-
Notifications
You must be signed in to change notification settings - Fork 0
/
II-Sm.tex
1559 lines (1430 loc) · 68.1 KB
/
II-Sm.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{The groups \texorpdfstring{$S_{\mathfrak{m}}$}{Sm}}
\label{ch:ii}
Throughout this chapter,
\dpage
$K$ denotes an algebraic number field.
We associate to $K$ a projective family $(S_{\mathfrak{m}})$ of commutative
algebraic groups over $\Q$, and we show that each $S_{\mathfrak{m}}$ gives rise
to a strictly compatible system of rational $\ell$-adic representations of $K$.
In the next chapter, we shall see that all ``locally algebraic''
abelian rational representations are of the form described here.
\section{Preliminaries}
\label{sec:II_1}
\subsection{The torus $\TT$}
\label{sec:II_11}
Let $\TT = \WRes_{K/\Q}(\GG_{m, K})$\index{Tz@$\TT = \WRes_{K/\Q}(\GG_{m, K})$}
be the algebraic group over $\Q$, obtained from the multiplicative group
$\GG_m$\index{Gm@$\GG_m$} by restriction of scalars from $K$ to $\Q$, cf.\
\citeauthor{43}~\cite{43}, \S 1.3. If $A$ is a commutative $\Q$-algebra, the
points of $\TT$ with values in $A$ form by definition the multiplicative group
$(K \otimes_\Q A)^\times$ of invertible elements of $K \otimes_\Q A$.
In particular, $\TT(\Q) = K^\times$. If $d = [K : \Q]$, the group $\TT$ is a
\strong{torus}\index{Torus} of dimension $d$; this means that the group
$\TT_{/\algcl\Q} = \TT \otimes_\Q \algcl\Q$ obtained from $\TT$ by extending
the scalars from $\Q$ to $\algcl\Q$, is isomorphic
\dpage
to $\GG_{m, \algcl{\Q}} \times \hdots \times \GG_{m, \algcl{\Q}}$ ($d$ times).
More precisely, let $\Gamma$ be the set of embeddings of $K$ into $\algcl{\Q}$;
each $\sigma \in \Gamma$ extends to a homomorphism $K \otimes_{\Q} \algcl{\Q}
\to \algcl{\Q}$, hence defines a morphism $[\sigma]\colon \TT_{/\algcl{\Q}} \to
\GG_{m, \algcl{Q}}$. The collection of all $[\sigma]$'s gives the isomorphism
$T_{/ \algcl{\Q}} \to G_{m/\algcl{\Q}} \times \hdots \times G_{m/\algcl{\Q}}$.
Moreover, the $[\sigma]$'s form a basis of the \emph{character group} $X(T) =
\Hom_{\algcl{\Q}}(\TT_{/\algcl{\Q}}, \GG_{m, \algcl{\Q}})$ of $T$. Note that
the Galois group $\Gal(\algcl{\Q} / \Q)$ acts in a natural way on $X(T)$, viz.
by permuting the $[\sigma]'s$. (For the dictionary between tori and Galois
modules, see for instance T. Ono \cite{21}.)
\subsection{Cutting down $\TT$}
\label{sec:II_12}
Let $E$ be a subgroup of $K = \TT(\Q)$ and let $\overline{E}$ be the Zariski
closure of $E$ in $\TT$. Using the formula $\overline{E} \times \overline{E} =
\overline{E \times E}$, one sees that $E$ is an algebraic subgroup of $\TT$.
Let $\TT_E$ be the quotient group $\TT/E$; then $\TT_E$ is also a torus over
$\Q$. Its character group $X_E = X(\TT_E)$ is the subgroup of $X = X(T)$
consisting of those characters which take the value 1 on $E$.
If $\lambda = \prod_{\sigma \in \Gamma} [\sigma]^{n_\sigma}$ denotes a
character of $\TT$, then $X_E$ is the subgroup of those $\lambda \in X$ for
which
$\prod_{\sigma \in \Gamma} [\sigma]^{n_\sigma} = 1$, for all $x \in E$.
\subsubsection*{Exercise}
\begin{enumerate}[label=\textit{\alph*}.]
\item Let $K$ be quadratic over $\Q$, so that $\dim T = 2$. Let $E$ be the
group of units of $K$. Show that $T$ is of dimension 2 (resp.\ 1) if
$K$ is imaginary (resp.\ real).
\item Take for $K$ a cubic field with one real place and one complex one, and
let again $E$ be its group of units (of rank 1). Show that $\dim T = 3$
and $\dim T_E = 1$.
(For more examples, see \ref{sec:II_33}.)\dpage
\end{enumerate}
\subsection{Enlarging groups}
\label{sec:II_13}
Let $k$ be a field and $A$ a commutative algebraic group over $k$. Let
\begin{equation}\label{eq:II_13}
\begin{tikzcd}
0 \arrow[r] & Y_1 \arrow[r] & Y_2 \arrow[r] & Y_3 \arrow[r] & 0
\end{tikzcd}
\end{equation}
an exact sequence of (abstract) commutative groups, with $Y_3$ \emph{finite}.
Let
\[
\varepsilon : Y_1 \rightarrow A(k)
\]
be a homomorphism of $Y_1$ into the group of $k$-rational points of $A$. We
intend to construct an algebraic group $B$, together with a morphism of
algebraic groups $A \to B$ and a homomorphism of $Y_2$ into $B(k)$ such that,
\begin{enumerate}[(a)]
\item \emph{the diagram}
\[
\begin{tikzcd}
Y_1 \arrow[r] \arrow[d] & A(k) \arrow[d] \\
Y_2 \arrow[r] & B(k)
\end{tikzcd}
\]
\emph{is commutative},
\item $B$ \emph{is ``universal'' with respect to} (a).
\end{enumerate}
The universality of $B$ means that, for any algebraic group $B'$ over $k$ and
morphism $A \to B'$, $Y_2 \to B'(k)$ such that $(a)$ is true (with $B$ replaced
by $B'$), there exists a unique algebraic morphism $f:B \to B'$ such that the
given maps $A \to B'$ and $Y_2 \to B(k)$ can
\dpage
be obtained by composing those of $B$ with $f$. (In other words, $B$ is a \emph
{push-out} over $Y_1$ of $A$ and the ``constant'' group scheme defined by
$Y_2$.)
The uniqueness of $B$ is assured by its universality. Let us prove its
existence. For each $y \in Y_3$ let $\overline{y}$ be a representative of $y$
in
$Y_2$. If $y$, $y' \in Y_3$, we have
\[
\overline{y} + \overline{y'} = \overline{y + y'} + c(y, y')
\]
with $c(y, y') \in Y_1$; the cochain $c$ is a $2$-cocycle defining the
extension~\ref{eq:II_13}. Let $B$ be the disjoint union of copies $A_y$ of $A$,
indexed by $y \in Y_3$. Define a group law on $B$ via the mappings
\[
\pi_{y, y'} : A_y \times A_{y'} \rightarrow A_{y + y'} \qquad (y,~y' \in Y_3),
\]
given by addition in $A$ followed by translation by $\varepsilon(c(y,y'))$. One
then checks easily that $B$ has the required universal property, the maps $A
\to B$ and $Y_2 \to B(k)$ being defined as follows:
$A \to B$ is the natural map $A \to A_0$ followed by translation by $- c(0,0)$,
$Y_2 \to B(k)$ maps an element $\overline{y} + z$, $y \in Y_3$, $z \in Y_1$
onto the image of z in $A_y$.
