-
Notifications
You must be signed in to change notification settings - Fork 0
/
game-of-life-numpy.py
84 lines (73 loc) · 3.02 KB
/
game-of-life-numpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# -----------------------------------------------------------------------------
# Copyright INRIA
# Contributors: Nicolas P. Rougier (Nicolas.Rougier@inria.fr)
#
# DANA is a computing framework for the simulation of distributed,
# asynchronous, numerical and adaptive models.
#
# This software is governed by the CeCILL license under French law and abiding
# by the rules of distribution of free software. You can use, modify and/ or
# redistribute the software under the terms of the CeCILL license as circulated
# by CEA, CNRS and INRIA at the following URL
# http://www.cecill.info/index.en.html.
#
# As a counterpart to the access to the source code and rights to copy, modify
# and redistribute granted by the license, users are provided only with a
# limited warranty and the software's author, the holder of the economic
# rights, and the successive licensors have only limited liability.
#
# In this respect, the user's attention is drawn to the risks associated with
# loading, using, modifying and/or developing or reproducing the software by
# the user in light of its specific status of free software, that may mean that
# it is complicated to manipulate, and that also therefore means that it is
# reserved for developers and experienced professionals having in-depth
# computer knowledge. Users are therefore encouraged to load and test the
# software's suitability as regards their requirements in conditions enabling
# the security of their systems and/or data to be ensured and, more generally,
# to use and operate it in the same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# -----------------------------------------------------------------------------
import numpy as np
def iterate_1(Z):
# Count neighbours
N = np.zeros(Z.shape, int)
N[1:-1,1:-1] += (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
Z[1:-1,0:-2] + Z[1:-1,2:] +
Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:])
N_ = N.ravel()
Z_ = Z.ravel()
# Apply rules
R1 = np.argwhere( (Z_==1) & (N_ < 2) )
R2 = np.argwhere( (Z_==1) & (N_ > 3) )
R3 = np.argwhere( (Z_==1) & ((N_==2) | (N_==3)) )
R4 = np.argwhere( (Z_==0) & (N_==3) )
# Set new values
Z_[R1] = 0
Z_[R2] = 0
Z_[R3] = Z_[R3]
Z_[R4] = 1
# Make sure borders stay null
Z[0,:] = Z[-1,:] = Z[:,0] = Z[:,-1] = 0
def iterate_2(Z):
# Count neighbours
N = (Z[0:-2,0:-2] + Z[0:-2,1:-1] + Z[0:-2,2:] +
Z[1:-1,0:-2] + Z[1:-1,2:] +
Z[2: ,0:-2] + Z[2: ,1:-1] + Z[2: ,2:])
# Apply rules
birth = (N==3) & (Z[1:-1,1:-1]==0)
survive = ((N==2) | (N==3)) & (Z[1:-1,1:-1]==1)
Z[...] = 0
Z[1:-1,1:-1][birth | survive] = 1
return Z
Z = np.array([[0,0,0,0,0,0],
[0,0,0,1,0,0],
[0,1,0,1,0,0],
[0,0,1,1,0,0],
[0,0,0,0,0,0],
[0,0,0,0,0,0]])
print(Z)
print()
for i in range(4): iterate_2(Z)
print(Z)