diff --git a/README.md b/README.md index ac06978..2c01d72 100644 --- a/README.md +++ b/README.md @@ -20,12 +20,12 @@
-This curated list contains 290 awesome open-source projects with a total of 130K stars grouped into 23 categories. All projects are ranked by a [project-quality score](https://github.com/best-of-lists/best-of-generator#project-quality-score), which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an [issue](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/issues/new/choose), submit a [pull request](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/pulls), or directly edit the [projects.yaml](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/edit/main/projects.yaml). +This curated list contains 340 awesome open-source projects with a total of 170K stars grouped into 23 categories. All projects are ranked by a [project-quality score](https://github.com/best-of-lists/best-of-generator#project-quality-score), which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an [issue](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/issues/new/choose), submit a [pull request](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/pulls), or directly edit the [projects.yaml](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/edit/main/projects.yaml). The current focus of this list is more on simulation data rather than experimental data, and more on materials rather than drug design. Nevertheless, contributions from other fields are warmly welcome! @@ -35,28 +35,28 @@ The current focus of this list is more on simulation data rather than experiment - [Active learning](#active-learning) _4 projects_ - [Biomolecules](#biomolecules) _2 projects_ -- [Community resources](#community-resources) _15 projects_ -- [Datasets](#datasets) _24 projects_ -- [Data Structures](#data-structures) _3 projects_ -- [Density functional theory (ML-DFT)](#density-functional-theory-ml-dft) _19 projects_ -- [Educational Resources](#educational-resources) _18 projects_ +- [Community resources](#community-resources) _18 projects_ +- [Datasets](#datasets) _30 projects_ +- [Data Structures](#data-structures) _4 projects_ +- [Density functional theory (ML-DFT)](#density-functional-theory-ml-dft) _25 projects_ +- [Educational Resources](#educational-resources) _23 projects_ - [Explainable Artificial intelligence (XAI)](#explainable-artificial-intelligence-xai) _4 projects_ - [Electronic structure methods (ML-ESM)](#electronic-structure-methods-ml-esm) _2 projects_ - [General Tools](#general-tools) _22 projects_ -- [Generative Models](#generative-models) _10 projects_ -- [Interatomic Potentials (ML-IAP)](#interatomic-potentials-ml-iap) _51 projects_ -- [Language Models](#language-models) _6 projects_ +- [Generative Models](#generative-models) _11 projects_ +- [Interatomic Potentials (ML-IAP)](#interatomic-potentials-ml-iap) _59 projects_ +- [Language Models](#language-models) _15 projects_ - [Materials Discovery](#materials-discovery) _8 projects_ -- [Mathematical tools](#mathematical-tools) _9 projects_ -- [Molecular Dynamics](#molecular-dynamics) _7 projects_ +- [Mathematical tools](#mathematical-tools) _11 projects_ +- [Molecular Dynamics](#molecular-dynamics) _9 projects_ - [Probabilistic ML](#probabilistic-ml) _0 projects_ - [Reinforcement Learning](#reinforcement-learning) _2 projects_ -- [Representation Engineering](#representation-engineering) _22 projects_ -- [Representation Learning](#representation-learning) _52 projects_ +- [Representation Engineering](#representation-engineering) _23 projects_ +- [Representation Learning](#representation-learning) _54 projects_ - [Unsupervised Learning](#unsupervised-learning) _6 projects_ - [Visualization](#visualization) _1 projects_ - [Wavefunction methods (ML-WFT)](#wavefunction-methods-ml-wft) _4 projects_ -- [Others](#others) _1 projects_ +- [Others](#others) _2 projects_ ## Explanation - 🥇🥈🥉 Combined project-quality score @@ -145,7 +145,7 @@ _Projects that collect atomistic ML resources or foster communication within com 🔗 Atomic Cluster Expansion - Atomic Cluster Expansion (ACE) community homepage. -🔗 CrystaLLM - Generate a crystal structure from a composition.LM
generative
pre-trained
transformer
+🔗 CrystaLLM - Generate a crystal structure from a composition. Language models
generative
pre-trained
transformer
🔗 matsci.org - A community forum for the discussion of anything materials science, with a focus on computational materials science..
@@ -159,7 +159,7 @@ _Projects that collect atomistic ML resources or foster communication within com
git clone https://github.com/ml-tooling/best-of-ml-python
```
-MIT
general-ml
rep-learn
MIT
general-ml
rep-learn
MIT
datasets
benchmarking
MIT
datasets
benchmarking
MIT
generative
pre-trained
drug-discovery
GPL-3.0 license
Apache-2
transformer
Language models
pre-trained
drug-discovery
Unlicensed
educational
rep-learn
Unlicensed
datasets
pre-trained
LM
+🔗 DeepChem Models - DeepChem models on HuggingFace. pre-trained
Language models
🔗 JARVIS-Leaderboard ( ⭐ 41) - This project provides benchmark-performances for materials science applications including Artificial Intelligence.. benchmarking
@@ -247,6 +271,14 @@ _Datasets, databases and trained models for atomistic ML._
🔗 sGDML Datasets - MD17, MD22, DFT datasets.
+🔗 MoleculeNet benchmarking
+
+🔗 ZINC15 graph
biomolecules
+
+🔗 ZINC graph
biomolecules
+
+🔗 NRELMatDB - Computational materials database with the specific focus on materials for renewable energy applications including, but..
+
MIT
MIT
biomolecules
benchmarking
CC-BY-4.0
CC-BY-NC-SA 4.0
ML-DFT
MIT
LGPL-2.1
knowledge-base
pre-trained
-- ANI-1 Dataset (🥈8 · ⭐ 91 · 💀) - A data set of 20 million calculated off-equilibrium conformations for organic molecules. MIT
-- MoleculeNet Leaderboard (🥈8 · ⭐ 77 · 💀) - MIT
benchmarking
+- ANI-1 Dataset (🥉8 · ⭐ 91 · 💀) - A data set of 20 million calculated off-equilibrium conformations for organic molecules. MIT
+- MoleculeNet Leaderboard (🥉8 · ⭐ 77 · 💀) - MIT
benchmarking
- 2DMD dataset (🥉7 · ⭐ 2) - Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of.. Apache-2
material-defect
- GEOM (🥉6 · ⭐ 150 · 💀) - GEOM: Energy-annotated molecular conformations. Unlicensed
drug-discovery
- ANI-1x Datasets (🥉6 · ⭐ 47 · 💀) - The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for organic molecules. MIT
@@ -328,7 +380,7 @@ _Projects that focus on providing data structures used in atomistic machine lear
conda install -c deepmodeling dpdata
```
BSD-3
Rust
C-lang
C++
Python
BSD-3
Rust
C-lang
C++
Python
Apache-2
C++
Custom
ML-DFT
Apache-2
Apache-2
GPL-3.0
rep-learn
Apache-2
LGPL-3.0
MIT
Julia
MIT
Julia
BSD-3
- PROPhet (🥈9 · ⭐ 61 · 💀) - PROPhet is a code to integrate machine learning techniques with first-principles quantum chemistry approaches. GPL-3.0
ML-IAP
MD
single-paper
C++
-- Libnxc (🥈7 · ⭐ 15 · 💀) - A library for using machine-learned exchange-correlation functionals for density-functional theory. MPL-2.0
C++
Fortran
+- Libnxc (🥉7 · ⭐ 15 · 💀) - A library for using machine-learned exchange-correlation functionals for density-functional theory. MPL-2.0
C++
Fortran
+- Mat2Spec (🥉6 · ⭐ 24 · 💀) - MIT
spectroscopy
- gprep (🥉4 · 💀) - Fitting DFTB repulsive potentials with GPR. MIT
single-paper
- xDeepH (🥉3 · ⭐ 23) - Extended DeepH (xDeepH) method for magnetic materials. LGPL-3.0
magnetism
Julia
- ML-DFT (🥉3 · ⭐ 19 · 💀) - A package for density functional approximation using machine learning. MIT
- DeepCDP (🥉3 · ⭐ 3) - DeepCDP: Deep learning Charge Density Prediction. Unlicensed
- CSNN (🥉3 · ⭐ 1 · 💀) - Primary codebase of CSNN - Concentric Spherical Neural Network for 3D Representation Learning. BSD-3
- MALADA (🥉3 · 💤) - MALA Data Acquisition: Helpful tools to build data for MALA. BSD-3
+- A3MD (🥉2 · ⭐ 5 · 💀) - MPNN-like + Analytic Density Model = Accurate electron densities. Unlicensed
representation-learning
single-paper
- kdft (🥉1 · ⭐ 2 · 💀) - The Kernel Density Functional (KDF) code allows generating ML based DFT functionals. Unlicensed
+- APET (🥉1 · ⭐ 2 · ➕) - Atomic Positional Embedding-based Transformer. GPL-3.0
density-of-states
transformer
active-learning
+
+MIT
rep-learn
Custom
CCO-1.0
Apache-2
MIT
- MAChINE (🥈8 · ⭐ 1) - Client-Server Web App to introduce usage of ML in materials science to beginners. MIT
@@ -507,9 +612,11 @@ _Tutorials, guides, cookbooks, recipes, etc._
- Applied AI for Materials (🥉6 · ⭐ 50 · 💀) - Course materials for Applied AI for Materials Science and Engineering. Unlicensed
- AI4Science101 (🥉5 · ⭐ 72 · 💀) - AI for Science. Unlicensed
- Machine Learning for Materials Hard and Soft (🥉5 · ⭐ 33 · 💀) - ESI-DCAFM-TACO-VDSP Summer School on Machine Learning for Materials Hard and Soft. Unlicensed
+- MACE-tutorials (🥉5 · ⭐ 3 · 🐣) - Another set of tutorials for the MACE interatomic potential by one of the authors. MIT
ML-IAP
rep-learn
MD
- ML-in-chemistry-101 (🥉4 · ⭐ 57 · 💀) - The course materials for Machine Learning in Chemistry 101. Unlicensed
- chemrev-gpr (🥉4 · ⭐ 6 · 💀) - Notebooks accompanying the paper on GPR in materials and molecules in Chemical Reviews 2020. Unlicensed
- MLDensity_tutorial (🥉2 · ⭐ 6 · 💤) - Tutorial files to work with ML for the charge density in molecules and solids. Unlicensed
+- LAMMPS-style pair potentials with GAP (🥉2 · ⭐ 3 · 💀) - A tutorial on how to create LAMMPS-style pair potentials and use them in combination with GAP potentials to run MD.. Unlicensed
ML-IAP
MD
rep-eng
- MALA Tutorial (🥉2 · ⭐ 2) - A full MALA hands-on tutorial. Unlicensed
- PiNN Lab (🥉2 · ⭐ 2 · 💤) - GPL-3.0
MIT
MIT
Apache-2
drug-discovery
pre-trained
rep-learn
MIT
XAI
Custom
MD
pre-trained
electrostatics
magnetism
structure-relaxation
Custom
MD
pre-trained
electrostatics
magnetism
structure-relaxation
MIT
pre-trained
MIT
pre-trained
BSD-3
BSD-3
MIT
Julia
MIT
Julia
Custom
Custom
Julia
Custom
Fortran
Custom
Unlicensed
MIT
Julia
Unlicensed
rep-learn
transformer
GPL-3.0
C++
- TensorMol (🥈12 · ⭐ 260 · 💀) - Tensorflow + Molecules = TensorMol. GPL-3.0
single-paper
- ANI-1 (🥈12 · ⭐ 210 · 💀) - ANI-1 neural net potential with python interface (ASE). MIT
-- SIMPLE-NN (🥉11 · ⭐ 44 · 💀) - SIMPLE-NN(SNU Interatomic Machine-learning PotentiaL packagE version Neural Network). GPL-3.0
-- NNsforMD (🥉10 · ⭐ 10 · 💀) - Neural network class for molecular dynamics to predict potential energy, forces and non-adiabatic couplings. MIT
+- SIMPLE-NN (🥈11 · ⭐ 44 · 💀) - SIMPLE-NN(SNU Interatomic Machine-learning PotentiaL packagE version Neural Network). GPL-3.0
+- NNsforMD (🥈10 · ⭐ 10 · 💀) - Neural network class for molecular dynamics to predict potential energy, forces and non-adiabatic couplings. MIT
- SchNet (🥉9 · ⭐ 190 · 💀) - SchNet - a deep learning architecture for quantum chemistry. MIT
- SNAP (🥉8 · ⭐ 32 · 💀) - Repository for spectral neighbor analysis potential (SNAP) model development. BSD-3
- SIMPLE-NN v2 (🥉8 · ⭐ 31) - GPL-3.0
- Atomistic Adversarial Attacks (🥉8 · ⭐ 25 · 💀) - Code for performing adversarial attacks on atomistic systems using NN potentials. MIT
probabilistic
-- PhysNet (🥉7 · ⭐ 85 · 💀) - Code for training PhysNet models. MIT
electrostatics
+- PhysNet (🥉7 · ⭐ 85 · 💀) - Code for training PhysNet models. MIT
electrostatics
- AIMNet (🥉7 · ⭐ 79 · 💀) - Atoms In Molecules Neural Network Potential. MIT
single-paper
- testing-framework (🥉6 · ⭐ 11 · 💀) - The purpose of this repository is to aid the testing of a large number of interatomic potentials for a variety of.. Unlicensed
benchmarking
- PANNA (🥉6 · ⭐ 7 · 💀) - A package to train and validate all-to-all connected network models for BP[1] and modified-BP[2] type local atomic.. MIT
benchmarking
- Alchemical learning (🥉5 · ⭐ 2 · 💤) - Code for the Modeling high-entropy transition metal alloys with alchemical compression article. BSD-3
- glp (🥉4 · ⭐ 13) - tools for graph-based machine-learning potentials in jax. MIT
- TensorPotential (🥉4 · ⭐ 5) - Tensorpotential is a TensorFlow based tool for development, fitting ML interatomic potentials from electronic.. Custom
+- PeriodicPotentials (🥉4 · 💀) - A Periodic table app that displays potentials based on the selected elements. MIT
community-resource
viz
JavaScript
- SingleNN (🥉2 · ⭐ 7 · 💀) - An efficient package for training and executing neural-network interatomic potentials. Unlicensed
C++
+- MEGNetSparse (🥉2 · ⭐ 1 · 🐣) - A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,.. MIT
material-defect
- RuNNer (🥉2) - The RuNNer Neural Network Energy Representation is a Fortran-based framework for the construction of Behler-.. GPL-3.0
Fortran
+- Allegro-JAX (🥉1 · ⭐ 11 · 🐣) - JAX implementation of the Allegro interatomic potential. Unlicensed
+- mlp (🥉1 · ⭐ 1 · 💀) - Proper orthogonal descriptors for efficient and accurate interatomic potentials... Unlicensed
Julia
MIT
datasets
MIT
Apache-2
transformer
pre-trained
drug-discovery
MIT
MIT
