors_dc = splats["features_dc"]
colors_rest = splats["features_rest"]
colors = torch.cat([colors_dc, colors_rest], dim=1)
opacities = torch.sigmoid(splats["opacity"])
scales = torch.exp(splats["scaling"])
quats = splats["rotation"]
means_pruned = splats_after_pruning["means"]
colors_dc_pruned = splats_after_pruning["features_dc"]
colors_rest_pruned = splats_after_pruning["features_rest"]
colors_pruned = torch.cat([colors_dc_pruned, colors_rest_pruned], dim=1)
opacities_pruned = torch.sigmoid(splats_after_pruning["opacity"])
scales_pruned = torch.exp(splats_after_pruning["scaling"])
quats_pruned = splats_after_pruning["rotation"]
K = splats["camera_matrix"]
total_error = 0
max_pixel_error = 0
for image in sorted(colmap_project.images.values(), key=lambda x: x.name):
viewmat = get_viewmat_from_colmap_image(image)
output, _, _ = rasterization(
means,
quats,
scales,
opacities,
colors,
viewmats=viewmat[None],
Ks=K[None],
sh_degree=3,
width=K[0, 2] * 2,
height=K[1, 2] * 2,
)
output_pruned, _, _ = rasterization(
means_pruned,
quats_pruned,
scales_pruned,
opacities_pruned,
colors_pruned,
viewmats=viewmat[None],
Ks=K[None],
sh_degree=3,
width=K[0, 2] * 2,
height=K[1, 2] * 2,
)
total_error += torch.abs((output - output_pruned)).sum()
max_pixel_error = max(
max_pixel_error, torch.abs((output - output_pruned)).max()
)
percentage_pruned = (
(len(splats["means"]) - len(splats_after_pruning["means"]))
/ len(splats["means"])
* 100
)
assert max_pixel_error < 1 / (
255 * 2
), "Max pixel error should be less than 1/(255*2), safety margin"
print(
"Report {}% pruned, max pixel error = {}, total pixel error = {}".format(
percentage_pruned, max_pixel_error, total_error
)
)
def create_feature_field_lseg(splats, batch_count = 1, use_cpu=False):
device = "cpu" if use_cpu else "cuda"
net = LSegNet(
backbone="clip_vitl16_384",
features=256,
crop_size=480,
arch_option=0,
block_depth=0,
activation="lrelu",
)
# Load pre-trained weights
net.load_state_dict(torch.load("./checkpoints/lseg_minimal_e200.ckpt", map_location=device))
net.eval()
net.to(device)
means = splats["means"]
colors_dc = splats["features_dc"]
colors_rest = splats["features_rest"]
colors_all = torch.cat([colors_dc, colors_rest], dim=1)
colors = colors_dc[:, 0, :] # * 0
colors_0 = colors_dc[:, 0, :] * 0
colors.to(device)
colors_0.to(device)
colmap_project = splats["colmap_project"]
opacities = torch.sigmoid(splats["opacity"])
scales = torch.exp(splats["scaling"])
quats = splats["rotation"]
K = splats["camera_matrix"]
colors.requires_grad = True
colors_0.requires_grad = True
gaussian_features = torch.zeros(colors.shape[0], 512, device=colors.device)
gaussian_denoms = torch.ones(colors.shape[0], device=colors.device) * 1e-12
t1 = time.time()
colors_feats = torch.zeros(colors.shape[0], 512, device=colors.device, requires_grad=True)
colors_feats_0 = torch.zeros(colors.shape[0], 3, device=colors.device, requires_grad=True)
images = sorted(colmap_project.images.values(), key=lambda x: x.name)
batch_size = math.ceil(len(images) / batch_count) if batch_count > 0 else 1
for batch_start in tqdm(
range(0, len(images), batch_size),
desc="Feature backprojection (batches)",
):
batch = images[batch_start:batch_start + batch_size]
for image in batch:
viewmat = get_viewmat_from_colmap_image(image)
width = int(K[0, 2] * 2)
height = int(K[1, 2] * 2)
with torch.no_grad():
output, _, meta = rasterization(
means,
quats,
scales,
opacities,
colors_all,
viewmat[None],
K[None],
width=width,
height=height,
sh_degree=3,
)
output = torch.nn.functional.interpolate(
output.permute(0, 3, 1, 2).to(device),
size=(480, 480),
mode="bilinear",
)
output.to(device)
feats = net.forward(output)
feats = torch.nn.functional.normalize(feats, dim=1)
feats = torch.nn.functional.interpolate(
feats, size=(height, width), mode="bilinear"
)[0]
feats = feats.permute(1, 2, 0)
output_for_grad, _, meta = rasterization(
means,
quats,
scales,
opacities,
colors_feats,
viewmat[None],
K[None],
width=width,
height=height,
)
target = (output_for_grad[0].to(device) * feats).sum()
target.to(device)
target.backward()
colors_feats_copy = colors_feats.grad.clone()
colors_feats.grad.zero_()
output_for_grad, _, meta = rasterization(
means,
quats,
scales,
opacities,
colors_feats_0,
viewmat[None],
K[None],
width=width,
height=height,
)
target_0 = (output_for_grad[0]).sum()
target_0.to(device)
target_0.backward()
gaussian_features += colors_feats_copy
gaussian_denoms += colors_feats_0.grad[:, 0]
colors_feats_0.grad.zero_()
# Clean up unused variables and free GPU memory
del viewmat, meta, _, output, feats, output_for_grad, colors_feats_copy, target, target_0
torch.cuda.empty_cache()
gaussian_features = gaussian_features / gaussian_denoms[..., None]
gaussian_features = gaussian_features / gaussian_features.norm(dim=-1, keepdim=True)
# Replace nan values with 0
gaussian_features[torch.isnan(gaussian_features)] = 0
t2 = time.time()
print("Time taken for feature backprojection", t2 - t1)
return gaussian_features
def main(
data_dir: str = "./data/garden", # colmap path
checkpoint: str = "./data/garden/ckpts/ckpt_29999_rank0.pt", # checkpoint path, can generate from original 3DGS repo
results_dir: str = "./results/garden", # output path
rasterizer: Literal[
"inria", "gsplat"
] = "gsplat", # Original or GSplat for checkpoints
data_factor: int = 4,
feature_field_batch_count: int = 1, # Number of batches to process for feature field
run_feature_field_on_cpu: bool = False, # Run feature field on CPU
):
if not torch.cuda.is_available():
raise RuntimeError("CUDA is required for this demo")
torch.set_default_device("cuda")
os.makedirs(results_dir, exist_ok=True)
splats = load_checkpoint(
checkpoint, data_dir, rasterizer=rasterizer, data_factor=data_factor
)
splats_optimized = prune_by_gradients(splats)
test_proper_pruning(splats, splats_optimized)
splats = splats_optimized
features = create_feature_field_lseg(splats, feature_field_batch_count, run_feature_field_on_cpu)
torch.save(features, f"{results_dir}/features_lseg.pt")
if __name__ == "__main__":
tyro.cli(main)