-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsmart_regularization.py
19 lines (18 loc) · 1.12 KB
/
smart_regularization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#This library contains the SMART regularization finetuning
#and comes from https://github.com/archinetai/smart-pytorch
#Authors : Haoming Jiang and Pengcheng He and Weizhu Chen and Xiaodong Liu and Jianfeng Gao and Tuo Zhao
from smart_pytorch import SMARTLoss, kl_loss, sym_kl_loss
def smart_regularization(loss_value, smart_loss_weight, embeddings, logits, last_layers):
"""
This function applies the SMART regularization finetuning to the loss.
"""
#Define SMART loss
smart_loss_fn = SMARTLoss(eval_fn = last_layers, loss_fn = kl_loss, loss_last_fn = sym_kl_loss,
num_steps = 1, # Number of optimization steps to find noise (default = 1)
step_size = 1e-5, # Step size to improve noise (default = 1e-3)
epsilon = 1e-6, # Noise norm constraint (default = 1e-6)
noise_var = 1e-6 # Initial noise variance (default = 1e-5)
)
#Compute SMART loss
loss_value += smart_loss_weight * smart_loss_fn(embeddings, logits)
return loss_value