Note that for any extension \emph{field} $k'$ of $k$ we have an \emph{exact
sequence}
\[
\begin{tikzcd}
0 \arrow[r] & A(k') \arrow[r] & B(k') \arrow[r] & Y_3 \arrow[r] & 0,
\end{tikzcd}
\]
and a \emph{commutative diagram}
\dpage
\[
\begin{tikzcd}
0 \arrow[r] & Y_1 \arrow[r] \arrow[d] & Y_2 \arrow[r] \arrow[d] & Y_3
\arrow[r] \arrow[d] & 0 \\
0 \arrow[r] & A(k') \arrow[r] & B(k') \arrow[r] & Y_3 \arrow[r] & 0
\end{tikzcd}
\]
The algebraic group $B$ is thus an \emph{extension} of the ``constant'' algebraic group $Y_3$ by $A$.
\begin{obs}
\begin{enumerate}
\item Let $k'$ be an extension of $k$ and $A' = A \times_k k'$. We may
apply the above construction to the $k'$-algebraic group $A'$, with respect
to the exact sequence~\ref{eq:II_13} and to the map $Y_1 \to A(k) \to A'(k')
$. The group $B'$ thus obtained is canonically isomorphic to $B \times_k
k'$; this follows, for instance, from the explicit construction of $B$ and
$B'$.
\item We will only use the above construction when $\char(k) = 0$ and $A$
is a torus. The enlarged group $B$ is then a ``group of multiplicative
type''; this means that, after a suitable finite extension of the ground
field, $B$ becomes isomorphic to the product of a torus and a finite
abelian group. Such a group is uniquely determined by its character group $X
(B) = \Hom_{\algcl{k}} (B_{/\algcl{k}}, \GG_{m, \algcl{k}})$, which is a
Galois-module of finite type over $\Z$. Here $X(B)$ can be described as the
set of pairs $(\phi, \chi)$, where $\phi \colon Y_2 \to
{\algcl{k}}^\times$ is a homomorphism and $\chi \in Z(A)$ is such that
$\phi(y_1) = \chi(y_1)$ for all $y_1 \in Y_1$. Note that this gives an
alternate definition of $B$.
\end{enumerate}
\end{obs}
\subsubsection*{Exercise}
\begin{enumerate}[a)]
\item Let $k'$ be a commutative $k$-algebra, with $k' \neq 0$, and $\Spec
(k')$ connected (i.e.\ $k'$ contains exactly two idempotents: $0$ and $1$).
Show the existence of an exact sequence:
\dpage
\[\begin{tikzcd}
0 \rar & A(k') \rar & B(k') \rar & Y_3 \rar & 0.
\end{tikzcd}\]
\item What happens when $\Spec(k')$ is not connected?
\end{enumerate}
\section{Construction of \texorpdfstring{$T_{\mathfrak{m}}$}{Tm} and
\texorpdfstring{$S_{\mathfrak{m}}$}{Sm}}
\label{sec:II_2}
\subsection{Idèles and idèles-classes}
\label{sec:II_21}
We defined in Chapter~\ref{ch:i}, \ref{sec:I_21} the set $M_K^0$ of finite
places of the number field $K$. Let now $M_K^\infty$\index{MKinf@$M_K^\infty$}
be the set of equivalence classes of archimedian absolute values of $K$, and
let $M_K$\index{MK@$M_K$} be the union of $M_K$ and $M_K^\infty$. If $v \in
M_K$ then $K_v$ denotes the \emph{completion} of $K$ with respect to $v$. For
$v \in M_K^\infty$ we have $K_v = \R$ or $K_v = \C$, and $K$ is ultrametric if
$v \in M_K^0$. For $v \in M_K^0$, the group of units of $K_v$ is denoted by
$U_v$.\index{Uv@$U_v$} The \strong{idèle group}\index{Idèle} $I$\index{I@$I$}
of $K$ is the subgroup of
\[
\prod_{v \in M_K} K_v^\times,
\]
consisting of the families $(a_v)$ with $a_v \in U_v$, for almost all $v \in
M_K^0$; it is given a topology by decreeing that the subgroup (with the product
topology)
\[
\prod_{v \in M_K^\infty} K_v^\times \times \prod_{v \in M_K^0} U_v
\]
be open. We embed $K^\times$ into $I$ by sending $a \in K^\times$ onto the
idèle $(a_v)$, where $a_v = a$ for all $v$. The topology induced on $K$ is the
discrete topology. The quotient group $C_K = I/K^\times$\index{class
group@$C_K$} is called the \strong{idèle class group}\index{Idèle class} of
$K$.
(For all this, see \citeauthor{6}~\cite{6}, \citeauthor{13}~\cite{13} or
\citeauthor{44}~\cite{44}.)
Let $S$ be a finite subset of $M_K^0$.
\dpage
Then by a \strong{modulus of support $S$} we mean a family $\mathfrak{m} =
(m_v)_{v\in S}$ where the $m_v$ are integers $\ge 1$. If $v \in M_K$ and
$\mathfrak{m}$ is a modulus of support $S$, we let $U_{v, \mathfrak{m}}$%
\index{Uvm@$U_{v, \mathfrak{m}}$} denote the connected component of
$K_v^\times$ if $v \in M_K^\infty$, the subgroup of $U_v$ consisting of those
$u \in U_v$ for which $v(1-u) \ge m_v$ if $v \in S$, and $U_v$ if $v \in M_K^0
\setminus S$. The group $U_{\mathfrak{m}} = \prod_{v} U_{v, \mathfrak{m}}$ is
an \emph{open subgroup} of $I$. If $E$ is the group of units of $K$, let
$E_{\mathfrak{m}} = E \cap U_{\mathfrak{m}}$.\index{Em@$E_{\mathfrak{m}}$} The
subgroup $E_{\mathfrak{m}}$ is of finite index in $E$.
(Conversely, by a theorem of Chevalley (\cite{8}, see also \cite{24},
n\textsuperscript{o} 3.5) every subgroup of finite index in $E$ contains an
$E_{\mathfrak{m}}$ for a suitable modulus $\mathfrak{m}$.)
Let $I_{\mathfrak{m}}$\index{Im@$I_{\mathfrak{m}}$} be the quotient
$I/U_{\mathfrak{m}}$ and $C_{\mathfrak{m}}$\index{Cm@$C_{\mathfrak{m}}$} the
quotient $I/K^\times U_{\mathfrak{m}} = C/$(Image of $U_{\mathfrak{m}}$ in
$C_{\mathfrak{m}}$). One then has the exact sequence:
\[\begin{tikzcd}[sep=large]
1 \rar & K^\times/E_{\mathfrak{m}} \rar & I_{\mathfrak{m}} \rar &
C_{\mathfrak{m}} \rar & 1
\end{tikzcd}\]
\emph{The group $C_{\mathfrak{m}}$ is finite}; in fact, the image of
$U_{\mathfrak{m}}$ in $C$ is open, hence contains the connected component
$D$\index{D@$D$} of $C$, and the group $C/D$ is known to be compact (see
\cite{13}, \cite{44}). Moreover, any open subgroup of $I$ contains one of the
$U_{\mathfrak{m}}$'s, hence \emph{$C/D$ is the projective limit} of the
$C_{\mathfrak{m}}$'s. Class field theory (cf.\ for instance
\citeauthor{6}~\cite{6}), gives \emph{an isomorphism of $C/D = \invlim
C_{\mathfrak{m}}$ onto the Galois group $\abcl G$} of the maximal abelian
extension of $K$.
\begin{obs}
A more classical definition of $C_{\mathfrak{m}}$ is as follows. Let $\Id_S$ be
the group of fractional ideals of $K$ prime to $S$, and $P$ the subgroup of
principal ideals $(\gamma)$, where $\gamma$ is totally positive and
\dpage
$\gamma \equiv 1 \mod{\mathfrak{m}}$ (i.e.\ $\gamma$ belongs to $U_{v,
\mathfrak{m}}$ for all $v \in S$ and $v \in M_K^\infty$). Let
$\Cl_{\mathfrak{m}} = \Id_S/P_{S, \mathfrak{m}}$. We have the exact sequence:
\[\begin{tikzcd}[sep=large]
1 \rar & P_{S, \mathfrak{m}} \rar & \Id_S \rar & \Cl_{\mathfrak{m}}
\rar & 1.