+- ChemDataExtractor (🥈16 · ⭐ 270 · 💀) - Automatically extract chemical information from scientific documents. MIT
literature-data
+- MAPI_LLM (🥉5 · ⭐ 4 · ➕) - A LLM application developed during the LLM March MADNESS Hackathon https://doi.org/10.1039/D3DD00113J. MIT
dataset
+- ChemDataWriter (🥉4 · ⭐ 8 · 🐣) - ChemDataWriter is a transformer-based library for automatically generating research books in the chemistry area. MIT
literature-data
+- SciBot (🥉3 · ⭐ 14 · 🐣) - SciBot is a simple demo of building a domain-specific chatbot for science. Unlicensed
+- CatBERTa (🥉3 · ⭐ 13 · ➕) - Large Language Model for Catalyst Property Prediction. Unlicensed
transformer
catalysis
- BERT-PSIE-TC (🥉3 · ⭐ 2) - A dataset of Curie temperatures automatically extracted from scientific literature with the use of the BERT-PSIE.. MIT
magnetism
MIT
probabilistic
active-learning
MIT
probabilistic
active-learning
MIT
rep-learn
MPL-2.0
C++
MIT
Julia
- cnine (🥉4 · ⭐ 2) - Cnine tensor library. Unlicensed
C++
+- torch_spex (🥉4 · ➕) - Spherical expansions in PyTorch. Unlicensed
- Wigner Kernels (🥉2 · ⭐ 1) - Collection of programs to benchmark Wigner kernels. Unlicensed
benchmarking
Custom
ML-IAP
C++
Custom
ML-IAP
C++
MIT
ML-IAP
rep-learn
MIT
ML-IAP
rep-learn
- interface-lammps-mlip-3 (🥉4 · ⭐ 5 · 💤) - An interface between LAMMPS and MLIP (version 3). GPL-2.0
MIT
benchmarking
- SkipAtom (🥉7 · ⭐ 22 · 💀) - Distributed representations of atoms, inspired by the Skip-gram model. MIT
@@ -1589,7 +1792,8 @@ _Projects that offer implementations of representations aka descriptors, fingerp
- SA-GPR (🥉6 · ⭐ 14 · 💀) - Public repository for symmetry-adapted Gaussian Process Regression (SA-GPR). LGPL-3.0
C-lang
- fplib (🥉6 · ⭐ 7 · 💀) - a fingerprint library. MIT
C-lang
single-paper
- SOAPxx (🥉6 · ⭐ 7 · 💀) - A SOAP implementation. GPL-2.0
C++
-- pyLODE (🥉6 · ⭐ 2) - Pythonic implementation of LOng Distance Equivariants. Apache-2
electrostatics
+- pyLODE (🥉6 · ⭐ 2) - Pythonic implementation of LOng Distance Equivariants. Apache-2
electrostatics
+- soap_turbo (🥉5 · ⭐ 4 · 💤) - soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP. Custom
Fortran
- SISSO++ (🥉4 · ⭐ 2 · 💀) - C++ Implementation of SISSO with python bindings. Apache-2
C++
- magnetism-prediction (🥉4 · ⭐ 1) - DFT-aided Machine Learning Search for Magnetism in Fe-based Bimetallic Chalcogenides. Apache-2
magnetism
single-paper
- ML-for-CurieTemp-Predictions (🥉4 · 🐣) - Machine Learning Predictions of High-Curie-Temperature Materials. MIT
single-paper
magnetism
@@ -1687,6 +1891,18 @@ _General models that learn a representations aka embeddings of atomistic systems
git clone https://github.com/NVIDIA/DeepLearningExamples
```
GPL-3.0
BSD-3
MIT
magnetism
MIT
transformer
MIT
- Cormorant (🥉7 · ⭐ 55 · 💀) - Codebase for Cormorant Neural Networks. Custom
- ai4material_design (🥉7 · ⭐ 2) - Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of.. Apache-2
pre-trained
material-defect
-- charge_transfer_nnp (🥉6 · ⭐ 24 · 💀) - Graph neural network potential with charge transfer. MIT
electrostatics
+- charge_transfer_nnp (🥉6 · ⭐ 24 · 💀) - Graph neural network potential with charge transfer. MIT
electrostatics
- tensorfieldnetworks (🥉5 · ⭐ 140 · 💀) - MIT
- Autobahn (🥉5 · ⭐ 28 · 💀) - Repository for Autobahn: Automorphism Based Graph Neural Networks. MIT
-- SCFNN (🥉5 · ⭐ 15 · 💀) - Self-consistent determination of long-range electrostatics in neural network potentials. MIT
C++
electrostatics
single-paper
+- SCFNN (🥉5 · ⭐ 15 · 💀) - Self-consistent determination of long-range electrostatics in neural network potentials. MIT
C++
electrostatics
single-paper
- FieldSchNet (🥉5 · ⭐ 11 · 💀) - MIT
- Per-Site CGCNN (🥉5 · ⭐ 1) - Crystal graph convolutional neural networks for predicting material properties. MIT
pre-trained
single-paper
- Atom2Vec (🥉4 · ⭐ 26 · 💀) - Atom2Vec: a simple way to describe atoms for machine learning. Unlicensed
@@ -2032,6 +2256,14 @@ _Projects and models that focus on quantities of wavefunction theory methods, su
+MIT
pre-trained
Apache-2
+- DIG: Dive into Graphs (🥈21 · ⭐ 1.7K · ➕) - A library for graph deep learning research. GPL-3.0
+- ATOM3D (🥇18 · ⭐ 280 · 💤) - ATOM3D: tasks on molecules in three dimensions. MIT
biomolecules
benchmarking
+- ChemCrow (🥇17 · ⭐ 320 · 🐣) - Chemcrow. MIT
+- ChemDataExtractor (🥈16 · ⭐ 270 · 💀) - Automatically extract chemical information from scientific documents. MIT
literature-data
+- ChemNLP project (🥈16 · ⭐ 110 · ➕) - ChemNLP project. MIT
datasets
+- GT4SD - Generative Toolkit for Scientific Discovery (🥈15 · ⭐ 280 · ➕) - Gradio apps of generative models in GT4SD. MIT
generative
pre-trained
drug-discovery
+- dlpack (🥉14 · ⭐ 800 · 💤) - common in-memory tensor structure. Apache-2
C++
+- Geometric GNN Dojo (🥇12 · ⭐ 350 · ➕) - New to geometric GNNs: try our practical notebook, prepared for MPhil students at the University of Cambridge. MIT
rep-learn
+- QH9: A Quantum Hamiltonian Prediction Benchmark (🥈12 · ⭐ 280 · ➕) - Artificial Intelligence for Science (AIRS). CC-BY-NC-SA 4.0
ML-DFT
+- QHNet (🥈12 · ⭐ 280 · ➕) - Artificial Intelligence for Science (AIRS). GPL-3.0
rep-learn
+- Grad DFT (🥈12 · ⭐ 43 · ➕) - Grad-DFT is a JAX-based library enabling the differentiable design and experimentation of exchange-correlation.. Apache-2
+- pretrained-gnns (🥇10 · ⭐ 870 · ➕) - Strategies for Pre-training Graph Neural Networks. MIT
pre-trained
+- DSECOP (🥈10 · ⭐ 31 · ➕) - This repository contains data science educational materials developed by DSECOP Fellows. CCO-1.0
+- pair_nequip (🥉10 · ⭐ 29 · 💀) - LAMMPS pair style for NequIP. MIT
ML-IAP
rep-learn
+- tinker-hp (🥉9 · ⭐ 69 · ➕) - Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs & GPUs. Custom
+- lie-nn (🥈9 · ⭐ 22 · ➕) - Tools for building equivariant polynomials on reductive Lie groups. MIT
rep-learn
+- TurboGAP (🥉9 · ⭐ 14 · ➕) - The TurboGAP code. Custom
Fortran
+- MoLFormers UI (🥉8 · ⭐ 140 · ➕) - Repository for MolFormer. Apache-2
transformer
Language models
pre-trained
drug-discovery
+- MoLFormer (🥉8 · ⭐ 140 · ➕) - Repository for MolFormer. Apache-2
transformer
pre-trained
drug-discovery
+- pair_allegro (🥉8 · ⭐ 26 · ➕) - LAMMPS pair style for Allegro deep learning interatomic potentials with parallelization support. MIT
ML-IAP
rep-learn
+- chemlift (🥉8 · ⭐ 10 · 🐣) - Language-interfaced fine-tuning for chemistry. MIT
+- T-e3nn (🥉8 · ⭐ 6 · 💤) - Time-reversal Euclidean neural networks based on e3nn. MIT
magnetism
+- Awesome Neural Geometry (🥉7 · ⭐ 780 · ➕) - A curated collection of resources and research related to the geometry of representations in the brain, deep networks,.. Unlicensed
educational
rep-learn
+- COATI (🥉6 · ⭐ 59 · 🐣) - COATI: multi-modal contrastive pre-training for representing and traversing chemical space. Apache-2
drug-discovery
pre-trained
rep-learn
+- Mat2Spec (🥉6 · ⭐ 24 · 💀) - MIT
spectroscopy
+- NequIP-JAX (🥉5 · ⭐ 10 · ➕) - JAX implementation of the NequIP interatomic potential. Unlicensed
+- MAPI_LLM (🥉5 · ⭐ 4 · ➕) - A LLM application developed during the LLM March MADNESS Hackathon https://doi.org/10.1039/D3DD00113J. MIT
dataset
+- soap_turbo (🥉5 · ⭐ 4 · 💤) - soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP. Custom
Fortran
+- MACE-tutorials (🥉5 · ⭐ 3 · 🐣) - Another set of tutorials for the MACE interatomic potential by one of the authors. MIT
ML-IAP
rep-learn
MD
+- Point Edge Transformer (PET) (🥉5 · ➕) - Point Edge Transformer. Unlicensed
rep-learn
transformer
+- ChemDataWriter (🥉4 · ⭐ 8 · 🐣) - ChemDataWriter is a transformer-based library for automatically generating research books in the chemistry area. MIT
literature-data
+- torch_spex (🥉4 · ➕) - Spherical expansions in PyTorch. Unlicensed
+- PeriodicPotentials (🥉4 · 💀) - A Periodic table app that displays potentials based on the selected elements. MIT
community-resource
viz
JavaScript
+- SciBot (🥉3 · ⭐ 14 · 🐣) - SciBot is a simple demo of building a domain-specific chatbot for science. Unlicensed
+- CatBERTa (🥉3 · ⭐ 13 · ➕) - Large Language Model for Catalyst Property Prediction. Unlicensed
transformer
catalysis
+- A3MD (🥉2 · ⭐ 5 · 💀) - MPNN-like + Analytic Density Model = Accurate electron densities. Unlicensed
representation-learning
single-paper
+- LAMMPS-style pair potentials with GAP (🥉2 · ⭐ 3 · 💀) - A tutorial on how to create LAMMPS-style pair potentials and use them in combination with GAP potentials to run MD.. Unlicensed
ML-IAP
MD
rep-eng
+- MEGNetSparse (🥉2 · ⭐ 1 · 🐣) - A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,.. MIT
material-defect
+- Allegro-JAX (🥉1 · ⭐ 11 · 🐣) - JAX implementation of the Allegro interatomic potential. Unlicensed
+- APET (🥉1 · ⭐ 2 · ➕) - Atomic Positional Embedding-based Transformer. GPL-3.0
density-of-states
transformer
+- mlp (🥉1 · ⭐ 1 · 💀) - Proper orthogonal descriptors for efficient and accurate interatomic potentials... Unlicensed
Julia
+
diff --git a/history/2023-12-03_projects.csv b/history/2023-12-03_projects.csv
index 651b95c..3c823ef 100644
--- a/history/2023-12-03_projects.csv
+++ b/history/2023-12-03_projects.csv
@@ -1,295 +1,342 @@
-,name,resource,category,license,homepage,description,projectrank,show,labels,github_id,github_url,created_at,updated_at,last_commit_pushed_at,commit_count,recent_commit_count,fork_count,watchers_count,pr_count,open_issue_count,closed_issue_count,star_count,latest_stable_release_published_at,latest_stable_release_number,release_count,contributor_count,pypi_id,conda_id,dependent_project_count,github_dependent_project_count,pypi_url,pypi_monthly_downloads,monthly_downloads,conda_url,conda_latest_release_published_at,conda_total_downloads,projectrank_placing,dockerhub_id,dockerhub_url,dockerhub_latest_release_published_at,dockerhub_stars,dockerhub_pulls,github_release_downloads,maven_id,maven_url,updated_github_id,npm_id,npm_url,npm_monthly_downloads,gitlab_id,gitlab_url,ignore,docs_url
-0,AI for Science Map,True,community,GPL-3.0 license,https://www.air4.science/map,"Interactive mindmap of the AI4Science research field, including atomistic machine learning, including papers,..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-1,Atomic Cluster Expansion,True,community,,https://cortner.github.io/ACEweb/,Atomic Cluster Expansion (ACE) community homepage.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-2,CrystaLLM,True,community,https://materialis.ai/terms.html,https://crystallm.com,Generate a crystal structure from a composition.,0,True,"['lm', 'generative', 'pre-trained', 'transformer']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-3,matsci.org,True,community,,https://matsci.org/,"A community forum for the discussion of anything materials science, with a focus on computational materials science..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-4,Matter Modeling Stack Exchange - Machine Learning,True,community,,https://mattermodeling.stackexchange.com/questions/tagged/machine-learning,"Forum StackExchange, site Matter Modeling, ML-tagged questions.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-5,Catalysis Hub,True,datasets,,https://www.catalysis-hub.org/,A web-platform for sharing data and software for computational catalysis research!.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-6,Citrination Datasets,True,datasets,MIT,https://citrination.com/,AI-Powered Materials Data Platform. Open Citrination has been decommissioned.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-7,crystals.ai,True,datasets,,https://crystals.ai/,Curated datasets for reproducible AI in materials science.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-8,DeepChem Models,True,datasets,,https://huggingface.co/DeepChem,DeepChem models on HuggingFace.,0,True,"['pre-trained', 'lm']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-9,JARVIS-Leaderboard,True,datasets,https://github.com/usnistgov/jarvis_leaderboard/blob/main/LICENSE.rst,https://pages.nist.gov/jarvis_leaderboard/,This project provides benchmark-performances for materials science applications including Artificial Intelligence..,0,True,['benchmarking'],usnistgov/jarvis_leaderboard,https://github.com/usnistgov/jarvis_leaderboard,2022-07-15 16:48:33,2023-11-27 01:50:42.000,2023-10-13 13:39:27,706.0,30.0,26.0,6.0,275.0,4.0,2.0,41.0,2023-08-04 17:33:22,2023.08.01,21.0,24.0,,,,,,,,,,,,,,,,,,,,,,,,,,,
