-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompression.py
68 lines (54 loc) · 2.03 KB
/
compression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy
import math
import Image
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('C:\Users\joyte\Desktop\DrowRanger.jpg')
file = open('Compress.txt','a')
blue,geen,red = cv2.split(img)
a= numpy.empty([8,8],float,0)
pixel_number = blue.size
row,column,channels = img.shape
row_iter = 0
col_iter = 0
print "ROW : " ,row," COL : ",column
while row_iter < row-row%8:
col_iter = 0
while col_iter < column-column % 8:
print "RowIter : ",row_iter," ColIter : ",col_iter
for i in range(row_iter,row_iter+8):
for j in range(col_iter,col_iter+8):
#Copy 8*8 matrix into matrix a
a[i-row_iter,j-col_iter] = blue[i,j]
b = a.copy()
#Centering Values around Zero
b = b - 128
k = 1/4.0
G = numpy.empty([8,8],float,0)
#Quantization Matrix
Q = numpy.matrix('16 11 10 16 24 40 51 61;12 12 14 19 26 58 60 55;14 13 16 24 40 57 69 56;14 17 22 29 51 87 80 62;18 22 37 56 68 109 103 77;24 35 55 64 81 104 113 92;49 64 78 87 103 121 120 101;72 92 95 98 112 100 103 99')
sum_ =0
mul_fact = math.pi/16
#DCT
for i in range(0,8):
for j in range(0,8):
alpha_x = 1
alpha_y = 1
if i==0:
alpha_x = 1/math.sqrt(2)
if j==0:
alpha_y = 1/math.sqrt(2)
for x in range(0,8):
for y in range(0,8):
cosx = math.cos( (2*x+1)*i*mul_fact)
cosy = math.cos( (2*y+1)*j*mul_fact)
sum_ = sum_ + (b[x,y]*cosx*cosy)
G[i,j] = k *alpha_x*alpha_y*sum_
sum_ = 0
#Divide by Quantization Matrix
FLOAT_RESULT = numpy.around(G/Q,0)
RESULT = FLOAT_RESULT.astype(int)
numpy.savetxt(file,RESULT,fmt='%i')
col_iter += 8
row_iter += 8
file.close()