\end{tikzcd}\]
For each \vec $a = \prod_{v\notin S} v^{a_v} \in \Id_S$, choose an idèle
$\alpha = (\alpha_v)$, with $\alpha_v \in U_{v, \mathfrak{m}}$ if $v \in S$ or
$v \in M_K^\infty$, and $v(\alpha_v) = a_v$ if $v \in M_K^\infty \setminus S$.
The image of $\alpha$ in $I_{\mathfrak{m}} = I/U_{\mathfrak{m}}$ depends only
on $\vec a$. We then get a homomorphism $g \colon \Id_S \to I_{\mathfrak{m}}$.
One checks readily that $g$ extends to a commutative diagram
% https://q.uiver.app/#q=WzAsMTAsWzAsMCwiXFxidWxsZXQiXSxbMSwwLCJcXGJ1bGxldCJdLFsxLDEsIlxcYnVsbGV0Il0sWzAsMSwiXFxidWxsZXQiXSxbMiwxLCJcXGJ1bGxldCJdLFsyLDAsIlxcYnVsbGV0Il0sWzMsMCwiXFxidWxsZXQiXSxbMywxLCJcXGJ1bGxldCJdLFs0LDEsIlxcYnVsbGV0Il0sWzQsMCwiXFxidWxsZXQiXSxbMCwxXSxbMSwyXSxbMywyXSxbMiw0XSxbMSw1XSxbNSw2XSxbNSw0LCJnIl0sWzYsNywiZiJdLFs0LDddLFs3LDhdLFs2LDldXQ==
\[\begin{tikzcd}[row sep=large]
1 & P_{S, \mathfrak{m}} & \Id_S & \Cl_{\mathfrak{m}} & 1 \\
1 & K^\times/E_{\mathfrak{m}} & I_{\mathfrak{m}} & C_{\mathfrak{m}} & 1
\arrow[from=1-1, to=1-2]
\arrow[from=1-2, to=1-3]
\arrow[from=1-2, to=2-2]
\arrow[from=1-3, to=1-4]
\arrow["g", from=1-3, to=2-3]
\arrow[from=1-4, to=1-5]
\arrow["f", from=1-4, to=2-4]
\arrow[from=2-1, to=2-2]
\arrow[from=2-2, to=2-3]
\arrow[from=2-3, to=2-4]
\arrow[from=2-4, to=2-5]
\end{tikzcd}\]
and that $f\colon \Cl_{\mathfrak{m}} \to C_{\mathfrak{m}}$ \emph{is an
isomorphism:} hence $C$ can be identified with the ideal class group mod
$\mathfrak{m}$ (and this shows again that it is finite).
\end{obs}
\subsection{The groups \texorpdfstring{$T_{\mathfrak{m}}$}{Tm} and
\texorpdfstring{$S_{\mathfrak{m}}$}{Sm}}
\label{sec:II_22}
We are now in a position to apply the group construction of~\ref{sec:II_13}.
We take for exact sequence~\ref{eq:II_13} the sequence
\[
\begin{tikzcd}
1 \arrow[r] & K^{\times} / E_\mathfrak{m} \arrow[r] & I_\mathfrak{m}
\arrow[r] & C_\mathfrak{m} \arrow[r] & I
\end{tikzcd}
\]
and for $A$ the algebraic group $T_\mathfrak{m} = \TT / \algcl{E_\mathfrak{m}}
$, where $E_\mathfrak{m}$ is as before, $\TT$ is the torus $\WRes_{K/\Q}(
\GG_{m, K})$ defined in~\ref{sec:II_11}, and $\algcl{E_\mathfrak{m}}$ is the
\dpage
Zariski closure of $E_\mathfrak{m}$ in $\TT$, cf.\ ~\ref{sec:II_12}.
The construction of~\ref{sec:II_13} now yields a \emph{$\Q$-algebraic group}
$S_\mathfrak{m}$ with an algebraic morphism $T_\mathfrak{m} \to S_\mathfrak{m}$
and a group homomorphism $\varepsilon\colonI_\mathfrak{m} \to S_\mathfrak{m} (\Q)$.
The sequence
\[
\begin{tikzcd}
1 \arrow[r] & T_\mathfrak{m} \arrow[r] & S_\mathfrak{m} \arrow[r] &
C_\mathfrak{m} \arrow[r] & 1
\end{tikzcd}
\]
is exact ($C_\mathfrak{m}$ being identified with the corresponding constant
algebraic group) and the diagram
\begin{equation}\tag{$**$}\label{eq:II_22}
\begin{tikzcd}
1 \arrow[r] & K^\times / E_\mathfrak{m} \arrow[r] \arrow[d] &
I_\mathfrak{m} \arrow[r] \arrow[d, "\varepsilon"] & C_\mathfrak{m}
\arrow[r] \arrow[d, "\id"] & 1 \\
1 \arrow[r] & T_\mathfrak{m}(\Q) \arrow[r] & S_\mathfrak{m}
(\Q) \arrow[r] & C_\mathfrak{m} \arrow[r] & 1
\end{tikzcd}
\end{equation}
is commutative.
\begin{obs}
Let $\mathfrak{m}'$ be another modulus; assume $\mathfrak{m}' \geq \mathfrak{m}
$, i.e.\ $\Supp(\mathfrak{m}') \supset \Supp(\mathfrak{m})$ and
$\mathfrak{m}'_v \geq \mathfrak{m}_v$ if $v \in \Supp(\mathfrak{m})$. From the
inclusion $U_{\mathfrak{m}'} \subset U_\mathfrak{m}$ one deduces maps $T_{
\mathfrak{m}'} \to T_\mathfrak{m}$ and $I_{\mathfrak{m}'} \to I_\mathfrak{m}$,
whence a morphism $S_{\mathfrak{m}'} \to S_\mathfrak{m}$. Hence the
$S_\mathfrak{m}$'s form a projective system; their limit is a proalgebraic
group over $\Q$, extension of the profinite group $C/D = \invlim
C_{\mathfrak{m}}$ by a torus.
\end{obs}
\subsubsection*{Exercises}
\begin{enumerate}[1)]
\item Let $\algcl{E_\mathfrak{m}}(\Q)$ be the Zariski-closure of
$E_\mathfrak{m}$ in $K^\times = \T(\Q)$. Show that the kernel of
$\varepsilon_\mathfrak{m} \colon I/U_\mathfrak{m} \to
S_\mathfrak{m}(\Q)$ is the image of $\algcl{E_\mathfrak{m}}(\Q) \to
I/U_\mathfrak{m}$.