-10,Materials Project - Charge Densities,True,datasets,,https://materialsproject.org/ml/charge_densities,Materials Project has started offering charge density information available for download via their public API.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-11,matterverse.ai,True,datasets,,https://matterverse.ai/,Database of yet-to-be-sythesized materials predicted using state-of-the-art machine learning algorithms.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-12,Quantum-Machine.org Datasets,True,datasets,,http://quantum-machine.org/datasets/,"Collection of datasets, including QM7, QM9, etc. MD, DFT. Small organic molecules, mostly.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-13,sGDML Datasets,True,datasets,,http://sgdml.org/#datasets,"MD17, MD22, DFT datasets.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-14,Quantum Chemistry in the Age of Machine Learning,True,educational,,https://www.elsevier.com/books-and-journals/book-companion/9780323900492,"Book, 2022.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-15,Deep Graph Library (DGL),,rep-learn,Apache-2.0,https://github.com/dmlc/dgl,"Python package built to ease deep learning on graph, on top of existing DL frameworks.",38,True,,dmlc/dgl,https://github.com/dmlc/dgl,2018-04-20 14:49:09,2023-12-02 12:26:24.000,2023-12-01 08:30:42,3656.0,278.0,2828.0,170.0,4213.0,324.0,2119.0,12505.0,2023-08-15 07:31:40,1.1.2,76.0,281.0,dgl,dglteam/dgl,166.0,166.0,https://pypi.org/project/dgl,69432.0,74469.0,https://anaconda.org/dglteam/dgl,2023-09-14 15:04:21.699,302265.0,1.0,,,,,,,,,,,,,,,,
-16,DeepChem,,general-tool,MIT,https://github.com/deepchem/deepchem,"Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, Materials Science and Biology.",36,True,,deepchem/deepchem,https://github.com/deepchem/deepchem,2015-09-24 23:20:28,2023-12-02 20:50:00.000,2023-12-01 17:26:24,9737.0,447.0,1477.0,146.0,2054.0,429.0,1211.0,4750.0,2022-12-01 13:22:37,2.7.1,18.0,230.0,deepchem,conda-forge/deepchem,286.0,286.0,https://pypi.org/project/deepchem,16179.0,18515.0,https://anaconda.org/conda-forge/deepchem,2023-06-16 19:18:02.015,104276.0,1.0,deepchemio/deepchem,https://hub.docker.com/r/deepchemio/deepchem,2022-03-11 05:24:00.723691,4.0,7027.0,,,,,,,,,,,
-17,PyG Models,,rep-learn,MIT,https://github.com/pyg-team/pytorch_geometric/tree/master/torch_geometric/nn/models,Representation learning models implemented in PyTorch Geometric.,30,True,['general-ml'],pyg-team/pytorch_geometric,https://github.com/pyg-team/pytorch_geometric,2017-10-06 16:03:03,2023-12-03 16:59:07.000,2023-12-03 16:59:06,7175.0,247.0,3333.0,254.0,2599.0,757.0,2504.0,19060.0,2023-10-12 08:28:59,2.4.0,36.0,468.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,
-18,RDKit,,general-tool,BSD-3-Clause,https://github.com/rdkit/rdkit,,30,True,['lang-cpp'],rdkit/rdkit,https://github.com/rdkit/rdkit,2013-05-12 06:19:15,2023-12-02 06:31:04.000,2023-12-02 06:31:04,7551.0,82.0,775.0,85.0,2895.0,874.0,2083.0,2258.0,2023-11-10 06:45:02,Release_2023_09_2,98.0,207.0,rdkit,rdkit/rdkit,2.0,2.0,https://pypi.org/project/rdkit,324378.0,346727.0,https://anaconda.org/rdkit/rdkit,2023-06-16 12:54:07.547,2546590.0,1.0,,,,,,1407.0,,,,,,,,,,
-19,DeePMD-kit,,ml-iap,LGPL-3.0,https://github.com/deepmodeling/deepmd-kit,A deep learning package for many-body potential energy representation and molecular dynamics.,28,True,['lang-cpp'],deepmodeling/deepmd-kit,https://github.com/deepmodeling/deepmd-kit,2017-12-12 15:23:44,2023-12-02 23:23:49.000,2023-10-27 13:10:24,2353.0,107.0,437.0,46.0,1373.0,26.0,451.0,1267.0,2023-10-27 19:33:04,2.2.7,41.0,64.0,deepmd-kit,deepmodeling/deepmd-kit,12.0,12.0,https://pypi.org/project/deepmd-kit,893.0,1521.0,https://anaconda.org/deepmodeling/deepmd-kit,2023-10-27 21:14:49.194,353.0,1.0,deepmodeling/deepmd-kit,https://hub.docker.com/r/deepmodeling/deepmd-kit,2023-10-29 23:31:03.651515,1.0,2033.0,29093.0,,,,,,,,,,
-20,SchNetPack,,rep-learn,MIT,https://github.com/atomistic-machine-learning/schnetpack,SchNetPack - Deep Neural Networks for Atomistic Systems.,28,True,,atomistic-machine-learning/schnetpack,https://github.com/atomistic-machine-learning/schnetpack,2018-09-03 15:44:35,2023-12-01 09:07:49.000,2023-12-01 08:57:55,1598.0,43.0,188.0,31.0,370.0,2.0,217.0,670.0,2023-09-29 14:31:19,2.0.4,8.0,32.0,schnetpack,,64.0,64.0,https://pypi.org/project/schnetpack,602.0,602.0,,,,1.0,,,,,,,,,,,,,,,,
-21,Matminer,,general-tool,https://github.com/hackingmaterials/matminer/blob/main/LICENSE,https://github.com/hackingmaterials/matminer,Data mining for materials science.,27,True,,hackingmaterials/matminer,https://github.com/hackingmaterials/matminer,2015-09-24 20:37:00,2023-11-27 08:05:39.000,2023-11-10 10:02:34,4112.0,4.0,176.0,28.0,701.0,27.0,187.0,419.0,2023-06-27 15:36:52,0.9.0,66.0,50.0,matminer,conda-forge/matminer,252.0,252.0,https://pypi.org/project/matminer,14008.0,15412.0,https://anaconda.org/conda-forge/matminer,2023-10-24 08:40:46.186,53358.0,1.0,,,,,,,,,,,,,,,,
-22,paper-qa,,lm,Apache-2.0,https://github.com/whitead/paper-qa,LLM Chain for answering questions from documents with citations.,25,True,,whitead/paper-qa,https://github.com/whitead/paper-qa,2023-02-05 01:07:25,2023-12-01 22:47:51.000,2023-12-01 22:47:34,178.0,11.0,297.0,41.0,90.0,46.0,66.0,3268.0,2023-12-01 22:47:51,3.13.3,74.0,12.0,paper-qa,,39.0,39.0,https://pypi.org/project/paper-qa,2756.0,2756.0,,,,1.0,,,,,,,,,,,,,,,,
-23,e3nn,,rep-learn,MIT,https://github.com/e3nn/e3nn,A modular framework for neural networks with Euclidean symmetry.,25,True,,e3nn/e3nn,https://github.com/e3nn/e3nn,2020-01-31 13:06:42,2023-11-03 06:14:55.000,2023-09-02 22:23:35,2157.0,,111.0,18.0,204.0,16.0,131.0,797.0,2022-12-12 21:42:03,0.5.1,28.0,29.0,e3nn,conda-forge/e3nn,133.0,133.0,https://pypi.org/project/e3nn,97925.0,98498.0,https://anaconda.org/conda-forge/e3nn,2023-06-18 08:41:30.723,10900.0,1.0,,,,,,,,,,,,,,,,
-24,cdk,,rep-eng,LGPL-2.1,https://github.com/cdk/cdk,The Chemistry Development Kit.,25,True,"['cheminformatics', 'lang-java']",cdk/cdk,https://github.com/cdk/cdk,2010-05-11 08:30:07,2023-12-02 12:41:00.000,2023-11-28 15:36:13,17429.0,15.0,147.0,39.0,762.0,25.0,237.0,446.0,2023-08-21 19:50:47,cdk-2.9,20.0,163.0,,,18.0,18.0,,,152.0,,,,1.0,,,,,,16896.0,org.openscience.cdk:cdk-bundle,https://search.maven.org/artifact/org.openscience.cdk/cdk-bundle,,,,,,,,
-25,QUIP,,general-tool,GPL-2.0,https://github.com/libAtoms/QUIP,libAtoms/QUIP molecular dynamics framework: https://libatoms.github.io.,24,True,,libAtoms/QUIP,https://github.com/libAtoms/QUIP,2013-07-02 15:21:59,2023-10-09 12:20:02.000,2023-08-29 12:01:13,10833.0,,117.0,26.0,165.0,91.0,345.0,309.0,2023-06-15 19:11:24,0.9.14,15.0,80.0,quippy-ase,,25.0,25.0,https://pypi.org/project/quippy-ase,1289.0,1373.0,,,,2.0,libatomsquip/quip,https://hub.docker.com/r/libatomsquip/quip,2023-04-24 21:25:17.345957,4.0,9857.0,347.0,,,,,,,,,,
-26,MAML,,general-tool,BSD-3-Clause,https://github.com/materialsvirtuallab/maml,"Python for Materials Machine Learning, Materials Descriptors, Machine Learning Force Fields, Deep Learning, etc.",24,True,,materialsvirtuallab/maml,https://github.com/materialsvirtuallab/maml,2020-01-25 15:04:21,2023-11-30 13:05:25.000,2023-11-06 19:58:55,1617.0,55.0,63.0,21.0,522.0,4.0,60.0,299.0,2023-09-09 22:24:24,2023.9.9,13.0,29.0,maml,,4.0,4.0,https://pypi.org/project/maml,228.0,228.0,,,,2.0,,,,,,,,,,,,,,,,
-27,Best-of Machine Learning with Python,,community,CC-BY-4.0,https://github.com/ml-tooling/best-of-ml-python,A ranked list of awesome machine learning Python libraries. Updated weekly.,23,True,"['general-ml', 'lang-py']",ml-tooling/best-of-ml-python,https://github.com/ml-tooling/best-of-ml-python,2020-11-29 19:41:36,2023-11-30 16:05:11.000,2023-11-30 16:05:10,442.0,27.0,2102.0,382.0,234.0,17.0,33.0,14694.0,2023-11-30 16:05:19,2023.11.30,100.0,44.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,
-28,dgl-lifesci,,rep-learn,Apache-2.0,https://github.com/awslabs/dgl-lifesci,Python package for graph neural networks in chemistry and biology.,23,True,,awslabs/dgl-lifesci,https://github.com/awslabs/dgl-lifesci,2020-04-23 07:14:21,2023-11-01 19:32:07.000,2023-04-16 03:55:52,236.0,,135.0,17.0,141.0,24.0,57.0,641.0,2023-02-13 08:45:17,0.3.2,8.0,22.0,dgllife,,142.0,142.0,https://pypi.org/project/dgllife,13202.0,13202.0,,,,1.0,,,,,,,,,,,,,,,,
-29,DP-GEN,,ml-iap,LGPL-3.0,https://github.com/deepmodeling/dpgen,The deep potential generator to generate a deep-learning based model of interatomic potential energy and force field.,23,True,['workflows'],deepmodeling/dpgen,https://github.com/deepmodeling/dpgen,2019-06-13 11:43:56,2023-11-28 05:00:21.000,2023-11-02 05:59:11,2047.0,23.0,162.0,13.0,758.0,17.0,233.0,246.0,2023-11-02 06:14:15,0.12.0,17.0,62.0,dpgen,deepmodeling/dpgen,4.0,4.0,https://pypi.org/project/dpgen,519.0,556.0,https://anaconda.org/deepmodeling/dpgen,2023-06-16 19:27:03.566,191.0,1.0,,,,,,1529.0,,,,,,,,,,
-30,dpdata,,data-structures,LGPL-3.0,https://github.com/deepmodeling/dpdata,"Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc.",23,True,,deepmodeling/dpdata,https://github.com/deepmodeling/dpdata,2019-04-12 13:24:23,2023-12-03 04:35:56.000,2023-10-31 01:50:24,666.0,23.0,109.0,8.0,407.0,10.0,66.0,152.0,2023-10-31 02:23:47,0.2.17,24.0,51.0,dpdata,deepmodeling/dpdata,109.0,109.0,https://pypi.org/project/dpdata,4298.0,4304.0,https://anaconda.org/deepmodeling/dpdata,2023-09-27 20:07:36.945,174.0,1.0,,,,,,,,,,,,,,,,
-31,kgcnn,,rep-learn,MIT,https://github.com/aimat-lab/gcnn_keras,"Graph convolutions in Keras with TensorFlow, PyTorch or Jax.",23,True,,aimat-lab/gcnn_keras,https://github.com/aimat-lab/gcnn_keras,2020-07-17 11:12:46,2023-12-02 14:51:47.000,2023-12-02 14:47:51,3016.0,231.0,25.0,7.0,30.0,8.0,73.0,90.0,2023-09-16 11:47:45,3.1.0,24.0,7.0,kgcnn,,15.0,15.0,https://pypi.org/project/kgcnn,290.0,290.0,,,,1.0,,,,,,,,,,,,,,,,
-32,MPContribs,,datasets,MIT,https://github.com/materialsproject/MPContribs,Platform for materials scientists to contribute and disseminate their materials data through Materials Project.,23,True,,materialsproject/MPContribs,https://github.com/materialsproject/MPContribs,2014-12-11 18:25:27,2023-11-29 22:50:51.000,2023-11-29 22:50:41,5387.0,113.0,19.0,11.0,1581.0,20.0,78.0,32.0,2023-11-28 23:05:55,5.6.2,71.0,25.0,mpcontribs-client,,27.0,27.0,https://pypi.org/project/mpcontribs-client,6493.0,6493.0,,,,1.0,,,,,,,,,,,,,,,,
-33,AlphaFold,,biomolecules,Apache-2.0,https://github.com/google-deepmind/alphafold,Open source code for AlphaFold.,22,True,,deepmind/alphafold,https://github.com/google-deepmind/alphafold,2021-06-17 14:06:06,2023-12-01 15:03:42.000,2023-11-01 12:32:02,133.0,5.0,1905.0,213.0,91.0,186.0,581.0,11091.0,2023-04-05 09:45:53,2.3.2,13.0,19.0,,,7.0,7.0,,,,,,,1.0,,,,,,,,,google-deepmind/alphafold,,,,,,,
-34,JAX-MD,,md,Apache-2.0,https://github.com/jax-md/jax-md,"Differentiable, Hardware Accelerated, Molecular Dynamics.",22,True,,jax-md/jax-md,https://github.com/jax-md/jax-md,2019-05-13 21:03:37,2023-10-23 08:23:20.000,2023-08-29 15:10:31,838.0,,161.0,49.0,157.0,63.0,74.0,1022.0,2022-11-27 12:42:00,jax-md-v0.2.24,7.0,28.0,jax-md,,37.0,37.0,https://pypi.org/project/jax-md,1253.0,1253.0,,,,1.0,,,,,,,,,,,,,,,,
-35,DeepQMC,,ml-wft,MIT,https://github.com/deepqmc/deepqmc,Deep learning quantum Monte Carlo for electrons in real space.,22,True,,deepqmc/deepqmc,https://github.com/deepqmc/deepqmc,2019-12-06 14:50:59,2023-11-20 10:29:54.000,2023-11-20 10:29:53,1456.0,135.0,56.0,23.0,154.0,3.0,36.0,307.0,2023-11-20 10:09:02,1.1.2,10.0,13.0,deepqmc,,1.0,1.0,https://pypi.org/project/deepqmc,149.0,149.0,,,,1.0,,,,,,,,,,,,,,,,
-36,NVIDIA Deep Learning Examples for Tensor Cores,,rep-learn,https://github.com/NVIDIA/DeepLearningExamples/blob/master/DGLPyTorch/DrugDiscovery/SE3Transformer/LICENSE,https://github.com/NVIDIA/DeepLearningExamples#graph-neural-networks,State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and..,21,True,"['educational', 'drug-discovery']",NVIDIA/DeepLearningExamples,https://github.com/NVIDIA/DeepLearningExamples,2018-05-02 17:04:05,2023-11-08 13:05:42.000,2023-10-06 19:54:45,1427.0,3.0,2817.0,293.0,529.0,232.0,558.0,11793.0,,,,115.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-37,MEGNet,,ml-iap,BSD-3-Clause,https://github.com/materialsvirtuallab/megnet,Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals.,21,True,,materialsvirtuallab/megnet,https://github.com/materialsvirtuallab/megnet,2018-12-12 21:31:28,2023-04-27 02:39:17.000,2023-04-27 02:39:17,1146.0,,142.0,24.0,314.0,17.0,57.0,461.0,2022-11-16 21:24:36,1.3.2,34.0,13.0,megnet,,71.0,71.0,https://pypi.org/project/megnet,315.0,315.0,,,,1.0,,,,,,,,,,,,,,,,
-38,TorchANI,,ml-iap,MIT,https://github.com/aiqm/torchani,Accurate Neural Network Potential on PyTorch.,21,True,,aiqm/torchani,https://github.com/aiqm/torchani,2018-04-02 15:43:04,2023-11-30 14:35:04.000,2023-11-14 16:32:59,434.0,1.0,112.0,28.0,481.0,19.0,142.0,413.0,2023-11-14 16:38:04,2.2.4,24.0,17.0,torchani,conda-forge/torchani,29.0,29.0,https://pypi.org/project/torchani,1935.0,7597.0,https://anaconda.org/conda-forge/torchani,2023-11-16 16:26:58.145,226497.0,1.0,,,,,,,,,,,,,,,,
-39,DScribe,,rep-eng,Apache-2.0,https://github.com/SINGROUP/dscribe,DScribe is a python package for creating machine learning descriptors for atomistic systems.,21,True,,SINGROUP/dscribe,https://github.com/SINGROUP/dscribe,2017-05-08 08:29:51,2023-09-06 07:04:16.227,2023-09-05 18:02:57,1287.0,3.0,80.0,20.0,25.0,8.0,79.0,354.0,,,14.0,18.0,dscribe,conda-forge/dscribe,162.0,162.0,https://pypi.org/project/dscribe,7955.0,9917.0,https://anaconda.org/conda-forge/dscribe,2023-09-06 07:04:16.227,80470.0,1.0,,,,,,,,,,,,,,,,