\item Let $H_{\mathfrak{m}'/\mathfrak{m}}$ be the kernel of
\dpage
$S_{\mathfrak{m}'} \to S_\mathfrak{m}$, where $\mathfrak{m}'_v \geq
\mathfrak{m}_v$.
\begin{enumerate}[a)]
\item Show that $H_{\mathfrak{m}'/\mathfrak{m}}$ is a finite subgroup
of $S_{\mathfrak{m}'}(\Q)$ and that it is contained in the
image of $\varepsilon_{\mathfrak{m}'}$.
\item Construct an exact sequence (cf.\ Exer.~1)
\[\begin{tikzcd}
1 \arrow[r] & \left({E_\mathfrak{m} \cap
\algcl{E_{\mathfrak{m}'}}(\Q)}\right)/ E_{\mathfrak{m}'}
\arrow[r] & U_\mathfrak{m} / U_{\mathfrak{m}'}
\arrow[r] & H_{\mathfrak{m}'/\mathfrak{m}}
\arrow[r] & 1.
\end{tikzcd}\]
\end{enumerate}
\end{enumerate}
\subsection{The canonical \texorpdfstring{$\ell$}{ℓ}-adic representation with
values in \texorpdfstring{$S_{\mathfrak{m}}$}{Sm}}\label{sec:II_23}
Let $\mathfrak{m}$ be a modulus, and let $\ell$ be a prime number. Let
$\varepsilon\colon I \to I_{\mathfrak{m}} \to S_{\mathfrak{m}}(\Q)$ be the
homomorphism defined in \ref{sec:II_22}. Let $\pi\colon \TT \to S_{\mathfrak{m}}$
be the algebraic morphism $\TT \to T_{\mathfrak{m}} \to S_{\mathfrak{m}}$; by
taking points with values in $\Q_\ell$, $\pi$ defines a homomorphism
\[
\pi_\ell \colon \TT(\Q_\ell) \longrightarrow S_{\mathfrak{m}}(\Q_\ell)
\]
Since $K \otimes \Q_\ell = \prod_{v\mid\ell} K_v$, the group $\TT(\Q_\ell)$ can
be identified with $K_\ell^\times = \prod_{v\mid\ell} K_v^\times$, and is
therefore a direct factor of the idele group $I$. Let $\pr_\ell$ denote the
projection of $I$ onto this factor. The map
\[
\alpha_\ell = \pi_\ell \circ \pr_\ell \colon I \longrightarrow \TT(\Q_\ell)
\longrightarrow S_{\mathfrak{m}}(\Q_\ell)
\]
is a continuous homomorphism.
\begin{lem}
$\alpha_\ell$ and $\varepsilon$ coincide on $K^\times$.
\end{lem}
This is trivial from the commutativity of the diagram (**) of \ref{sec:II_22}.
Now, let \index{el@$\varepsilon_\ell$}$\varepsilon_\ell \colon I \to
S_{\mathfrak{m}}(\Q_\ell)$ be defined by
\dpage
\begin{align}
\varepsilon_\ell(\vec a) &= \varepsilon(\vec a) \alpha_\ell(\vec a^{-1})
\tag{$***$}\label{eqn:II_23_star} \\
\text{i.e.} \quad \varepsilon_\ell &= \varepsilon \cdot \alpha_\ell^{-1}.
\notag
\end{align}
(If $\vec a \in I$, write $a_\ell$ the $\ell$-component of $\vec a$. Then
\[
\varepsilon_\ell(\vec a) = \varepsilon(\vec a) \pi_\ell(a_\ell^{-1}).)
\]
By the lemma, $\varepsilon_\ell$ is trivial on $K$ and, hence, defines a map
$C \to S_{\mathfrak{m}}(\Q_\ell)$; since $S_{\mathfrak{m}}(\Q_\ell)$ is
totally disconnected (it is an $\ell$-adic Lie group), the latter homomorphism is
trivial on the connected component $D$ of $C$. We have already recalled that $C/D$
may be identified with the Galois group $\abcl G$ of the maximal abelian
extension of $K$. So we end up with a homomorphism $\varepsilon_\ell \colon
\abcl G \to S_{\mathfrak{m}}(\Q_\ell)$, i.e.\ with an \emph{$\ell$-adic
representation of $K$ with values in $S_{\mathfrak{m}}$} (cf.\
Chap.~\ref{ch:i}, \ref{sec:I_23}).
This representation is rational in the sense of Chapter~\ref{ch:i},
\ref{sec:I_23}. More precisely, let $v \notin \Supp(\mathfrak{m})$, and let
$f_v \in I$ be an idèle which is a uniformizing parameter at $v$, and which is
equal to 1 everywhere else; let $F_v = \varepsilon(f_v)$ be the image of $f_v$
in $S_{\mathfrak{m}}(\Q_\ell)$. With these notations we have:
\begin{prop}
\begin{enumerate}[a)]
\item The representation $\varepsilon_\ell, \colon \abcl G \to
S_{\mathfrak{m}}(\Q_\ell)$ is a rational representation with values in
$S_{\mathfrak{m}}$.
\item $\varepsilon_\ell$ is unramified outside $\Supp(\mathfrak{m}) \cup
S_\ell$, where $S_\ell = \{ v \mid p_v = \ell \}$.
\item If $v \notin \Supp(\mathfrak{m}) \cup S_\ell$,
\dpage
then the Frobenius element $F_{v, \varepsilon_\ell}$ (cf.\
Chap.~\ref{ch:i}, \ref{sec:I_23}) is equal to $F_v \in
S_{\mathfrak{m}}(\Q_\ell)$.
\end{enumerate}
\end{prop}
\begin{proof}
It is known that the class field isomorphism
\begin{tikzcd}[cramped, sep=small]
C/D \rar["\sim"] & \abcl G
\end{tikzcd}
maps $K_v^\times$ (resp.\ $U_v$) onto a dense subgroup of the decomposition
group of $v$ in $\abcl G$ (resp.\ onto the inertia group of $v$ in $\abcl G$),
and that a uniformizing element $f_v$ of $K_v^\times$ is mapped onto the
Frobenius class of $v$.
If $v \notin \Supp(\mathfrak{m})$ and $a \in U_v$, then $\varepsilon(a) = 1$;
if moreover $p_v \ne \ell$, $\alpha_\ell(a) = 1$, hence $\varepsilon_\ell(a) =
1$ and $\varepsilon_\ell$ is unramified at $v$; this proves b). For such a $v$,
we have $\varepsilon_\ell(f_v) = \varepsilon(f_v) = F_v$; hence
c), and a) follows from c).
\end{proof}
\begin{corp}
The representations $\varepsilon$ form a system of strictly compatible
$\ell$-adic representations with values in $S_{\mathfrak{m}}$.
\end{corp}
We also see that the exceptional set of this system is contained
in $\Supp(\mathfrak{m})$; for an example where it is different from $\Supp(\mathfrak{m})$,
see Exercise~\ref{exr:II_23_2}.
\begin{obs}
By construction, $\varepsilon_\ell\colon I \to S_{\mathfrak{m}}(\Q_\ell)$ is
given by $x \mapsto \pi_\ell(x^{-1})$ on the open subgroup $U_{\ell,
\mathfrak{m}} = \prod_{v\mid\ell} U_{v, \mathfrak{m}}$ of $K_\ell^\times$.
Hence, $\Img(\varepsilon_\ell)$ contains $\pi_\ell(U_{\ell, \mathfrak{m}})
\subset T_{\mathfrak{m}}(\Q_\ell) \subset S_{\mathfrak{m}}(\Q_\ell)$, and is an
\emph{open subgroup} of $S_{\mathfrak{m}}(\Q_\ell)$. This open subgroup maps
onto $C_{\mathfrak{m}}$, as remarked above. These properties imply, in
particular, that $\Img(\varepsilon_\ell)$ is \emph{Zariski-dense} in
S_{\mathfrak{m}}.
\end{obs}
\subsubsection*{Exercises}
\dpage
\begin{enumerate}[label=(\arabic*), ref=\arabic*]
\item\label{exr:II_23_1}
Let $K = \Q$, $\Supp(\mathfrak{m}) = \emptyset$.
\begin{enumerate}[a)]
\item Show that $E_{\mathfrak{m}} = \{ 1 \}$, $C_{\mathfrak{m}} = \{ 1 \}$,
hence $T_{\mathfrak{m}} = S_{\mathfrak{m}} = \GG_m$ and
$S_{\mathfrak{m}}(\Q) = \Q^\times$, $S_{\mathfrak{m}}(\Q_\ell) =
\Q_\ell^\times$.
\item Show that $I$ is the direct product of its subgroups $I_{\mathfrak{m}}$
and $\Q^\times$; hence any $\vec a \in I$ may be written as
\[
\vec a = u\cdot \gamma, \qquad u \in U_{\mathfrak{m}},
\; \gamma \in \Q^\times.
\]
Show that, if $\vec a = (a_p)$, one has
\[
\varepsilon(\vec a) = \gamma = \sgn(a_\infty) \prod_{p}
p^{v_p(a_p)}.
\]
\item Show that
\begin{align*}
\rho_\ell(\vec a) &= \gamma \cdot a_\ell^{-1}, \\
\intertext{and}
F_p &= p.
\end{align*}
\item Show that $\rho_\ell$ coincides with the character $\chi_\ell$ of
Chap.~\ref{ch:i}, \ref{sec:I_12}.
\end{enumerate}
\item\label{exr:II_23_2}
Let $K = \Q$, $\Supp(\mathfrak{m}) = \{ 2 \}$ and $m_2 = 1$. Show that
the groups $E_{\mathfrak{m}}$, $C_{\mathfrak{m}}$, $T_{\mathfrak{m}}$,
$S_{\mathfrak{m}}$ coincide with those of Exercise~\ref{exr:II_23_1},
hence that the exceptional set of the corresponding system is empty.
\end{enumerate}
\subsection{Linear representations of \texorpdfstring{$S_{\mathfrak{m}}$}{Sm}}
\label{sec:II_24}
We recall first some well known facts on representations.
\begin{enumerate}[a)]
\item Let $k$ be a field of characteristic 0; let $H$ be an affine
\dpage
commutative algebraic group over $k$. Let $X(H) = \Hom_{\algcl
k}(H_{/\algcl k}, \GG_{m, \algcl k})$ be the group of characters of $H$
(of degree 1). Here we write the characters of $X(H)$ multiplicatively.
The group $G = \Gal(\algcl k/k)$ acts on $X(H)$.
Let $\Lambda$ be the affine algebra of $H$, and let $\algcl\Lambda =
\Lambda \otimes_k \algcl k$ be the one of $H_{/\algcl k}$. Every
element $\chi \in X(H)$ can be identified with an invertible element of
$\algcl\Lambda$. Hence, by linearity, a homomorphism
\[
\alpha \colon \algcl k[X(H)] \longrightarrow \algcl \Lambda
\]
where $\algcl k[X(H)]$ is the group algebra of $X(H)$ over $\algcl k$.
This is a $G$-homomorphism if the action of $G$ is defined by
\[
s\left( \sum_{\chi} a_\chi \chi \right) = \sum s(a_\chi) s(\chi)
\]
for $a_\chi \in \algcl k$ and $\chi \in X(H)$. It is well-known (linear
independence of characters) that $\alpha$ is injective. It is
bijective if and only if $H$ is a group of multiplicative type (cf.\
\ref{sec:II_13}, remark 2). Hence we may identify $\algcl k[X(H)]$ with
a subalgebra of $\Lambda$.
\item Let $V$ be a finite-dimensional $k$-vector space and let
\[
\phi \colon H \longrightarrow \GL_V
\]
be a \emph{linear representation} of $H$ into $V$. Assume $\phi$ is
\emph{semi-simple} (this is always the case if $H$ is of multiplicative
type). We associate to $\phi$ its \strong{trace}\index{Trace}
\[
\theta_\phi = \sum_{\chi} n_\chi(\phi) \, \chi
\]
in $\Z[X(H)]$, where $n_\chi(\phi)$ is the multiplicity of $\chi$ in
the decomposition of $\chi$ over $\algcl k$.
We have $\theta_\phi(h) = \Tr(\phi(h))$ for any point $h$ of $H$
\dpage
(with value in any commutative $k$-algebra). Let $\Rep_k(H)$ be the set
of isomorphism classes of linear semi-simple representations of $H$. If
$k_1$ is an extension of $k$, then scalar extension from $k$ to $k_1$
defines a map $\Rep_k(H) \to \Rep_{k_1}(H_{/k_1})$ which is easily seen
to be \emph{injective}. We say that an element of\break
\emph{$\Rep_{k_1}(H_{/k_1})$ can be defined over $k$}, if it is in the
image of this map.
\end{enumerate}
\begin{prop}
The map $\phi \mapsto \theta_\phi$ defines a bijection between
$\Rep_k(H)$ and the set of elements $\theta = \sum n_\chi \, \chi$ of
$\Z[X(H)]$ which satisfy:
\begin{enumerate}[(a)]
\item $\theta$ is invariant by $G$ (i.e.\ $n_\chi =
n_{s(\chi)}$ for all $s \in G$, $\chi \in X(H)$).
\item $n_\chi \ge 0$ for every $\chi \in X(H)$.
\end{enumerate}
\end{prop}
\begin{proof}
The injectivity of the map $\phi \mapsto \theta_\phi$ is
well-known (and does not depend on the commutativity of $H$). To prove
surjectivity, consider first the case where $\theta$ has the form
$\theta = \sum_{i} \chi^{(i)}$ where $\chi^{(i)}$ is a full set of
different conjugates of a character $\chi \in X(H)$. If $G(\chi)$ is
the subgroup of $G$ fixing $\chi$, then
\begin{equation}
\theta = \sum_{s \in G/G(\chi)} s(\chi).
\tag{$*$}
\label{eqn:II_24star}
\end{equation}
The fixed field $k_\chi$ of $G(\chi)$ in $k$ is the smallest subfield
of $k$ such that $\chi \in \Lambda \otimes k_\chi$. Consider $\chi$ as
a representation of degree 1 of $H_{/k_\chi}$. One gets, by restriction
of scalars to $k$, a representation
\dpage
$\phi$ of $H$ of degree $[k_\chi : k]$. One sees easily that the
trace $\theta_\phi$ of $\phi$ is equal to $\theta$. The
surjectivity of $\phi \mapsto \theta_\phi$ now follows from the
fact that any $\theta$ satisfying (a) and (b) is a sum of elements of
the form \eqref{eqn:II_24star} above.
\end{proof}
\begin{corp}
In order that $\phi_1 \in \Rep_{k_1}(H_{/k_1})$ can be defined over $k$, it
is necessary and sufficient that $\theta_{\phi_1} \in \Lambda \otimes_k k_1$
belongs to $k_1$.