-40,JARVIS-Tools,,general-tool,https://github.com/usnistgov/jarvis/blob/master/LICENSE.rst,https://github.com/usnistgov/jarvis,JARVIS-Tools: an open-source software package for data-driven atomistic materials design. Publications:..,21,True,,usnistgov/jarvis,https://github.com/usnistgov/jarvis,2017-06-22 19:34:02,2023-10-18 14:10:33.000,2023-09-22 00:18:02,2094.0,1.0,107.0,27.0,222.0,41.0,43.0,255.0,2023-08-11 17:26:26,2023.08.01,69.0,15.0,jarvis-tools,conda-forge/jarvis-tools,66.0,66.0,https://pypi.org/project/jarvis-tools,929.0,2487.0,https://anaconda.org/conda-forge/jarvis-tools,2023-06-16 19:23:23.093,59226.0,2.0,,,,,,,,,,,,,,,,
-41,MatGL (Materials Graph Library),,rep-learn,BSD-3-Clause,https://github.com/materialsvirtuallab/matgl,Graph deep learning library for materials.,21,True,,materialsvirtuallab/matgl,https://github.com/materialsvirtuallab/matgl,2022-08-29 18:36:05,2023-11-27 21:05:00.000,2023-11-27 21:04:36,903.0,51.0,32.0,8.0,143.0,3.0,43.0,146.0,2023-11-17 20:11:53,0.9.1,25.0,13.0,m3gnet,,17.0,17.0,https://pypi.org/project/m3gnet,487.0,487.0,,,,2.0,,,,,,,,,,,,,,,,
-42,DM21,,ml-dft,Apache-2.0,https://github.com/deepmind/deepmind-research/tree/master/density_functional_approximation_dm21,This package provides a PySCF interface to the DM21 (DeepMind 21) family of exchange-correlation functionals described..,20,True,,deepmind/deepmind-research,https://github.com/google-deepmind/deepmind-research,2019-01-15 09:54:13,2023-11-27 23:26:48.000,2023-06-02 17:04:50,369.0,,2431.0,337.0,180.0,166.0,135.0,12311.0,,,,92.0,,,,,,,,,,,1.0,,,,,,,,,google-deepmind/deepmind-research,,,,,,,
-43,NequIP,,ml-iap,MIT,https://github.com/mir-group/nequip,NequIP is a code for building E(3)-equivariant interatomic potentials.,20,True,,mir-group/nequip,https://github.com/mir-group/nequip,2021-03-15 23:44:39,2023-10-27 20:35:22.000,2023-03-26 21:37:08,1670.0,,105.0,18.0,149.0,14.0,52.0,471.0,2022-12-20 18:52:46,0.5.6,14.0,8.0,nequip,conda-forge/nequip,16.0,16.0,https://pypi.org/project/nequip,550.0,745.0,https://anaconda.org/conda-forge/nequip,2023-06-18 08:41:30.787,3708.0,1.0,,,,,,,,,,,,,,,,
-44,CHGNet,,ml-iap,https://github.com/CederGroupHub/chgnet/blob/main/LICENSE,https://github.com/CederGroupHub/chgnet,Pretrained universal neural network potential for charge-informed atomistic modeling https://chgnet.lbl.gov.,20,True,"['md', 'pre-trained', 'electrostatics', 'magnetism', 'structure-relaxation']",CederGroupHub/chgnet,https://github.com/CederGroupHub/chgnet,2023-02-24 23:44:24,2023-11-19 04:15:36.000,2023-11-19 04:10:58,345.0,62.0,29.0,4.0,61.0,3.0,26.0,143.0,2023-11-19 04:15:36,0.3.2,10.0,7.0,chgnet,,9.0,9.0,https://pypi.org/project/chgnet,6985.0,6985.0,,,,1.0,,,,,,,,,,,,,,,,
-45,ocp,,rep-learn,MIT,https://github.com/Open-Catalyst-Project/ocp,ocp is the Open Catalyst Projects library of state-of-the-art machine learning algorithms for catalysis.,19,True,,Open-Catalyst-Project/ocp,https://github.com/Open-Catalyst-Project/ocp,2019-09-26 04:47:27,2023-11-28 00:24:43.000,2023-11-27 18:44:01,710.0,12.0,179.0,23.0,457.0,13.0,132.0,520.0,2022-10-01 03:00:41,0.1.0,4.0,32.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-46,Pre-trained OCP models,,ml-iap,MIT,https://github.com/Open-Catalyst-Project/ocp/blob/main/MODELS.md,Pre-trained models released as part of the Open Catalyst Project.,19,True,['pre-trained'],Open-Catalyst-Project/ocp,https://github.com/Open-Catalyst-Project/ocp,2019-09-26 04:47:27,2023-11-28 00:24:43.000,2023-11-27 18:44:01,710.0,12.0,179.0,23.0,457.0,13.0,132.0,520.0,2022-10-01 03:00:41,0.1.0,4.0,32.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-47,exmol,,xai,MIT,https://github.com/ur-whitelab/exmol,Explainer for black box models that predict molecule properties.,19,True,,ur-whitelab/exmol,https://github.com/ur-whitelab/exmol,2021-08-03 17:56:06,2023-11-27 18:45:16.000,2023-06-19 19:49:27,188.0,,40.0,9.0,76.0,10.0,57.0,259.0,2023-06-19 20:50:51,3.0.3,27.0,7.0,exmol,,14.0,14.0,https://pypi.org/project/exmol,784.0,784.0,,,,1.0,,,,,,,,,,,,,,,,
-48,Metatensor,,data-structures,BSD-3-Clause,https://github.com/lab-cosmo/metatensor,Self-describing sparse tensor data format for atomistic machine learning and beyond.,19,True,"['lang-rust', 'lang-c', 'lang-cpp', 'lang-py']",lab-cosmo/metatensor,https://github.com/lab-cosmo/metatensor,2022-03-01 15:58:28,2023-12-02 19:16:48.000,2023-11-30 14:51:44,461.0,84.0,11.0,17.0,306.0,41.0,80.0,29.0,2023-10-11 15:57:13,metatensor-torch-v0.1.0,13.0,17.0,,,6.0,6.0,,,1128.0,,,,3.0,,,,,,2256.0,,,,,,,,,,
-49,Graph-based Deep Learning Literature,,community,MIT,https://github.com/naganandy/graph-based-deep-learning-literature,links to conference publications in graph-based deep learning.,18,True,"['general-ml', 'rep-learn']",naganandy/graph-based-deep-learning-literature,https://github.com/naganandy/graph-based-deep-learning-literature,2017-12-01 14:48:35,2023-11-19 05:55:34.000,2023-11-19 05:55:28,7632.0,10.0,725.0,243.0,21.0,,13.0,4451.0,,,,12.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-50,Open Catalyst datasets,,datasets,CC-BY-4.0,https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md,"The datasets of the Open Catalyst project, OC20, OC22.",18,True,,Open-Catalyst-Project/ocp,https://github.com/Open-Catalyst-Project/ocp,2019-09-26 04:47:27,2023-11-28 00:24:43.000,2023-11-27 18:44:01,710.0,12.0,179.0,23.0,457.0,13.0,132.0,520.0,2022-10-01 03:00:41,0.1.0,4.0,32.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,
-51,FLARE,,active-learning,MIT,https://github.com/mir-group/flare,An open-source Python package for creating fast and accurate interatomic potentials.,18,True,"['lang-cpp', 'ml-iap']",mir-group/flare,https://github.com/mir-group/flare,2018-08-30 23:40:56,2023-09-29 22:57:11.000,2023-05-26 02:06:09,4382.0,,59.0,18.0,185.0,23.0,164.0,253.0,2022-04-21 18:33:10,0.2.4,5.0,37.0,,,10.0,10.0,,,0.0,,,,1.0,,,,,,2.0,,,,,,,,,,
-52,MACE,,ml-iap,MIT,https://github.com/ACEsuit/mace,MACE - Fast and accurate machine learning interatomic potentials with higher order equivariant message passing.,18,True,,ACEsuit/mace,https://github.com/ACEsuit/mace,2022-06-21 18:44:34,2023-12-01 22:19:38.000,2023-12-01 11:29:48,373.0,70.0,77.0,18.0,99.0,18.0,86.0,218.0,2023-11-09 17:28:57,0.3.0,2.0,16.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-53,ALIGNN,,rep-learn,https://github.com/usnistgov/alignn/blob/main/LICENSE.rst,https://github.com/usnistgov/alignn,Atomistic Line Graph Neural Network.,18,True,,usnistgov/alignn,https://github.com/usnistgov/alignn,2021-04-19 20:08:09,2023-10-24 20:00:53.000,2023-10-24 20:00:52,623.0,19.0,64.0,11.0,90.0,24.0,23.0,165.0,2023-08-11 04:51:42,2023.08.01,40.0,7.0,alignn,,8.0,8.0,https://pypi.org/project/alignn,404.0,404.0,,,,2.0,,,,,,,,,,,,,,,,
-54,e3nn-jax,,rep-learn,Apache-2.0,https://github.com/e3nn/e3nn-jax,jax library for E3 Equivariant Neural Networks.,18,True,,e3nn/e3nn-jax,https://github.com/e3nn/e3nn-jax,2021-06-08 13:21:51,2023-11-24 09:26:06.000,2023-11-24 09:26:01,951.0,57.0,14.0,9.0,30.0,,10.0,125.0,2023-11-17 11:39:54,0.20.3,39.0,5.0,e3nn-jax,,,,https://pypi.org/project/e3nn-jax,1878.0,1878.0,,,,2.0,,,,,,,,,,,,,,,,
-55,FitSNAP,,md,GPL-2.0,https://github.com/FitSNAP/FitSNAP,Software for generating SNAP machine-learning interatomic potentials.,18,True,,FitSNAP/FitSNAP,https://github.com/FitSNAP/FitSNAP,2019-09-12 14:46:18,2023-11-07 18:49:16.000,2023-11-04 02:17:28,1366.0,62.0,45.0,7.0,174.0,8.0,55.0,125.0,2023-06-28 16:00:48,3.1.0,7.0,24.0,,conda-forge/fitsnap3,,,,,139.0,https://anaconda.org/conda-forge/fitsnap3,2023-06-16 00:19:04.615,5163.0,2.0,,,,,,7.0,,,,,,,,,,
-56,Chemiscope,,visualization,BSD-3-Clause,https://github.com/lab-cosmo/chemiscope,An interactive structure/property explorer for materials and molecules.,18,True,['lang-js'],lab-cosmo/chemiscope,https://github.com/lab-cosmo/chemiscope,2019-10-03 09:59:42,2023-11-30 23:51:24.000,2023-11-30 23:49:13,684.0,33.0,27.0,18.0,205.0,33.0,80.0,94.0,2023-10-23 15:11:17,0.6.0,13.0,19.0,,,5.0,5.0,,,26.0,,,,1.0,,,,,,138.0,,,,chemiscope,https://www.npmjs.com/package/chemiscope,23.0,,,,
-57,MALA,,ml-dft,BSD-3-Clause,https://github.com/mala-project/mala,Materials Learning Algorithms. A framework for machine learning materials properties from first-principles data.,18,True,,mala-project/mala,https://github.com/mala-project/mala,2021-03-31 11:40:38,2023-11-28 10:04:41.000,2023-10-26 10:42:52,2086.0,16.0,20.0,9.0,256.0,26.0,211.0,55.0,2023-09-28 13:54:19,1.2.0,8.0,41.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,
-58,Uni-Mol,,rep-learn,MIT,https://github.com/dptech-corp/Uni-Mol,Official Repository for the Uni-Mol Series Methods.,17,True,['pre-trained'],dptech-corp/Uni-Mol,https://github.com/dptech-corp/Uni-Mol,2022-05-22 13:26:41,2023-12-03 05:26:31.000,2023-12-03 05:26:31,95.0,12.0,86.0,16.0,70.0,44.0,75.0,456.0,2023-07-07 09:02:23,0.2,2.0,13.0,,,,,,,543.0,,,,2.0,,,,,,7604.0,,,,,,,,,,
-59,GT4SD,,generative,MIT,https://github.com/GT4SD/gt4sd-core,"GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.",17,True,"['pre-trained', 'drug-discovery', 'rep-learn']",GT4SD/gt4sd-core,https://github.com/GT4SD/gt4sd-core,2022-02-11 19:06:58,2023-11-27 08:23:51.000,2023-10-16 07:22:44,283.0,3.0,56.0,16.0,136.0,2.0,92.0,280.0,2023-05-06 06:55:52,1.3.1,54.0,19.0,gt4sd,,,,https://pypi.org/project/gt4sd,817.0,817.0,,,,1.0,,,,,,,,,,,,,,,,
-60,M3GNet,,ml-iap,BSD-3-Clause,https://github.com/materialsvirtuallab/m3gnet,Materials graph network with 3-body interactions featuring a DFT surrogate crystal relaxer and a state-of-the-art..,17,True,,materialsvirtuallab/m3gnet,https://github.com/materialsvirtuallab/m3gnet,2022-01-18 18:10:58,2023-06-06 23:56:08.000,2023-06-06 23:56:03,261.0,,53.0,10.0,33.0,15.0,20.0,188.0,2022-11-17 23:25:35,0.2.4,16.0,14.0,m3gnet,,18.0,18.0,https://pypi.org/project/m3gnet,487.0,487.0,,,,2.0,,,,,,,,,,,,,,,,
-61,KFAC-JAX,,math,Apache-2.0,https://github.com/google-deepmind/kfac-jax,Second Order Optimization and Curvature Estimation with K-FAC in JAX.,17,True,,deepmind/kfac-jax,https://github.com/google-deepmind/kfac-jax,2022-03-18 10:19:24,2023-11-29 18:10:59.000,2023-11-29 18:10:53,168.0,25.0,13.0,8.0,180.0,2.0,9.0,173.0,2023-05-16 18:03:40,0.0.5,4.0,11.0,kfac-jax,,8.0,8.0,https://pypi.org/project/kfac-jax,692.0,692.0,,,,1.0,,,,,,,,,google-deepmind/kfac-jax,,,,,,,
-62,XenonPy,,general-tool,BSD-3-Clause,https://github.com/yoshida-lab/XenonPy,XenonPy is a Python Software for Materials Informatics.,17,True,,yoshida-lab/XenonPy,https://github.com/yoshida-lab/XenonPy,2018-01-17 10:13:29,2023-11-20 14:25:49.000,2023-11-20 14:25:43,692.0,10.0,55.0,12.0,183.0,17.0,66.0,113.0,2023-05-21 15:54:32,0.6.8,45.0,10.0,xenonpy,,,,https://pypi.org/project/xenonpy,469.0,487.0,,,,2.0,,,,,,1244.0,,,,,,,,,,
-63,MatBench,,community,MIT,https://github.com/materialsproject/matbench,Matbench: Benchmarks for materials science property prediction.,17,True,"['datasets', 'benchmarking']",materialsproject/matbench,https://github.com/materialsproject/matbench,2021-02-24 03:58:42,2023-11-14 15:38:45.000,2023-11-14 15:38:41,746.0,6.0,32.0,9.0,252.0,31.0,26.0,86.0,2022-07-27 04:40:26,0.6,5.0,23.0,matbench,,11.0,11.0,https://pypi.org/project/matbench,138.0,138.0,,,,2.0,,,,,,,,,,,,,,,,
-64,Ultra-Fast Force Fields (UF3),,ml-iap,Apache-2.0,https://github.com/uf3/uf3,UF3: a python library for generating ultra-fast interatomic potentials.,17,True,,uf3/uf3,https://github.com/uf3/uf3,2021-10-01 13:21:44,2023-12-01 20:06:04.000,2023-10-27 16:18:56,514.0,51.0,18.0,6.0,70.0,12.0,24.0,45.0,2023-10-27 16:36:21,0.4.0,4.0,8.0,uf3,,,,https://pypi.org/project/uf3,38.0,38.0,,,,2.0,,,,,,,,,,,,,,,,
-65,MoLeR,,generative,MIT,https://github.com/microsoft/molecule-generation,Implementation of MoLeR: a generative model of molecular graphs which supports scaffold-constrained generation.,16,True,,microsoft/molecule-generation,https://github.com/microsoft/molecule-generation,2022-02-17 19:16:29,2023-11-23 13:48:47.000,2023-08-09 14:17:01,63.0,,35.0,11.0,33.0,7.0,26.0,222.0,2023-06-18 21:03:46,0.4.0,4.0,5.0,molecule-generation,,,,https://pypi.org/project/molecule-generation,222.0,222.0,,,,2.0,,,,,,,,,,,,,,,,
-66,CatLearn,,rep-eng,GPL-3.0,https://github.com/SUNCAT-Center/CatLearn,,16,True,['surface-science'],SUNCAT-Center/CatLearn,https://github.com/SUNCAT-Center/CatLearn,2018-04-20 04:16:14,2023-07-25 21:09:47.000,2023-02-07 09:31:25,1960.0,,50.0,19.0,79.0,10.0,16.0,94.0,2020-03-27 09:26:03,0.6.2,8.0,22.0,catlearn,,4.0,4.0,https://pypi.org/project/catlearn,250.0,250.0,,,,1.0,,,,,,,,,,,,,,,,