\end{corp}
\begin{enumerate}[resume*]
\item We return now to the groups $S_{\mathfrak{m}}$:
\end{enumerate}
\begin{prop}
Let $k_1$ be an extension of $k$ and let $\phi \in
\Rep_{k_1}(S_{\mathfrak{m} /k_1})$. The following properties are equivalent:
\begin{enumerate}[(i)]
\item $\phi$ can be defined over $k$,
\item for every $v \notin \Supp(\mathfrak{m})$, the coefficients of the
characteristic polynomial $\phi(F_v)$ belong to $k$,
\item there exists a set $M$ of places of $k$ of density 1 (cf.\
Chapter~\ref{ch:i}, \ref{sec:I_22}) such that $\Tr(\phi(F_v)) \in k$
for all $v \in M$.
\end{enumerate}
\end{prop}
\begin{proof}
The implications (i) $\implies$ (ii) $\implies$ (iii) are trivial.
To prove (iii) $\implies$ (i) we need the following lemma.
\end{proof}
\begin{lem}
The set of Frobeniuses $F_v$, $v \in M$, is dense in $S$ for
the Zariski topology.
\end{lem}
\begin{proof}
Let $X$ be the set of all $F_v$'s, $v \in M$, and let $\ell$ be a prime number.
Let $\overline{X} \subseteq S_{\mathfrak{m}}$ (resp.\ $\overline{X}_\ell
\subseteq S_{\mathfrak{m}}(\Q_\ell)$) the closure of $X$ in the Zariski
topology (resp.\ $\ell$-adic topology). It is clear that
\dpage
$\overline{X} \subseteq \overline{X}(\Q_\ell)$. On the other hand, \v
Cebotarev's theorem (cf.\ Chapter~\ref{ch:i}, \ref{sec:I_22}) implies that
$\overline{X} = \Img(\varepsilon_\ell)$ (cf.\ \ref{sec:II_23}). The set
$\Img(\varepsilon_\ell)$, however, is Zariski dense in $S_{\mathfrak{m}}$ (cf.\
Remark in \ref{sec:II_23}). Hence $\overline{X} = S_{\mathfrak{m}}$, which
proves the lemma.
\end{proof}
Let us now prove that (iii) $\implies$ (i). Let $\theta_\phi$ be the trace
of $\theta$ in $\Lambda \otimes_k k_1$, where $\Lambda$ is the affine algebra
of $H = S_{\mathfrak{m} /k}$. Let $\{ \ell_\alpha \}$ be a basis of the
$k$-vector space $k_1$, with $\ell_{\alpha_0} = 1$ for some index $\alpha_0$.
We have $\theta_\phi = \sum_{\alpha} \lambda_\alpha \otimes \ell_\alpha$
($\lambda_\alpha \in \Lambda$); hence $\Tr( \phi(h) ) = \theta_\phi(h) =
\sum_{\alpha} \lambda_\alpha(h) \ell_\alpha$ for all $h \in H(k_1)$. Take $h =
F_v$, with $v \in M$, Since $F_v$ belongs to $H(k)$ we have
$\lambda_\alpha(F_v) \in k$ for all $\alpha$; since $\Tr(\phi(F_v)) \in k$,
we get $\lambda_\alpha(F_v) = 0$ for all $\alpha \ne \alpha_0$. By the lemma,
the $F_v$'s, $v \in M$, are Zariski-dense in $H$; hence $\lambda_\alpha = 0$
for $\alpha \ne \alpha_0$ and $\theta_\phi = \lambda_{\alpha_0}$ belongs to
$\Lambda$ and (i) follows from the corollary to Proposition 1.
\hfill
\qedsymbol
\subsubsection*{Exercise}
Show that the characters of $S_{\mathfrak{m}}$ correspond in a one-one way to
the homomorphisms $\chi \colon I \to \algcl{\Q}^\times$ having the following
two properties:
\begin{enumerate}[(a)]
\item $\chi(x) = 1$ if $x \in U_{\mathfrak{m}}$.
\item For each embedding $\sigma$ of $K$ into $\algcl\Q$, there exists an
integral number $n(\sigma)$ such that
\[
\chi(x) = \prod_{\sigma \in \Gamma} \sigma(x)^{n(\sigma)}
\]
for all $x \in K^\times$.
\end{enumerate}
\subsection{\texorpdfstring{$\ell$}{ℓ}-adic representations associated to a
linear representation of \texorpdfstring{$S_{\mathfrak{m}}$}{Sm}}
\label{sec:II_25}
\dpage
\subsubsection{\texorpdfstring{$\ell$}{ℓ}-adic case}
% \label{sssec:II_25_1}
Let $V_\ell$ be a finite-dimensional $\Q_\ell$-vector space and
\[
\phi \colon S_{\mathfrak{m} / \Q_\ell} \rightarrow \GL_{V_\ell}
\]
a linear representation of $S_{\mathfrak{m} / \Q_\ell}$ in $V_\ell$. This
defines a homomorphism
\[
\phi \colon S_\mathfrak{m}(\Q_\ell) \rightarrow \GL_{V_\ell}(\Q_\ell) =
\Aut(V_\ell)
\]
which is continuous for the $\ell$-adic topologies of those groups.
By composition with the map $\varepsilon_\ell \colon \abcl{G} \to
S_{\mathfrak{m}} (\Q_\ell)$ defined in~\ref{sec:II_23}, we get a map
\todo[pinktask]{Lo dejo cómo $G$ o como galois de algo}
\[
\phi_\ell = \phi \circ \varepsilon \colon \abcl{G} \to \Aut(V_\ell),
\]
i.e.\ an \emph{abelian $\ell$-adic representation of} $K$ in $V_\ell$.
\begin{prop}
\begin{enumerate}[a)]
\item The representation $\phi_\ell$ is semi-simple.
\item Let $v \in M_K^0$, with $v \not\in \Supp(\mathfrak{m})$ and $p_v \neq
\ell$.
\todo[pinktask]{no pertence?}
Then $\phi_\ell$ is unramified at $v$; the corresponding Frobenius element
$F_{v, \phi_v} \in \Aut(V_\ell)$ is equal to $\phi(F_v)$, where $F_v$ denotes
the element of $S_\mathfrak{m}(\Q)$ defined in~\ref{sec:II_23}.
\dpage
\item The representation $\phi_\ell$ is rational (Chap.~\ref{ch:i},
\ref{sec:II_23}) if and only if $\phi$ can be defined over $\Q$
(cf.\ \ref{sec:II_24}).
\end{enumerate}
\end{prop}
Since $S_\mathfrak{m}$ is a group of multiplicative type, all its
representations can be brought to diagonal form on a suitable extension of the
ground field; hence a). Assertion b) follows from~\ref{sec:II_23}, and
assertion c) follows from prop.~2 of~\ref{sec:II_24}.
\begin{obs}
Let us identify $\phi_\ell$ with the corresponding homomorphism of the idèle
group $I$ into $\Aut(V_\ell)$. Then
\begin{enumerate}
\item[d)] $\Ker(\phi_\ell)$ contains $U_{v , \mathfrak{m}}$ if $v \not\in
\Supp(\mathfrak{m})$, $p_v \neq \ell$.
\item[e)] Let $\phi_T \colon T_{/\Q_\ell} \to \GL_{V_\ell}$ be defined by
composing $T_{/\Q_\ell} \to S_{\mathfrak{m}/\Q_\ell}$ with $\phi$. If $x$
belongs to the open subgroup $U_{\ell , \mathfrak{m}} = \prod_{v \mid \ell}
U_{v , \mathfrak{m}}$ of $T(\Q_\ell)$, one has
\[
\phi_\ell (x) = \phi_T(x^{-1}).
\]
These properties follow readily from those of $\varepsilon_\ell$.
\todo[pinktask]{Es T de toro?}
\end{enumerate}
\end{obs}
\subsubsection{The rational case}
Let now $V_0$ be a finite dimensional vector space over $\Q$ and
$\phi_0 \colon S_\mathfrak{m} \to \GL_{V_0}$ a linear representation of
$S_\mathfrak{m}$. For each prime number $\ell$ we may apply the preceding
construction to the representation $\phi_{0/\ell} \colon S_{\mathfrak{m}/
\Q_{\ell}} \to \GL(V_\ell)$, where $V_\ell = V_0 \otimes \Q_\ell$;
\dpage
we then get an $\ell$-adic representation $\phi_\ell \colon \abcl{G} \to \Aut
(V_\ell)$.
\begin{thm}
\begin{enumerate}[1)]
\item The $\phi_\ell$ form a strictly compatible system of rational abelian
semi-simple representations. Its exceptional set is contained in $\Supp
(\mathfrak{m})$.
\item For each $v \not\in \Supp(\mathfrak{m})$ the Frobenius element of $v$
with respect to the system $(\phi_\ell)$ is the element $\phi_0(F_v)$
of $\Aut(V_0)$.
\item There exist infinitely many primes $\ell$ such that $\phi_\ell$ is
diagonalizable over $\Q_\ell$.
\end{enumerate}
\end{thm}
The first two assertions follow directly from the proposition above. To prove
the third one, note first that there exists a finite extension $E$ of $\Q$ over
which $\phi_0$ becomes diagonalizable. If $\ell$ is a prime number which
splits completely in $E$, one can embed $E$ into $\Q_\ell$ and this shows that
$\phi_\ell$ is diagonalizable. Assertion 3) now follows from the well-known
fact that there exist infinitely many such $\ell$ (this is, for instance, a
consequence of \v Cebotarev's theorem, cf.\ Chap.~\ref{ch:i}, \ref{sec:II_22}).
\begin{obs}
The Frobenius elements $\phi_0(F_v) \in \Aut(V_0)$ can also be defined
using the homomorphism
\[\begin{tikzcd}
\phi_0 \circ \varepsilon \colon I \rar & S_\mathfrak{m}(\Q) \rar &
\Aut(V_0).
\end{tikzcd}\]
Note that their eigenvalues generate \emph{a finite extension} of $\Q$; indeed
they are contained in any field over which $\phi_0$ can be brought in
diagonal form.
\end{obs}
\subsubsection*{Exercises}
{}\dpage
\begin{enumerate}[1)]
\item Let $\phi_0 \colon S_\mathfrak{m} \to \GL_{V_0}$ be a linear
representation of $S_\mathfrak{m}$, and let $\ell$ be a prime number.
\begin{enumerate}[a)]
\item Show that the Zariski closure of $\Img(\phi_\ell)$ is the algebraic group
$\phi_0(S_\mathfrak{m})$. (Use the fact that ($\Img(\varepsilon_\ell)$)
is Zariski dense in $S_\mathfrak{m}$, cf.~\ref{sec:II_23}.)
\item Let $\mathfrak{s}_\mathfrak{m}$ be the Lie algebra of $S_\mathfrak{m}$
and $\phi_0(\mathfrak{s}_\mathfrak{m})$ be its image by $\phi_0$, i.e.\
the Lie algebra of $\phi_0(S_\mathfrak{m})$. Show that the Lie algebra
of the $\ell$-adic Lie group $\Img(\phi_\ell)$ is
$\phi_0(\mathfrak{s}_\mathfrak{m}) \otimes \Q_\ell$. (Use the fact that
$\Img(\varepsilon_\ell)$ is open in $S_\mathfrak{m}(\Q_\ell)$, cf.\
\ref{sec:II_23}.)
\end{enumerate}
\item\label{exr:II_25_2}
\begin{enumerate}[a)]
\item Show that there exists a unique one-dimensional representation
\[
\numnorm \colon S_{\mathfrak{m}} \rightarrow \GG_m
\]
such that $\numnorm(F_v) = \numnorm v \in \Q^{\times}$ for all
$v \not\in \Supp(\mathfrak{m})$.
\item Show that the morphism
\begin{tikzcd}[cramped, sep=small]
T \rar & S_\mathfrak{m} \rar["\numnorm"] & \GG_m
\end{tikzcd}
% $T \to S_\mathfrak{m} \overset{\numnorm}{\to} G_\mathfrak{m}$
is the one induced by the norm
map from $K$ to $\Q$.
\item Show that the $\ell$-adic representation defined by $\numnorm$ is
isomorphic to the representation $V_\ell(\mu)$ defined in
Chap.~\ref{ch:i},~\ref{sec:I_12}.
\end{enumerate}
\end{enumerate}
\subsection{Alternative construction}
\label{sec:II_26}
Let $\phi_0 \colon S_{\mathfrak{m}} \to \GL_{V_0}$ be as in \ref{sec:II_25}. If
we compose $\phi_0$ with the map $\varepsilon \colon I \to
S_{\mathfrak{m}}(\Q)$ defined in \ref{sec:II_22}, we obtain a homomorphism
\[
\phi_0 \circ \varepsilon \colon I \longrightarrow \GL_{V_0}(\Q) =
\Aut(V_0).
\]
Conversely:
\dpage
\begin{prop}
Let $f \colon I \to \Aut(V_0)$ be a homomorphism. There exists a $\phi_0
\colon S_{\mathfrak{m}} \to \GL_{V_0}$ such that $\phi_0 \circ \varepsilon =
f$ if and only if the following conditions are satisfied:
\begin{enumerate}
\item The kernel of $f$ contains $U_{\mathfrak{m}}$.
\item There exists an algebraic homomorphism $\psi\colon \TT \to
\GL_{V_0}$ such that $\psi(x) = f(x)$ for every $x \in K^\times
= \TT(\Q)$.
\end{enumerate}
Moreover, such a $\phi_0$ is unique.
\end{prop}
\begin{proof}
The necessity of the conditions (a) and (b) is trivial.
Conversely, if $f$ has properties (a), (b), it defines a homomorphism
$I/U_{\mathfrak{m}} \to \Aut(V_0)$. On the other hand, since $f$ and $\psi$ agree on $K^\times$
the morphism $\psi$ is equal to 1 on $E_{\mathfrak{m}} = K^\times \cap U_{\mathfrak{m}}$, hence on its
Zariski-closure $\overline{E}_{\mathfrak{m}}$. This means that $\psi$ factors through
\[\begin{tikzcd}[sep=large]
T \rar & T_{\mathfrak{m}} \rar & \GL_{V_0}.
\end{tikzcd}\]
By the universal property of $S_{\mathfrak{m}}$ (cf.\ \ref{sec:II_13} and
\ref{sec:II_22}), the maps $I/U_{\mathfrak{m}} \to \GL_{V_0}(\Q)$ and
$T_{\mathfrak{m}} \to \GL_{V_0}$ define an algebraic morphism $\phi_0 \colon
S_{\mathfrak{m}} \to \GL_{V_0}$, and one checks easily that $\phi_0$ has the
required properties, and is unique.
\end{proof}
\begin{obs}
Since $U$ is open, property (a) implies that $f$ is \emph{continuous} with
\dpage
respect to the discrete topology of $\Aut(V_0)$. Conversely, any continuous
homomorphism $f\colon I \to \Aut(V_0)$ is trivial on some $U_{\mathfrak{m}}$;
moreover, there is a smallest such $\mathfrak{m}$; it is called the
\strong{conductor}\index{Conductor} of $f$.