-67,MAST-ML,,general-tool,MIT,https://github.com/uw-cmg/MAST-ML,MAterials Simulation Toolkit for Machine Learning (MAST-ML).,16,True,,uw-cmg/MAST-ML,https://github.com/uw-cmg/MAST-ML,2017-02-16 17:03:57,2023-12-01 20:57:10.000,2023-07-28 18:33:43,3162.0,,52.0,13.0,36.0,22.0,191.0,88.0,2023-05-01 21:32:25,3.1.7,6.0,19.0,,,7.0,7.0,,,2.0,,,,2.0,,,,,,84.0,,,,,,,,,,
-68,matsciml,,rep-learn,MIT,https://github.com/IntelLabs/matsciml,Open MatSci ML Toolkit is a framework for prototyping and scaling out deep learning models for materials discovery..,16,True,"['workflows', 'benchmarking']",IntelLabs/matsciml,https://github.com/IntelLabs/matsciml,2022-09-13 20:27:28,2023-12-01 21:58:18.000,2023-12-01 17:55:58,1501.0,168.0,12.0,4.0,58.0,5.0,10.0,83.0,2023-08-31 23:59:40,1.0.0,2.0,8.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-69,Scikit-Matter,,general-tool,BSD-3-Clause,https://github.com/scikit-learn-contrib/scikit-matter,A collection of scikit-learn compatible utilities that implement methods born out of the materials science and..,16,True,['scikit-learn'],scikit-learn-contrib/scikit-matter,https://github.com/scikit-learn-contrib/scikit-matter,2020-10-12 19:23:26,2023-11-20 15:32:27.000,2023-09-22 08:33:28,364.0,2.0,15.0,17.0,150.0,12.0,56.0,65.0,2023-08-24 17:18:49,0.2.0,7.0,13.0,skmatter,conda-forge/skmatter,7.0,7.0,https://pypi.org/project/skmatter,421.0,499.0,https://anaconda.org/conda-forge/skmatter,2023-08-24 19:08:29.551,702.0,2.0,,,,,,,,,,,,,,,,
-70,mlcolvar,,md,MIT,https://github.com/luigibonati/mlcolvar,A unified framework for machine learning collective variables for enhanced sampling simulations.,16,True,['enhanced-sampling'],luigibonati/mlcolvar,https://github.com/luigibonati/mlcolvar,2021-09-21 21:32:04,2023-11-17 11:27:21.000,2023-11-17 11:27:16,815.0,21.0,13.0,5.0,56.0,12.0,36.0,59.0,2023-10-25 08:58:49,1.0.1,8.0,7.0,mlcolvar,,,,https://pypi.org/project/mlcolvar,80.0,80.0,,,,2.0,,,,,,,,,,,,,,,,
-71,MatBench Discovery,,community,MIT,https://github.com/janosh/matbench-discovery,An evaluation framework for machine learning models simulating high-throughput materials discovery.,16,True,"['datasets', 'benchmarking']",janosh/matbench-discovery,https://github.com/janosh/matbench-discovery,2022-06-20 18:32:44,2023-12-01 22:13:04.000,2023-12-01 22:12:59,297.0,32.0,5.0,7.0,41.0,3.0,24.0,44.0,2023-09-13 14:29:49,1.0.0,2.0,5.0,matbench-discovery,,,,https://pypi.org/project/matbench-discovery,32.0,32.0,,,,3.0,,,,,,,,,,,,,,,,
-72,FermiNet,,ml-wft,Apache-2.0,https://github.com/google-deepmind/ferminet,An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations.,15,True,['transformer'],deepmind/ferminet,https://github.com/google-deepmind/ferminet,2020-10-06 12:21:06,2023-11-27 07:54:15.000,2023-11-27 07:53:26,216.0,24.0,102.0,34.0,28.0,,42.0,615.0,,,,18.0,,,,,,,,,,,2.0,,,,,,,,,google-deepmind/ferminet,,,,,,,
-73,Uni-Fold,,biomolecules,Apache-2.0,https://github.com/dptech-corp/Uni-Fold,An open-source platform for developing protein models beyond AlphaFold.,15,True,,dptech-corp/Uni-Fold,https://github.com/dptech-corp/Uni-Fold,2022-07-30 03:37:29,2023-11-30 07:37:27.000,2023-11-30 07:37:23,97.0,2.0,53.0,7.0,76.0,14.0,48.0,313.0,2022-10-19 12:44:31,2.2.0,3.0,7.0,,,,,,,187.0,,,,3.0,,,,,,2618.0,,,,,,,,,,
-74,QML,,general-tool,MIT,https://github.com/qmlcode/qml,QML: Quantum Machine Learning.,15,False,,qmlcode/qml,https://github.com/qmlcode/qml,2017-04-22 04:48:38,2023-07-26 12:01:42.000,2018-09-10 11:14:35,75.0,,80.0,23.0,101.0,27.0,19.0,189.0,,,3.0,2.0,qml,,22.0,22.0,https://pypi.org/project/qml,294.0,294.0,,,,3.0,,,,,,,,,,,,,,,,
-75,gpax,,math,MIT,https://github.com/ziatdinovmax/gpax,Gaussian Processes for Experimental Sciences.,15,True,"['probabilistic', 'active-learning']",ziatdinovmax/gpax,https://github.com/ziatdinovmax/gpax,2021-10-28 13:43:18,2023-12-02 18:09:54.000,2023-12-02 18:09:54,583.0,78.0,16.0,4.0,40.0,5.0,14.0,148.0,2023-10-11 22:13:25,0.1.1,10.0,2.0,gpax,,,,https://pypi.org/project/gpax,142.0,142.0,,,,2.0,,,,,,,,,,,,,,,,
-76,openmm-torch,,md,https://github.com/openmm/openmm-torch#license,https://github.com/openmm/openmm-torch,OpenMM plugin to define forces with neural networks.,15,True,"['ml-iap', 'lang-cpp']",openmm/openmm-torch,https://github.com/openmm/openmm-torch,2019-09-27 18:15:19,2023-11-29 21:24:23.296,2023-10-03 16:21:43,61.0,5.0,22.0,13.0,56.0,16.0,54.0,137.0,2023-10-09 08:49:10,1.4,16.0,7.0,,conda-forge/openmm-torch,,,,,6504.0,https://anaconda.org/conda-forge/openmm-torch,2023-11-29 21:24:23.296,227674.0,3.0,,,,,,,,,,,,,,,,
-77,Automatminer,,general-tool,https://github.com/hackingmaterials/automatminer/blob/main/LICENSE,https://github.com/hackingmaterials/automatminer,An automatic engine for predicting materials properties.,15,False,,hackingmaterials/automatminer,https://github.com/hackingmaterials/automatminer,2018-05-10 18:27:08,2023-11-12 10:09:39.000,2022-01-06 19:39:49,1666.0,,47.0,12.0,233.0,36.0,138.0,131.0,2020-07-28 02:19:07,1.0.3.20200727,17.0,13.0,automatminer,,7.0,7.0,https://pypi.org/project/automatminer,135.0,135.0,,,,3.0,,,,,,,,,,,,,,,,
-78,sGDML,,ml-iap,MIT,https://github.com/stefanch/sGDML,sGDML - Reference implementation of the Symmetric Gradient Domain Machine Learning model.,15,True,,stefanch/sGDML,https://github.com/stefanch/sGDML,2018-07-11 15:20:30,2023-08-31 12:58:49.000,2023-08-31 12:57:53,205.0,,35.0,8.0,12.0,6.0,11.0,127.0,2023-08-31 12:58:49,1.0.2,15.0,8.0,sgdml,,8.0,8.0,https://pypi.org/project/sgdml,111.0,111.0,,,,2.0,,,,,,,,,,,,,,,,
-79,NNPOps,,ml-iap,MIT,https://github.com/openmm/NNPOps,High-performance operations for neural network potentials.,15,True,"['md', 'lang-cpp']",openmm/NNPOps,https://github.com/openmm/NNPOps,2020-09-10 21:02:00,2023-11-17 10:54:59.000,2023-07-25 21:23:53,94.0,,15.0,10.0,62.0,20.0,33.0,72.0,2023-07-26 11:21:58,0.6,7.0,7.0,,conda-forge/nnpops,,,,,3492.0,https://anaconda.org/conda-forge/nnpops,2023-11-06 09:36:30.898,73337.0,2.0,,,,,,,,,,,,,,,,
-80,Open Databases Integration for Materials Design (OPTIMADE),,datasets,CC-BY-4.0,https://github.com/Materials-Consortia/OPTIMADE,Specification of a common REST API for access to materials databases.,15,True,,Materials-Consortia/OPTIMADE,https://github.com/Materials-Consortia/OPTIMADE,2018-01-08 23:32:29,2023-12-03 16:46:00.000,2023-06-22 15:32:33,1276.0,,35.0,22.0,266.0,72.0,145.0,62.0,2021-07-08 15:20:37,1.1.0,7.0,19.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-81,MODNet,,rep-eng,MIT,https://github.com/ppdebreuck/modnet,MODNet: a framework for machine learning materials properties.,15,True,"['pre-trained', 'small-data', 'transfer-learning']",ppdebreuck/modnet,https://github.com/ppdebreuck/modnet,2020-03-13 07:39:21,2023-12-01 21:36:10.000,2023-11-13 22:45:08,259.0,2.0,28.0,7.0,145.0,13.0,23.0,62.0,2023-07-29 11:00:10,0.4.1,18.0,7.0,,,5.0,5.0,,,,,,,2.0,,,,,,,,,,,,,,,,
-82,benchmarking-gnns,,rep-learn,MIT,https://github.com/graphdeeplearning/benchmarking-gnns,Repository for benchmarking graph neural networks.,14,False,"['single-paper', 'benchmarking']",graphdeeplearning/benchmarking-gnns,https://github.com/graphdeeplearning/benchmarking-gnns,2020-03-03 03:42:50,2023-06-22 04:03:53.000,2022-05-10 13:22:20,45.0,,421.0,59.0,17.0,4.0,61.0,2300.0,,,,5.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-83,escnn,,rep-learn,https://github.com/QUVA-Lab/escnn/blob/master/LICENSE,https://github.com/QUVA-Lab/escnn,Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/.,14,True,,QUVA-Lab/escnn,https://github.com/QUVA-Lab/escnn,2022-03-16 10:15:02,2023-11-27 17:43:58.000,2023-10-17 22:37:11,244.0,4.0,35.0,16.0,32.0,21.0,36.0,255.0,,,,10.0,escnn,,,,https://pypi.org/project/escnn,518.0,518.0,,,,2.0,,,,,,,,,,,,,,,,
-84,gptchem,,lm,MIT,https://github.com/kjappelbaum/gptchem,Use GPT-3 to solve chemistry problems.,14,True,,kjappelbaum/gptchem,https://github.com/kjappelbaum/gptchem,2023-01-06 15:34:32,2023-11-30 09:31:35.000,2023-10-04 11:27:09,147.0,29.0,30.0,8.0,4.0,15.0,2.0,165.0,2023-11-30 09:31:51,0.0.4,2.0,2.0,gptchem,,,,https://pypi.org/project/gptchem,39.0,39.0,,,,2.0,,,,,,,,,,,,,,,,
-85,DADApy,,unsupervised,Apache-2.0,https://github.com/sissa-data-science/DADApy,Distance-based Analysis of DAta-manifolds in python.,14,True,,sissa-data-science/DADApy,https://github.com/sissa-data-science/DADApy,2021-02-16 17:45:23,2023-12-03 16:50:36.000,2023-11-16 14:28:31,654.0,11.0,11.0,8.0,77.0,11.0,15.0,77.0,2023-05-25 16:37:17,0.2.0,3.0,16.0,dadapy,,2.0,2.0,https://pypi.org/project/dadapy,80.0,80.0,,,,1.0,,,,,,,,,,,,,,,,
-86,SpheriCart,,math,Apache-2.0,https://github.com/lab-cosmo/sphericart,Multi-language library for the calculation of spherical harmonics in Cartesian coordinates.,14,True,,lab-cosmo/sphericart,https://github.com/lab-cosmo/sphericart,2023-02-04 15:15:25,2023-11-29 14:24:27.000,2023-11-27 12:47:38,332.0,15.0,5.0,4.0,72.0,9.0,7.0,46.0,2023-04-26 12:06:09,0.3.0,1.0,9.0,sphericart,,1.0,1.0,https://pypi.org/project/sphericart,212.0,212.0,,,,2.0,,,,,,1.0,,,,,,,,,,
-87,mp-pyrho,,data-structures,https://github.com/materialsproject/pyrho,https://github.com/materialsproject/pyrho,Tools for re-griding volumetric quantum chemistry data for machine-learning purposes.,14,True,['ml-dft'],materialsproject/pyrho,https://github.com/materialsproject/pyrho,2020-05-25 22:44:02,2023-11-28 00:13:22.000,2023-03-21 17:22:18,244.0,,6.0,9.0,104.0,1.0,3.0,29.0,2022-10-20 05:07:16,0.3.0,23.0,8.0,mp-pyrho,,18.0,18.0,https://pypi.org/project/mp-pyrho,81.0,81.0,,,,3.0,,,,,,,,,,,,,,,,
-88,KLIFF,,ml-iap,LGPL-2.1,https://github.com/openkim/kliff,KIM-based Learning-Integrated Fitting Framework (KLIFF).,14,True,"['probabilistic', 'workflows']",openkim/kliff,https://github.com/openkim/kliff,2017-08-01 20:33:58,2023-11-28 00:02:15.000,2023-11-16 05:26:53,994.0,10.0,17.0,2.0,105.0,18.0,16.0,27.0,2022-10-07 05:16:11,0.4.1,16.0,10.0,kliff,conda-forge/kliff,,,https://pypi.org/project/kliff,45.0,1767.0,https://anaconda.org/conda-forge/kliff,2023-10-07 06:09:56.646,65461.0,2.0,,,,,,,,,,,,,,,,
-89,Polynomials4ML.jl,,math,MIT,https://github.com/ACEsuit/Polynomials4ML.jl,"Polynomials for ML: fast evaluation, batching, differentiation.",14,True,['lang-julia'],ACEsuit/Polynomials4ML.jl,https://github.com/ACEsuit/Polynomials4ML.jl,2022-09-20 23:05:53,2023-11-25 22:48:16.000,2023-11-23 22:48:55,327.0,41.0,5.0,4.0,34.0,15.0,29.0,12.0,2023-11-15 23:52:25,0.2.7,11.0,9.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-90,n2p2,,ml-iap,GPL-3.0,https://github.com/CompPhysVienna/n2p2,n2p2 - A Neural Network Potential Package.,13,False,['lang-cpp'],CompPhysVienna/n2p2,https://github.com/CompPhysVienna/n2p2,2018-07-25 12:29:17,2023-05-11 16:26:02.000,2022-09-05 10:56:20,387.0,,69.0,12.0,53.0,57.0,85.0,195.0,2022-05-23 12:53:39,2.2.0,11.0,9.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-91,DeepH-pack,,ml-dft,LGPL-3.0,https://github.com/mzjb/DeepH-pack,Deep neural networks for density functional theory Hamiltonian.,13,True,['lang-julia'],mzjb/DeepH-pack,https://github.com/mzjb/DeepH-pack,2022-05-13 02:51:32,2023-08-03 05:36:54.000,2023-07-11 08:11:15,54.0,,27.0,5.0,13.0,5.0,31.0,155.0,2023-07-11 08:13:06,0.2.2,2.0,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-92,DMFF,,ml-iap,LGPL-3.0,https://github.com/deepmodeling/DMFF,DMFF (Differentiable Molecular Force Field) is a Jax-based python package that provides a full differentiable..,13,True,,deepmodeling/DMFF,https://github.com/deepmodeling/DMFF,2022-02-14 01:35:50,2023-11-22 10:04:10.000,2023-11-09 06:31:11,427.0,6.0,32.0,11.0,131.0,7.0,14.0,119.0,2023-11-09 14:32:37,1.0.0,4.0,13.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-93,SPICE,,datasets,MIT,https://github.com/openmm/spice-dataset,A collection of QM data for training potential functions.,13,True,"['ml-iap', 'md']",openmm/spice-dataset,https://github.com/openmm/spice-dataset,2021-08-31 18:52:05,2023-10-22 18:03:55.000,2023-10-22 18:03:55,34.0,3.0,5.0,16.0,38.0,12.0,37.0,104.0,2023-08-07 19:52:03,1.1.4,6.0,,,,,,,,13.0,,,,2.0,,,,,,221.0,,,,,,,,,,
-94,PyXtalFF,,ml-iap,MIT,https://github.com/MaterSim/PyXtal_FF,Machine Learning Interatomic Potential Predictions.,13,True,,MaterSim/PyXtal_FF,https://github.com/MaterSim/PyXtal_FF,2019-01-08 08:43:35,2023-08-17 01:22:23.000,2023-08-17 01:22:18,559.0,,19.0,9.0,2.0,9.0,51.0,75.0,2023-06-09 17:17:24,0.2.3,19.0,8.0,pyxtal_ff,,,,https://pypi.org/project/pyxtal_ff,32.0,32.0,,,,2.0,,,,,,,,,,,,,,,,
-95,aviary,,materials-discovery,MIT,https://github.com/CompRhys/aviary,The Wren sits on its Roost in the Aviary.,13,True,,CompRhys/aviary,https://github.com/CompRhys/aviary,2021-09-28 12:29:05,2023-11-10 23:21:39.000,2023-11-10 23:21:36,607.0,4.0,8.0,2.0,51.0,4.0,22.0,30.0,2023-08-10 01:55:58,0.1.1,4.0,4.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,