\end{obs}
\subsubsection*{Exercise}
Let $\mathfrak{m}$ be a modulus and let $V_0$ be a finite dimensional
$\Q$-vector space. For each $v \notin \Supp(\mathfrak{m})$ let $F_v$ be an
element of $\Aut(V_0)$. Assume:
\begin{enumerate}
\item The $F_v$'s commute pairwise.
\item There exists an algebraic morphism $\psi\colon \TT \to \GL_{V_0}$
such that $\psi(\alpha) = \prod F_v^{v(\alpha)}$ for $\alpha
\in K^\times$, $\alpha \equiv 1 \pmod{\mathfrak{m}}$, and
$\alpha > 0$ at each real place.
\end{enumerate}
Show that there exists an algebraic morphism $\phi_0 \colon S_{\mathfrak{m}}
\to \GL_{V_0}$ for which the Frobenius elements are equal to the $F_v$'s.
\subsection{The real case}
The preceding constructions are relative to a given prime number $\ell$.
However, they have an archimedean analogue, as follows:
Let $\pi \colon \TT \to S_\mathfrak{m}$ be the canonical map defined
in~\ref{sec:II_23}, and let
\[
\pi_{\infty} \colon \TT(R) \to S_\mathfrak{m}(R)
\]
be the corresponding homomorphism of real Lie groups. Since $\TT(R) = (K
\otimes R)^{\times} = \prod_{v \in M_K^\infty} K_v^{\times}$, we can identify
$\TT(R)$ with a direct factor of the idèle group $I$. Let $\pr_\infty$ be the
projection on this factor; the map
\dpage
\[\begin{tikzcd}
\alpha_\infty = \pi_\infty \circ \pr_\infty \colon I \arrow[r] & T(R)
\arrow[r] & S_\mathfrak{m}(R)
\end{tikzcd}\]
is continuous, and one checks as in~\ref{sec:II_23} that $\alpha_\infty$
coincides with $\varepsilon$ on $K^{\times}$. One may then define a map
\[
\varepsilon_{\infty} \colon I \rightarrow S_{\mathfrak{m}}(R)
\]
by
\[
\varepsilon_\infty(a) = \varepsilon(a)\alpha_\infty(a^{-1}).
\]
One has $\varepsilon_\infty(a) = 1$ if $a \in K^{\times}$, hence
$\varepsilon_\infty$ may be viewed as \emph{a homomorphism of the idèle
class group} $C = I/K^{\times}$ \emph{into the real Lie gruop} $S_\mathfrak{m}
(R)$.
The main difference with the ``finite'' case is that $\varepsilon_\infty$
\emph{is not trivial on the connected component of} $C$, hence has no Galois
group interpretation.
When one composes $\varepsilon_\infty \colon C \to S_\mathfrak{m}(R)$ with a
complex character $S_{\mathfrak{m}/C} \to \GG_{m, C}$, one gets a
homomorphism $C \to C^{\times}$, i.e.\ that the characters obtained in this way
coincide with the ``Gr\"o\ss encharakter of type ($A_0$)'' of Weil (cf.\
\cite{35}, \cite{41}), whose conductor divide $\mathfrak{m}$.
\subsubsection*{Exercise}
Let
\dpage
\[
e \colon I \to S_\mathfrak{m}(R) \times \prod_{\ell} S_\mathfrak{m}(\Q_\ell)
\]
be the map defined by $\varepsilon_\infty$ and the $\varepsilon_\ell$'s.
\begin{enumerate}[a)]
\item Show that the image of $e$ is contained in the subgroup
$S_\mathfrak{m}(A)$ of $S_\mathfrak{m}(R) \times \prod_{\ell}
S_\mathfrak{m}(\Q_\ell)$, where $A$ denote the ring of adèles of $\Q$,
and that $e \colon I \to S_\mathfrak{m}(A)$ is continuous (for the
natural topology of the adelized group $S_\mathfrak{m}(A)$).
\item Let $\pi_A \colon T(A) \to S_\mathfrak{m}(A)$ be the map defined
by $\pi \colon \TT \to S_\mathfrak{m}$. Show that, if one
identifies $\TT(A)$ with $I$ in the obvious way, one has
\[
e(x) = \varepsilon(x) \pi_A(x^{-1})
\]
where $\varepsilon \colon I \to S_\mathfrak{m}(\Q) \subset
S_\mathfrak{m}$ is the map defined in~\ref{sec:II_23}. [Note that this
gives an alternate definition of the $\varepsilon_\ell$'s.]
\item Show that $\varepsilon(I)$ is not open in $S_\mathfrak{m}(A)$ if
$C_\mathfrak{m} \neq \{1\}$.
\end{enumerate}
\subsection{An example: complex multiplication of abelian varieties}
\label{sec:II_28}
(We give here only a brief sketch of the theory, with a few indications on the
proofs. For more details, see \citeauthor{34}~\cite{34},
\citeauthor{35}~\cite{35}, \citeauthor{41}~\cite{41}, \cite{42} and
\citeauthor{32}~\cite{32}.)
Let $A$ be an abelian variety of dimension $d$ defined over $K$.
Let $\End_K(A)$ be its ring of endomorphisms and put
$\End_K(A)_0 = \End_K(A) \otimes \Q$.
Let $E$ be a number field of degree $2d$, and
\dpage
\[
i \colon E \to \End_K(A)_0
\]
be an injection of $E$ into $\End_K(A)_0$. The variety $A$ is then said to
have \textquote{complex multiplication} by $E$; in the terminology of
Shimura-Taniyama, it is a variety of \textquote{type (CM)}.
Let $\ell$ be a prime integer and define $T_\ell(A)$ and $V_\ell = T_\ell(A)
\otimes \Q_\ell$ as in Chapter~\ref{ch:i}, \ref{sec:I_12}. These are free
modules over $\Z_\ell$ and $\Q_\ell$, of rank $2d$. The $\Q$-algebra
$\End_K(A)_0$ acts on $V_\ell$; hence the same is true for $E$, and, by
linearity, for $E_\ell = E \otimes_\Q \Q_\ell$. One proves easily:
\begin{lem}
$V_\ell$ is a free $E_\ell$-module of rank 1.
\end{lem}
Let $\rho\colon \Gal(\algcl K/K) \to \Aut(V_\ell)$ be the $\ell$-adic
representation defined by $A$. If $s \in \Gal(\algcl K/K)$, it is clear that
$\rho(s)$ commutes with $E$, hence with $E_\ell$. But the lemma above implies
that the commuting algebra of $E_\ell$ in $\End_K(V_\ell)$ is $E_\ell$ itself.
Hence, $\rho$ may be identified with a homomorphism
\[
\rho_\ell\colon \Gal(\algcl K/K) \longrightarrow E^\times_\ell
\]
Let now $T_E$ be the $2d$-dimensional torus attached to $E$ (as $\TT$ is
attached to $K$), so that $T_E(\Q_\ell) = E_\ell^\times$, and $\rho$ takes
values in $T_E(\Q_\ell)$.
\begin{thm}\label{thm:II_28_1}
\begin{enumerate}[(a)]
\item\label{thm:II_28_1a}
The system $(\rho_\ell)$ is a strictly compatible system of rational
$\ell$-adic representations of $K$ with values in $T_E$ (in the sense
\dpage
of Chap.~\ref{ch:i}, \ref{sec:I_24}).
\item\label{thm:II_28_1b}
There is a modulus $\mathfrak{m}$ and a morphism
\[
\varphi \colon S_{\mathfrak{m}} \longrightarrow T_E
\]
such that $\rho$ is the image by $\varphi$ of the canonical system