-96,mat2vec,,lm,MIT,https://github.com/materialsintelligence/mat2vec,Supplementary Materials for Tshitoyan et al. Unsupervised word embeddings capture latent knowledge from materials..,12,True,['rep-learn'],materialsintelligence/mat2vec,https://github.com/materialsintelligence/mat2vec,2019-04-25 07:55:30,2023-05-06 22:45:49.000,2023-05-06 22:45:49,55.0,,174.0,39.0,7.0,7.0,17.0,598.0,,,,5.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-97,Crystal Graph Convolutional Neural Networks (CGCNN),,rep-learn,MIT,https://github.com/txie-93/cgcnn,Crystal graph convolutional neural networks for predicting material properties.,12,False,,txie-93/cgcnn,https://github.com/txie-93/cgcnn,2018-03-14 20:41:21,2021-09-06 05:23:51.000,2021-09-06 05:23:38,25.0,,253.0,23.0,7.0,16.0,20.0,535.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-98,AI for Science Resources,,community,GPL-3.0 license,https://github.com/divelab/AIRS/blob/main/Overview/resources.md,"List of resources for AI4Science research, including learning resources.",12,True,,divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2023-11-25 05:19:28.000,2023-11-25 05:19:28,353.0,29.0,37.0,18.0,4.0,,2.0,281.0,,,,24.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-99,Artificial Intelligence for Science (AIRS),,general-tool,GPL-3.0 license,https://github.com/divelab/AIRS,Artificial Intelligence for Science (AIRS).,12,True,"['rep-learn', 'generative', 'ml-iap', 'md', 'ml-dft', 'ml-wft', 'biomolecules']",divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2023-11-25 05:19:28.000,2023-11-25 05:19:28,353.0,29.0,37.0,18.0,4.0,,2.0,281.0,,,,24.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-100,TensorMol,,ml-iap,GPL-3.0,https://github.com/jparkhill/TensorMol,Tensorflow + Molecules = TensorMol.,12,False,['single-paper'],jparkhill/TensorMol,https://github.com/jparkhill/TensorMol,2016-10-28 19:40:11,2021-02-11 00:12:00.000,2018-03-30 12:26:14,1724.0,,70.0,45.0,8.0,18.0,19.0,264.0,2017-11-08 18:05:50,0.1,1.0,12.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-101,ANI-1,,ml-iap,MIT,https://github.com/isayev/ASE_ANI,ANI-1 neural net potential with python interface (ASE).,12,False,,isayev/ASE_ANI,https://github.com/isayev/ASE_ANI,2016-12-08 05:09:32,2020-12-14 19:57:50.000,2020-06-05 22:46:43,111.0,,56.0,33.0,9.0,16.0,21.0,209.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-102,ASAP,,unsupervised,MIT,https://github.com/BingqingCheng/ASAP,ASAP is a package that can quickly analyze and visualize datasets of crystal or molecular structures.,12,True,,BingqingCheng/ASAP,https://github.com/BingqingCheng/ASAP,2019-08-11 12:45:14,2023-08-30 13:55:44.000,2023-08-30 13:55:44,759.0,,25.0,7.0,37.0,6.0,18.0,121.0,2023-08-30 13:54:23,1,1.0,6.0,,,5.0,5.0,,,,,,,2.0,,,,,,,,,,,,,,,,
-103,Librascal,,rep-eng,LGPL-2.1,https://github.com/lab-cosmo/librascal,A scalable and versatile library to generate representations for atomic-scale learning.,12,True,,lab-cosmo/librascal,https://github.com/lab-cosmo/librascal,2018-02-01 08:38:51,2023-11-30 14:48:28.000,2023-11-30 14:48:28,2931.0,1.0,18.0,19.0,200.0,99.0,131.0,74.0,,,3.0,29.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-104,AMPtorch,,general-tool,GPL-3.0,https://github.com/ulissigroup/amptorch,AMPtorch: Atomistic Machine Learning Package (AMP) - PyTorch.,12,True,,ulissigroup/amptorch,https://github.com/ulissigroup/amptorch,2019-01-24 15:15:48,2023-07-16 02:11:38.000,2023-07-16 02:08:13,759.0,,32.0,9.0,99.0,5.0,26.0,57.0,2023-07-16 02:11:38,1.0,3.0,14.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-105,Neural fingerprint (nfp),,rep-learn,https://github.com/NREL/nfp/blob/master/LICENSE,https://github.com/NREL/nfp,Keras layers for end-to-end learning with rdkit and pymatgen.,12,False,,NREL/nfp,https://github.com/NREL/nfp,2018-11-20 23:55:23,2022-08-29 21:59:14.000,2022-06-14 22:18:28,143.0,,24.0,7.0,18.0,,6.0,56.0,2022-04-27 17:05:25,0.3.12,13.0,4.0,,,12.0,12.0,,,,,,,2.0,,,,,,,,,,,,,,,,
-106,OpenMM-ML,,md,MIT,https://github.com/openmm/openmm-ml,High level API for using machine learning models in OpenMM simulations.,12,True,['ml-iap'],openmm/openmm-ml,https://github.com/openmm/openmm-ml,2021-02-10 20:55:25,2023-11-08 14:33:27.000,2023-08-21 20:11:13,28.0,,16.0,14.0,23.0,23.0,20.0,56.0,2023-08-21 23:32:24,1.1,5.0,2.0,,conda-forge/openmm-ml,,,,,165.0,https://anaconda.org/conda-forge/openmm-ml,2023-08-21 23:33:29.497,2655.0,3.0,,,,,,,,,,,,,,,,
-107,Pacemaker,,ml-iap,https://github.com/ICAMS/python-ace/blob/master/LICENSE.md,https://cortner.github.io/ACEweb/software/,Python package for fitting atomic cluster expansion (ACE) potentials.,12,True,,ICAMS/python-ace,https://github.com/ICAMS/python-ace,2021-11-19 11:39:54,2023-11-30 11:28:12.000,2023-11-18 19:44:01,136.0,14.0,14.0,3.0,23.0,8.0,30.0,51.0,2022-10-24 19:59:33,0.2.8,2.0,5.0,python-ace,,,,https://pypi.org/project/python-ace,7.0,7.0,,,,2.0,,,,,,,,,,,,,,,,
-108,So3krates (MLFF),,ml-iap,MIT,https://github.com/thorben-frank/mlff,Build neural networks for machine learning force fields with JAX.,12,True,,thorben-frank/mlff,https://github.com/thorben-frank/mlff,2022-09-30 07:40:17,2023-11-09 18:38:08.000,2023-11-09 18:38:08,114.0,13.0,7.0,6.0,11.0,3.0,4.0,40.0,2023-07-12 08:34:56,0.2.0,1.0,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-109,Rascaline,,rep-eng,BSD-3-Clause,https://github.com/Luthaf/rascaline,Computing representations for atomistic machine learning.,12,True,"['lang-rust', 'lang-cpp']",Luthaf/rascaline,https://github.com/Luthaf/rascaline,2020-09-24 14:28:34,2023-11-30 15:04:20.000,2023-11-30 15:04:19,493.0,41.0,11.0,6.0,215.0,23.0,23.0,34.0,,,,13.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-110,GlassPy,,rep-eng,GPL-3.0,https://github.com/drcassar/glasspy,Python module for scientists working with glass materials.,12,True,,drcassar/glasspy,https://github.com/drcassar/glasspy,2019-07-18 23:15:43,2023-10-05 19:51:40.000,2023-10-05 19:31:00,324.0,5.0,6.0,5.0,8.0,1.0,4.0,18.0,2023-10-05 19:32:01,0.4.5,7.0,,glasspy,,2.0,2.0,https://pypi.org/project/glasspy,79.0,79.0,,,,2.0,,,,,,,,,,,,,,,,
-111,Compositionally-Restricted Attention-Based Network (CrabNet),,rep-learn,MIT,https://github.com/sparks-baird/CrabNet,Predict materials properties using only the composition information!.,12,True,,sparks-baird/CrabNet,https://github.com/sparks-baird/CrabNet,2021-09-17 07:58:15,2023-06-19 09:35:52.000,2023-06-19 09:35:52,427.0,,3.0,1.0,54.0,15.0,2.0,11.0,2023-06-07 01:07:33,2.0.8,5.0,5.0,crabnet,,11.0,11.0,https://pypi.org/project/crabnet,198.0,198.0,,,,2.0,,,,,,,,,,,,,,,,
-112,CCS_fit,,ml-iap,GPL-3.0,https://github.com/Teoroo-CMC/CCS,Curvature Constrained Splines.,12,True,,Teoroo-CMC/CCS,https://github.com/Teoroo-CMC/CCS,2021-12-13 14:29:53,2023-11-20 17:26:52.000,2023-10-04 14:41:11,760.0,3.0,9.0,3.0,12.0,8.0,6.0,6.0,2023-10-04 14:41:14,0.22.4,100.0,8.0,ccs_fit,,,,https://pypi.org/project/ccs_fit,59.0,88.0,,,,2.0,,,,,,381.0,,,,,,,,,,
-113,OpenChem,,general-tool,MIT,https://github.com/Mariewelt/OpenChem,OpenChem: Deep Learning toolkit for Computational Chemistry and Drug Design Research.,11,False,,Mariewelt/OpenChem,https://github.com/Mariewelt/OpenChem,2018-07-10 01:27:33,2023-11-26 05:03:36.000,2022-04-27 19:27:40,444.0,,106.0,37.0,12.0,15.0,2.0,626.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-114,Deep Learning for Molecules and Materials Book,,educational,https://github.com/whitead/dmol-book/blob/main/LICENSE,https://dmol.pub/,Deep learning for molecules and materials book.,11,True,,whitead/dmol-book,https://github.com/whitead/dmol-book,2020-08-19 19:24:32,2023-07-02 18:02:57.000,2023-07-02 18:02:56,558.0,,101.0,17.0,92.0,27.0,128.0,541.0,,,,19.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,
-115,ReLeaSE,,reinforcement-learning,MIT,https://github.com/isayev/ReLeaSE,Deep Reinforcement Learning for de-novo Drug Design.,11,False,['drug-discovery'],isayev/ReLeaSE,https://github.com/isayev/ReLeaSE,2018-04-26 14:50:34,2021-12-08 19:49:36.000,2021-12-08 19:49:36,160.0,,126.0,19.0,9.0,27.0,8.0,318.0,,,,5.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,
-116,DeepLearningLifeSciences,,educational,MIT,https://github.com/deepchem/DeepLearningLifeSciences,Example code from the book Deep Learning for the Life Sciences.,11,False,,deepchem/DeepLearningLifeSciences,https://github.com/deepchem/DeepLearningLifeSciences,2019-02-05 17:16:18,2021-09-17 05:10:37.000,2021-09-17 05:10:37,52.0,,140.0,23.0,15.0,9.0,10.0,307.0,2019-10-28 18:46:28,1.0,1.0,10.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,
-117,SISSO,,rep-eng,Apache-2.0,https://github.com/rouyang2017/SISSO,A data-driven method combining symbolic regression and compressed sensing for accurate & interpretable models.,11,True,['lang-fortran'],rouyang2017/SISSO,https://github.com/rouyang2017/SISSO,2017-10-16 11:31:57,2023-09-12 08:50:38.000,2023-09-12 08:50:38,166.0,2.0,65.0,6.0,2.0,2.0,51.0,193.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-118,jarvis-tools-notebooks,,educational,NIST,https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks,A Google-Colab Notebook Collection for Materials Design: https://jarvis.nist.gov/.,11,True,,JARVIS-Materials-Design/jarvis-tools-notebooks,https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks,2020-06-27 20:22:02,2023-10-16 02:44:55.000,2023-10-16 02:44:55,542.0,25.0,21.0,4.0,38.0,,,44.0,,,,5.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,
-119,SIMPLE-NN,,ml-iap,GPL-3.0,https://github.com/MDIL-SNU/SIMPLE-NN,SIMPLE-NN(SNU Interatomic Machine-learning PotentiaL packagE version Neural Network).,11,False,,MDIL-SNU/SIMPLE-NN,https://github.com/MDIL-SNU/SIMPLE-NN,2018-03-26 23:53:35,2022-01-27 05:04:05.000,2022-01-27 05:04:05,586.0,,18.0,12.0,91.0,4.0,26.0,44.0,2021-09-23 01:41:42,1.1.1,9.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-120,nlcc,,lm,MIT,https://github.com/whitead/nlcc,Natural language computational chemistry command line interface.,11,True,['single-paper'],whitead/nlcc,https://github.com/whitead/nlcc,2021-08-19 18:23:52,2023-02-04 03:07:56.000,2023-02-04 03:06:33,144.0,,6.0,5.0,1.0,,9.0,43.0,2023-02-04 03:07:56,0.6.0,10.0,3.0,nlcc,,,,https://pypi.org/project/nlcc,30.0,30.0,,,,3.0,,,,,,,,,,,,,,,,
-121,cmlkit,,rep-eng,MIT,https://github.com/sirmarcel/cmlkit,tools for machine learning in condensed matter physics and quantum chemistry.,11,False,['benchmarking'],sirmarcel/cmlkit,https://github.com/sirmarcel/cmlkit,2018-05-31 07:56:52,2022-04-01 00:39:14.000,2022-03-25 22:27:04,526.0,,6.0,3.0,1.0,6.0,2.0,32.0,,,,,cmlkit,,4.0,4.0,https://pypi.org/project/cmlkit,151.0,151.0,,,,2.0,,,,,,,,,,,,,,,,
-122,synspace,,generative,MIT,https://github.com/whitead/synspace,Synthesis generative model.,11,True,,whitead/synspace,https://github.com/whitead/synspace,2022-12-28 00:59:14,2023-04-15 22:42:57.000,2023-04-15 18:04:16,27.0,,3.0,3.0,1.0,2.0,1.0,31.0,2023-04-15 22:42:57,0.3.0,3.0,2.0,synspace,,6.0,6.0,https://pypi.org/project/synspace,664.0,664.0,,,,2.0,,,,,,,,,,,,,,,,
-123,PACE,,md,https://github.com/ICAMS/lammps-user-pace/blob/main/LICENSE,https://github.com/ICAMS/lammps-user-pace,"The LAMMPS ML-IAP `pair_style pace`, aka Atomic Cluster Expansion (ACE), aka ML-PACE,..",11,True,,ICAMS/lammps-user-pace,https://github.com/ICAMS/lammps-user-pace,2021-02-25 10:04:48,2023-11-27 21:29:13.000,2023-11-27 21:28:13,59.0,13.0,10.0,5.0,16.0,1.0,5.0,21.0,2023-11-25 21:58:41,.2023.11.25.fix,6.0,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-124,EDM,,generative,MIT,https://github.com/ehoogeboom/e3_diffusion_for_molecules,E(3) Equivariant Diffusion Model for Molecule Generation in 3D.,10,False,,ehoogeboom/e3_diffusion_for_molecules,https://github.com/ehoogeboom/e3_diffusion_for_molecules,2022-04-15 14:34:35,2022-07-10 17:56:18.000,2022-07-10 17:56:12,6.0,,81.0,7.0,,1.0,32.0,319.0,,,,,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-125,Awesome Materials Informatics,,community,https://github.com/tilde-lab/awesome-materials-informatics#license,https://github.com/tilde-lab/awesome-materials-informatics,Curated list of known efforts in materials informatics = modern materials science.,10,True,,tilde-lab/awesome-materials-informatics,https://github.com/tilde-lab/awesome-materials-informatics,2018-02-15 15:14:16,2023-10-30 16:02:26.000,2023-10-30 16:02:26,134.0,4.0,74.0,15.0,54.0,,8.0,311.0,2023-03-02 19:56:59,2023.03.02,1.0,19.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-126,GDC,,rep-learn,MIT,https://github.com/gasteigerjo/gdc,"Graph Diffusion Convolution, as proposed in Diffusion Improves Graph Learning (NeurIPS 2019).",10,True,['generative'],gasteigerjo/gdc,https://github.com/gasteigerjo/gdc,2019-10-26 16:05:11,2023-04-26 14:22:40.000,2023-04-26 14:22:40,28.0,,38.0,3.0,1.0,,10.0,229.0,,,,3.0,,,1.0,1.0,,,,,,,2.0,,,,,,,,,,,,,,,,
-127,Neural Force Field,,ml-iap,MIT,https://github.com/learningmatter-mit/NeuralForceField,Neural Network Force Field based on PyTorch.,10,True,['pre-trained'],learningmatter-mit/NeuralForceField,https://github.com/learningmatter-mit/NeuralForceField,2020-10-04 15:17:41,2023-07-25 15:37:02.000,2023-07-25 15:37:01,122.0,,42.0,7.0,4.0,,16.0,200.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-128,PiNN,,ml-iap,BSD-3-Clause,https://github.com/Teoroo-CMC/PiNN,A Python library for building atomic neural networks.,10,True,,Teoroo-CMC/PiNN,https://github.com/Teoroo-CMC/PiNN,2019-10-04 08:13:18,2023-11-15 09:09:29.000,2023-09-28 09:19:27,130.0,4.0,27.0,7.0,6.0,1.0,5.0,98.0,2019-10-09 09:21:30,0.3.0,1.0,2.0,,,,,,,4.0,,,,3.0,teoroo/pinn,https://hub.docker.com/r/teoroo/pinn,2023-10-19 13:57:40.768924,,224.0,,,,,,,,,,,
-129,MolSkill,,lm,MIT,https://github.com/microsoft/molskill,Extracting medicinal chemistry intuition via preference machine learning.,10,True,"['drug-discovery', 'recommender']",microsoft/molskill,https://github.com/microsoft/molskill,2023-01-12 13:48:31,2023-10-31 17:03:36.000,2023-10-31 17:03:36,81.0,1.0,7.0,8.0,8.0,2.0,3.0,88.0,2023-08-04 12:22:15,1.2b,5.0,4.0,,msr-ai4science/molskill,,,,,14.0,https://anaconda.org/msr-ai4science/molskill,2023-06-18 17:27:43.196,140.0,3.0,,,,,,,,,,,,,,,,
-130,flare++,,active-learning,MIT,https://github.com/mir-group/flare_pp,A many-body extension of the FLARE code.,10,False,"['lang-cpp', 'ml-iap']",mir-group/flare_pp,https://github.com/mir-group/flare_pp,2019-11-20 22:46:32,2022-02-27 21:05:09.000,2022-02-24 19:00:50,989.0,,6.0,6.0,28.0,8.0,17.0,35.0,,,,10.0,flare_pp,,,,https://pypi.org/project/flare_pp,38.0,38.0,,,,2.0,,,,,,,,,,,,,,,,
-131,Finetuna,,active-learning,MIT,https://github.com/ulissigroup/finetuna,Active Learning for Machine Learning Potentials.,10,True,,ulissigroup/finetuna,https://github.com/ulissigroup/finetuna,2020-09-22 14:39:52,2023-10-31 18:51:45.000,2023-10-03 18:18:06,1198.0,2.0,10.0,3.0,39.0,4.0,15.0,34.0,,,,11.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-132,SchNetPack G-SchNet,,generative,MIT,https://github.com/atomistic-machine-learning/schnetpack-gschnet,G-SchNet extension for SchNetPack.,10,True,,atomistic-machine-learning/schnetpack-gschnet,https://github.com/atomistic-machine-learning/schnetpack-gschnet,2022-04-21 12:34:13,2023-11-07 11:31:47.000,2023-11-07 11:31:47,117.0,1.0,6.0,4.0,,1.0,9.0,31.0,2023-04-25 14:09:07,1.0.0,2.0,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-133,NeuralXC,,ml-dft,BSD-3-Clause,https://github.com/semodi/neuralxc,Implementation of a machine learned density functional.,10,False,,semodi/neuralxc,https://github.com/semodi/neuralxc,2019-03-14 18:13:40,2022-11-30 11:39:22.000,2021-07-05 21:36:23,337.0,,9.0,5.0,9.0,5.0,5.0,30.0,,,3.0,,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-134,OpenKIM,,datasets,LGPL-2.1,https://openkim.org/,"The Open Knowledgebase of Interatomic Models (OpenKIM) aims to be an online resource for standardized testing, long-..",10,False,"['knowledge-base', 'pre-trained']",openkim/kim-api,https://github.com/openkim/kim-api,2014-07-28 21:21:08,2023-08-16 00:09:44.000,2022-03-17 23:01:36,2371.0,,19.0,11.0,55.0,17.0,18.0,29.0,,,,23.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-135,NNsforMD,,ml-iap,MIT,https://github.com/aimat-lab/NNsForMD,"Neural network class for molecular dynamics to predict potential energy, forces and non-adiabatic couplings.",10,False,,aimat-lab/NNsForMD,https://github.com/aimat-lab/NNsForMD,2020-08-31 11:14:18,2022-11-10 13:04:49.000,2022-11-10 13:04:45,265.0,,3.0,3.0,,,,10.0,2022-04-12 15:10:32,2.0.0,5.0,2.0,pyNNsMD,,,,https://pypi.org/project/pyNNsMD,39.0,39.0,,,,3.0,,,,,,,,,,,,,,,,
-136,ACEfit,,ml-iap,MIT,https://github.com/ACEsuit/ACEfit.jl,,10,True,['lang-julia'],ACEsuit/ACEfit.jl,https://github.com/ACEsuit/ACEfit.jl,2022-01-01 00:09:17,2023-11-03 18:46:32.000,2023-08-18 16:46:11,210.0,,3.0,4.0,18.0,22.0,32.0,5.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-137,SE(3)-Transformers,,rep-learn,MIT,https://github.com/FabianFuchsML/se3-transformer-public,code for the SE3 Transformers paper: https://arxiv.org/abs/2006.10503.,9,False,"['single-paper', 'transformer']",FabianFuchsML/se3-transformer-public,https://github.com/FabianFuchsML/se3-transformer-public,2020-08-31 10:36:57,2023-07-10 05:13:25.000,2021-11-18 09:11:56,63.0,,66.0,16.0,5.0,9.0,17.0,427.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-138,molecularGNN_smiles,,rep-learn,Apache-2.0,https://github.com/masashitsubaki/molecularGNN_smiles,"The code of a graph neural network (GNN) for molecules, which is based on learning representations of r-radius..",9,False,,masashitsubaki/molecularGNN_smiles,https://github.com/masashitsubaki/molecularGNN_smiles,2018-11-06 00:25:26,2020-11-28 02:04:45.000,2020-11-28 02:04:45,79.0,,70.0,6.0,,6.0,1.0,255.0,,,,,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-139,DimeNet,,ml-iap,https://github.com/gasteigerjo/dimenet/blob/master/LICENSE.md,https://github.com/gasteigerjo/dimenet,"DimeNet and DimeNet++ models, as proposed in Directional Message Passing for Molecular Graphs (ICLR 2020) and Fast and..",9,True,,gasteigerjo/dimenet,https://github.com/gasteigerjo/dimenet,2020-02-14 12:40:15,2023-10-03 09:57:19.000,2023-10-03 09:57:19,103.0,1.0,56.0,5.0,,1.0,29.0,253.0,,,,2.0,,,1.0,1.0,,,,,,,3.0,,,,,,,,,,,,,,,,
-140,Allegro,,ml-iap,MIT,https://github.com/mir-group/allegro,Allegro is an open-source code for building highly scalable and accurate equivariant deep learning interatomic..,9,True,,mir-group/allegro,https://github.com/mir-group/allegro,2022-02-06 23:50:40,2023-05-08 21:16:45.000,2023-05-08 21:16:45,38.0,,36.0,18.0,2.0,8.0,13.0,247.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-141,SchNet,,ml-iap,MIT,https://github.com/atomistic-machine-learning/SchNet,SchNet - a deep learning architecture for quantum chemistry.,9,False,,atomistic-machine-learning/SchNet,https://github.com/atomistic-machine-learning/SchNet,2017-10-03 11:52:20,2018-09-04 08:42:35.000,2018-09-04 08:42:34,53.0,,58.0,16.0,,1.0,2.0,189.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-142,QDF for molecule,,ml-esm,MIT,https://github.com/masashitsubaki/QuantumDeepField_molecule,"Quantum deep field: data-driven wave function, electron density generation, and energy prediction and extrapolation..",9,False,,masashitsubaki/QuantumDeepField_molecule,https://github.com/masashitsubaki/QuantumDeepField_molecule,2020-11-11 01:06:09,2021-02-20 03:46:18.000,2021-02-20 03:46:09,20.0,,37.0,4.0,,,3.0,176.0,,,,,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,
-143,GemNet,,ml-iap,https://github.com/TUM-DAML/gemnet_pytorch/blob/master/LICENSE,https://github.com/TUM-DAML/gemnet_pytorch,"GemNet model in PyTorch, as proposed in GemNet: Universal Directional Graph Neural Networks for Molecules (NeurIPS..",9,True,,TUM-DAML/gemnet_pytorch,https://github.com/TUM-DAML/gemnet_pytorch,2021-10-11 07:30:36,2023-04-26 14:20:12.000,2023-04-26 14:20:12,36.0,,25.0,4.0,1.0,,14.0,159.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-144,DeePKS-kit,,ml-dft,LGPL-3.0,https://github.com/deepmodeling/deepks-kit,a package for developing machine learning-based chemically accurate energy and density functional models.,9,True,,deepmodeling/deepks-kit,https://github.com/deepmodeling/deepks-kit,2020-07-29 03:27:50,2023-08-24 00:29:24.000,2023-04-01 01:14:46,380.0,,31.0,13.0,39.0,2.0,9.0,95.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-145,ACE.jl,,ml-iap,https://github.com/ACEsuit/ACE.jl/blob/main/license/mit.md,https://github.com/ACEsuit/ACE.jl,Parameterisation of Equivariant Properties of Particle Systems.,9,True,['lang-julia'],ACEsuit/ACE.jl,https://github.com/ACEsuit/ACE.jl,2019-11-30 16:22:51,2023-06-09 21:31:30.000,2023-06-09 21:29:10,912.0,,15.0,8.0,65.0,24.0,58.0,62.0,,,,12.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-146,GATGNN: Global Attention Graph Neural Network,,rep-learn,MIT,https://github.com/superlouis/GATGNN,Pytorch Repository for our work: Graph convolutional neural networks with global attention for improved materials..,9,False,,superlouis/GATGNN,https://github.com/superlouis/GATGNN,2020-06-21 03:27:36,2022-10-03 21:57:33.000,2022-10-03 21:57:33,99.0,,18.0,8.0,,3.0,3.0,61.0,2021-04-05 06:49:29,0.2,2.0,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-147,PROPhet,,ml-dft,GPL-3.0,https://github.com/biklooost/PROPhet,PROPhet is a code to integrate machine learning techniques with first-principles quantum chemistry approaches.,9,False,"['ml-iap', 'md', 'single-paper', 'lang-cpp']",biklooost/PROPhet,https://github.com/biklooost/PROPhet,2016-09-16 16:21:06,2018-04-19 02:09:46.000,2018-04-19 02:00:46,120.0,,26.0,14.0,6.0,8.0,7.0,61.0,2018-04-15 16:55:15,1.2,3.0,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-148,hippynn,,rep-learn,https://github.com/lanl/hippynn/blob/main/LICENSE.txt,https://github.com/lanl/hippynn,python library for atomistic machine learning.,9,True,['workflows'],lanl/hippynn,https://github.com/lanl/hippynn,2021-11-17 00:45:13,2023-11-22 21:14:51.000,2023-11-15 23:40:55,109.0,8.0,19.0,7.0,42.0,2.0,4.0,48.0,,,2.0,11.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-149,DeepErwin,,ml-wft,https://github.com/mdsunivie/deeperwin/blob/master/LICENSE,https://github.com/mdsunivie/deeperwin,DeepErwin is a python 3.8+ package that implements and optimizes JAX 2.x wave function models for numerical solutions..,9,True,,mdsunivie/deeperwin,https://github.com/mdsunivie/deeperwin,2021-06-14 15:18:32,2023-10-16 07:46:05.000,2023-10-16 07:46:05,57.0,2.0,5.0,3.0,3.0,,11.0,36.0,2022-07-18 10:18:25,arxiv_2105.08351v2,2.0,6.0,deeperwin,,,,https://pypi.org/project/deeperwin,49.0,49.0,,,,3.0,,,,,,,,,,,,,,,,
-150,iam-notebooks,,educational,Apache-2.0,https://github.com/ceriottm/iam-notebooks,Jupyter notebooks for the lectures of the Introduction to Atomistic Modeling.,9,True,,ceriottm/iam-notebooks,https://github.com/ceriottm/iam-notebooks,2020-11-23 21:27:41,2023-08-07 23:02:34.000,2023-08-07 23:02:34,228.0,,4.0,4.0,7.0,3.0,,22.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-151,ACE1.jl,,ml-iap,https://github.com/ACEsuit/ACE1.jl/blob/main/ASL.md,https://acesuit.github.io/,Atomic Cluster Expansion for Modelling Invariant Atomic Properties.,9,True,['lang-julia'],ACEsuit/ACE1.jl,https://github.com/ACEsuit/ACE1.jl,2022-01-14 19:52:49,2023-11-13 19:43:52.000,2023-11-13 19:43:52,551.0,5.0,4.0,5.0,28.0,22.0,24.0,19.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-152,wfl,,ml-iap,,https://github.com/libAtoms/workflow,Workflow is a Python toolkit for building interatomic potential creation and atomistic simulation workflows.,9,True,"['workflows', 'htc']",libAtoms/workflow,https://github.com/libAtoms/workflow,2021-11-04 17:03:34,2023-12-01 16:27:05.000,2023-10-30 13:46:29,939.0,20.0,14.0,9.0,142.0,62.0,68.0,18.0,,,,14.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-153,BenchML,,rep-eng,Apache-2.0,https://github.com/capoe/benchml,ML benchmarking and pipeling framework.,9,True,['benchmarking'],capoe/benchml,https://github.com/capoe/benchml,2020-04-28 13:26:29,2023-05-24 15:13:06.000,2023-05-24 15:04:57,341.0,,3.0,5.0,7.0,3.0,10.0,14.0,,,,9.0,benchml,,,,https://pypi.org/project/benchml,50.0,50.0,,,,3.0,,,,,,,,,,,,,,,,
-154,RDKit Tutorials,,educational,https://github.com/rdkit/rdkit-tutorials/blob/master/LICENSE,https://github.com/rdkit/rdkit-tutorials,Tutorials to learn how to work with the RDKit.,8,True,,rdkit/rdkit-tutorials,https://github.com/rdkit/rdkit-tutorials,2016-10-07 03:34:01,2023-03-19 13:36:55.000,2023-03-19 13:36:55,68.0,,67.0,16.0,7.0,3.0,1.0,215.0,,,,5.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-155,G-SchNet,,generative,MIT,https://github.com/atomistic-machine-learning/G-SchNet,G-SchNet - a generative model for 3d molecular structures.,8,True,,atomistic-machine-learning/G-SchNet,https://github.com/atomistic-machine-learning/G-SchNet,2019-10-21 13:48:59,2023-03-24 12:05:41.000,2023-03-24 12:05:41,64.0,,23.0,6.0,,,10.0,121.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-156,ANI-1 Dataset,,datasets,MIT,https://github.com/isayev/ANI1_dataset,A data set of 20 million calculated off-equilibrium conformations for organic molecules.,8,False,,isayev/ANI1_dataset,https://github.com/isayev/ANI1_dataset,2017-08-07 20:08:46,2022-08-08 15:56:17.000,2022-08-08 15:56:17,25.0,,19.0,12.0,2.0,6.0,3.0,91.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-157,MoleculeNet Leaderboard,,datasets,MIT,https://github.com/deepchem/moleculenet,,8,False,['benchmarking'],deepchem/moleculenet,https://github.com/deepchem/moleculenet,2020-02-24 18:14:05,2021-04-29 19:51:06.000,2021-04-29 19:51:06,78.0,,19.0,5.0,15.0,23.0,5.0,77.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-158,cG-SchNet,,generative,MIT,https://github.com/atomistic-machine-learning/cG-SchNet,cG-SchNet - a conditional generative neural network for 3d molecular structures.,8,True,,atomistic-machine-learning/cG-SchNet,https://github.com/atomistic-machine-learning/cG-SchNet,2021-12-02 15:35:18,2023-03-24 12:09:56.000,2023-03-24 12:09:56,28.0,,14.0,4.0,,,3.0,43.0,2022-02-21 13:36:41,1.0,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-159,Sketchmap,,unsupervised,GPL-3.0,https://github.com/lab-cosmo/sketchmap,Suite of programs to perform non-linear dimensionality reduction -- sketch-map in particular.,8,True,['lang-cpp'],lab-cosmo/sketchmap,https://github.com/lab-cosmo/sketchmap,2014-05-20 09:33:32,2023-05-24 22:56:06.000,2023-05-24 22:47:50,64.0,,10.0,29.0,1.0,3.0,5.0,40.0,,,,8.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-160,DeeperGATGNN,,rep-learn,MIT,https://github.com/usccolumbia/deeperGATGNN,Scalable graph neural networks for materials property prediction.,8,True,,usccolumbia/deeperGATGNN,https://github.com/usccolumbia/deeperGATGNN,2021-09-29 17:31:02,2023-04-19 18:59:51.000,2023-04-19 18:59:31,24.0,,7.0,3.0,1.0,,7.0,35.0,2022-03-08 02:14:28,1.0,1.0,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-161,GAP,,ml-iap,https://github.com/libAtoms/GAP/blob/main/LICENSE.md,https://libatoms.github.io/,Gaussian Approximation Potential (GAP).,8,True,,libAtoms/GAP,https://github.com/libAtoms/GAP,2021-03-22 14:48:56,2023-10-15 17:47:46.000,2023-10-15 17:42:33,200.0,1.0,19.0,10.0,63.0,,,34.0,,,,12.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-162,SNAP,,ml-iap,BSD-3-Clause,https://github.com/materialsvirtuallab/snap,Repository for spectral neighbor analysis potential (SNAP) model development.,8,False,,materialsvirtuallab/snap,https://github.com/materialsvirtuallab/snap,2017-06-26 21:56:00,2020-06-30 05:20:37.000,2020-06-30 05:20:37,38.0,,16.0,10.0,1.0,1.0,3.0,32.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-163,SIMPLE-NN v2,,ml-iap,GPL-3.0,https://github.com/MDIL-SNU/SIMPLE-NN_v2,,8,False,,MDIL-SNU/SIMPLE-NN_v2,https://github.com/MDIL-SNU/SIMPLE-NN_v2,2021-03-02 09:36:49,2023-10-11 05:12:51.000,2023-10-11 05:12:51,502.0,4.0,16.0,5.0,87.0,3.0,7.0,31.0,,,,12.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-164,Atomistic Adversarial Attacks,,ml-iap,MIT,https://github.com/learningmatter-mit/Atomistic-Adversarial-Attacks,Code for performing adversarial attacks on atomistic systems using NN potentials.,8,False,['probabilistic'],learningmatter-mit/Atomistic-Adversarial-Attacks,https://github.com/learningmatter-mit/Atomistic-Adversarial-Attacks,2021-03-28 17:39:52,2022-10-03 16:19:31.000,2022-10-03 16:19:29,33.0,,6.0,5.0,1.0,,1.0,25.0,2021-07-19 18:09:36,1.0.1,1.0,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-165,CGAT,,rep-learn,MIT,https://github.com/hyllios/CGAT,Crystal graph attention neural networks for materials prediction.,8,True,,hyllios/CGAT,https://github.com/hyllios/CGAT,2021-03-28 09:51:15,2023-07-18 12:04:35.000,2023-01-10 22:31:07,153.0,,7.0,3.0,1.0,,1.0,17.0,2023-07-18 12:04:35,0.1,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-166,GElib,,math,MPL-2.0,https://github.com/risi-kondor/GElib,C++/CUDA library for SO(3) equivariant operations.,8,True,['lang-cpp'],risi-kondor/GElib,https://github.com/risi-kondor/GElib,2021-08-24 20:56:40,2023-11-20 05:48:53.000,2023-10-25 18:07:13,597.0,17.0,2.0,2.0,2.0,2.0,3.0,16.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-167,SALTED,,ml-dft,GPL-3.0,https://github.com/andreagrisafi/SALTED,Symmetry-Adapted Learning of Three-dimensional Electron Densities.,8,True,,andreagrisafi/SALTED,https://github.com/andreagrisafi/SALTED,2020-01-22 10:24:29,2023-11-30 15:42:02.000,2023-11-30 15:42:02,242.0,74.0,2.0,1.0,10.0,,2.0,14.0,2023-04-10 16:25:44,2.0.0,1.0,13.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-168,UVVisML,,rep-learn,MIT,https://github.com/learningmatter-mit/uvvisml,Predict optical properties of molecules with machine learning.,8,True,"['optical-properties', 'single-paper', 'probabilistic']",learningmatter-mit/uvvisml,https://github.com/learningmatter-mit/uvvisml,2021-10-13 05:58:48,2023-05-26 22:35:14.000,2023-05-26 22:35:14,17.0,,5.0,4.0,1.0,,,14.0,2022-02-06 18:14:14,0.0.2,2.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-169,Equisolve,,general-tool,BSD-3-Clause,https://github.com/lab-cosmo/equisolve,A ML toolkit package utilizing the metatensor data format to build models for the prediction of equivariant properties..,8,False,['ml-iap'],lab-cosmo/equisolve,https://github.com/lab-cosmo/equisolve,2022-10-04 15:29:19,2023-10-27 10:03:59.000,2023-10-27 09:55:17,55.0,18.0,2.0,14.0,43.0,19.0,4.0,4.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-170,MAChINE,,educational,MIT,https://github.com/aimat-lab/MAChINE,Client-Server Web App to introduce usage of ML in materials science to beginners.,8,False,,aimat-lab/MAChINE,https://github.com/aimat-lab/MAChINE,2023-04-17 14:29:06,2023-09-29 14:20:12.000,2023-09-29 10:20:31,1026.0,20.0,,,7.0,9.0,23.0,1.0,,,,7.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-171,Equiformer,,rep-learn,MIT,https://github.com/atomicarchitects/equiformer,[ICLR23 Spotlight] Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs.,7,True,['transformer'],atomicarchitects/equiformer,https://github.com/atomicarchitects/equiformer,2023-02-28 00:21:30,2023-06-21 08:04:30.000,2023-06-21 08:03:53,3.0,,29.0,5.0,1.0,5.0,7.0,143.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-172,BestPractices,,educational,MIT,https://github.com/anthony-wang/BestPractices,Things that you should (and should not) do in your Materials Informatics research.,7,True,,anthony-wang/BestPractices,https://github.com/anthony-wang/BestPractices,2020-05-05 19:41:25,2023-11-17 02:58:25.000,2023-11-17 02:58:25,17.0,2.0,66.0,7.0,8.0,5.0,2.0,141.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-173,A Highly Opinionated List of Open-Source Materials Informatics Resources,,community,MIT,https://github.com/ncfrey/resources,A Highly Opinionated List of Open Source Materials Informatics Resources.,7,False,,ncfrey/resources,https://github.com/ncfrey/resources,2020-11-17 23:47:07,2022-02-18 13:37:51.000,2022-02-18 13:37:51,8.0,,19.0,9.0,,,,96.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-174,PhysNet,,ml-iap,MIT,https://github.com/MMunibas/PhysNet,Code for training PhysNet models.,7,False,['electrostatics'],MMunibas/PhysNet,https://github.com/MMunibas/PhysNet,2019-03-28 09:05:22,2022-10-16 17:45:42.000,2020-12-07 11:09:20,4.0,,26.0,9.0,1.0,5.0,,85.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-175,AIMNet,,ml-iap,MIT,https://github.com/aiqm/aimnet,Atoms In Molecules Neural Network Potential.,7,False,['single-paper'],aiqm/aimnet,https://github.com/aiqm/aimnet,2018-09-26 17:28:37,2019-11-21 23:49:01.000,2019-11-21 23:49:00,7.0,,20.0,10.0,2.0,4.0,,79.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-176,DTNN,,rep-learn,MIT,https://github.com/atomistic-machine-learning/dtnn,Deep Tensor Neural Network.,7,False,,atomistic-machine-learning/dtnn,https://github.com/atomistic-machine-learning/dtnn,2017-03-10 14:40:05,2017-07-11 08:26:15.000,2017-07-11 08:25:39,9.0,,30.0,15.0,,,3.0,76.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-177,JAXChem,,general-tool,MIT,https://github.com/deepchem/jaxchem,JAXChem is a JAX-based deep learning library for complex and versatile chemical modeling.,7,False,,deepchem/jaxchem,https://github.com/deepchem/jaxchem,2020-05-11 18:54:41,2020-07-15 05:02:21.000,2020-07-15 04:55:41,96.0,,9.0,7.0,13.0,1.0,1.0,74.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-178,Cormorant,,rep-learn,https://github.com/risilab/cormorant/blob/master/LICENSE,https://github.com/risilab/cormorant,Codebase for Cormorant Neural Networks.,7,False,,risilab/cormorant,https://github.com/risilab/cormorant,2019-10-27 18:22:07,2022-05-11 12:49:05.000,2020-03-11 15:25:51,160.0,,10.0,6.0,1.0,3.0,,55.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-179,uncertainty_benchmarking,,general-tool,,https://github.com/ulissigroup/uncertainty_benchmarking,Various code/notebooks to benchmark different ways we could estimate uncertainty in ML predictions.,7,False,"['benchmarking', 'probabilistic']",ulissigroup/uncertainty_benchmarking,https://github.com/ulissigroup/uncertainty_benchmarking,2019-08-28 19:39:28,2021-06-07 23:29:39.000,2021-06-07 23:27:19,265.0,,6.0,6.0,1.0,,,35.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-180,torchchem,,general-tool,MIT,https://github.com/deepchem/torchchem,An experimental repo for experimenting with PyTorch models.,7,False,,deepchem/torchchem,https://github.com/deepchem/torchchem,2020-03-07 17:06:44,2023-03-24 23:13:19.000,2020-05-01 20:12:23,49.0,,14.0,8.0,27.0,2.0,1.0,34.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-181,graphite,,rep-learn,MIT,https://github.com/LLNL/graphite,A repository for implementing graph network models based on atomic structures.,7,True,,llnl/graphite,https://github.com/LLNL/graphite,2022-06-27 19:15:27,2023-10-04 21:51:25.000,2023-10-04 21:51:05,23.0,1.0,6.0,5.0,4.0,2.0,1.0,29.0,,,,2.0,,,7.0,7.0,,,,,,,3.0,,,,,,,,,,,,,,,,
-182,AdsorbML,,rep-learn,MIT,https://github.com/Open-Catalyst-Project/AdsorbML,,7,True,"['surface-science', 'single-paper']",Open-Catalyst-Project/AdsorbML,https://github.com/Open-Catalyst-Project/AdsorbML,2022-11-30 01:38:20,2023-07-31 16:28:14.000,2023-07-31 16:28:09,56.0,,5.0,6.0,10.0,,1.0,25.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-183,SkipAtom,,rep-eng,MIT,https://github.com/lantunes/skipatom,"Distributed representations of atoms, inspired by the Skip-gram model.",7,False,,lantunes/skipatom,https://github.com/lantunes/skipatom,2021-06-19 13:09:13,2023-07-16 19:28:39.000,2022-05-04 13:18:30,46.0,,3.0,2.0,7.0,3.0,1.0,22.0,,,1.0,,skipatom,conda-forge/skipatom,,,https://pypi.org/project/skipatom,28.0,98.0,https://anaconda.org/conda-forge/skipatom,2023-06-18 08:42:05.505,1194.0,3.0,,,,,,,,,,,,,,,,
-184,escnn_jax,,rep-learn,https://github.com/emilemathieu/escnn_jax/blob/master/LICENSE,https://github.com/emilemathieu/escnn_jax,Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/.,7,True,,emilemathieu/escnn_jax,https://github.com/emilemathieu/escnn_jax,2023-06-15 09:45:45,2023-06-28 14:40:32.000,2023-06-28 14:39:56,203.0,,2.0,,,,,21.0,,,,8.0,escnn_jax,,,,https://pypi.org/project/escnn_jax,,,,,,3.0,,,,,,,,,,,,,,,,
-185,BOSS,,materials-discovery,,https://gitlab.com/cest-group/boss,Bayesian Optimization Structure Search (BOSS).,7,False,['probabilistic'],,,2020-02-12 08:48:33,2020-02-12 08:48:33.000,,,,10.0,,,2.0,24.0,18.0,,,14.0,,aalto-boss,,,,https://pypi.org/project/aalto-boss,233.0,233.0,,,,2.0,,,,,,,,,,,,,cest-group/boss,https://gitlab.com/cest-group/boss,,
-186,CBFV,,rep-eng,,https://github.com/Kaaiian/CBFV,Tool to quickly create a composition-based feature vector.,7,False,,kaaiian/CBFV,https://github.com/Kaaiian/CBFV,2019-09-05 23:07:46,2022-03-30 05:47:53.000,2021-10-24 17:10:17,49.0,,6.0,4.0,7.0,5.0,5.0,15.0,,,,3.0,CBFV,,4.0,4.0,https://pypi.org/project/CBFV,129.0,129.0,,,,3.0,,,,,,,,,,,,,,,,
-187,Libnxc,,ml-dft,MPL-2.0,https://github.com/semodi/libnxc,A library for using machine-learned exchange-correlation functionals for density-functional theory.,7,False,"['lang-cpp', 'lang-fortran']",semodi/libnxc/,https://github.com/semodi/libnxc,2020-07-01 18:21:50,2021-09-18 14:53:52.000,2021-08-14 16:26:32,100.0,,4.0,2.0,3.0,13.0,3.0,15.0,,,2.0,,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-188,ACEhamiltonians,,ml-dft,MIT,https://github.com/ACEsuit/ACEhamiltonians.jl,"Provides tools for constructing, fitting, and predicting self-consistent Hamiltonian and overlap matrices in solid-..",7,True,['lang-julia'],ACEsuit/ACEhamiltonians.jl,https://github.com/ACEsuit/ACEhamiltonians.jl,2022-01-17 20:54:22,2023-04-12 15:11:09.000,2023-04-12 15:04:14,33.0,,3.0,4.0,41.0,1.0,3.0,9.0,2022-05-20 17:07:42,arXiv.2111.13736,1.0,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-189,bVAE-IM,,generative,MIT,https://github.com/tsudalab/bVAE-IM,Implementation of Chemical Design with GPU-based Ising Machine.,7,True,"['qml', 'single-paper']",tsudalab/bVAE-IM,https://github.com/tsudalab/bVAE-IM,2023-03-01 08:26:56,2023-07-11 04:39:24.000,2023-07-11 04:39:24,39.0,,2.0,8.0,,,,9.0,2023-03-01 14:26:13,1.0.0,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-190,COSMO Software Cookbook,,educational,BSD-3-Clause,https://github.com/lab-cosmo/software-cookbook,The COSMO cookbook contains recipes for atomic-scale modelling for materials and molecules.,7,False,,lab-cosmo/software-cookbook,https://github.com/lab-cosmo/software-cookbook,2023-05-23 10:33:47,2023-10-27 06:42:00.000,2023-10-27 06:30:34,35.0,12.0,1.0,13.0,27.0,2.0,1.0,3.0,,,,5.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-191,MEGAN: Multi Explanation Graph Attention Student,,xai,MIT,https://github.com/aimat-lab/graph_attention_student,Minimal implementation of graph attention student model architecture.,7,False,,aimat-lab/graph_attention_student,https://github.com/aimat-lab/graph_attention_student,2022-07-28 06:22:50,2023-11-20 09:38:47.000,2023-11-20 09:38:42,34.0,11.0,1.0,3.0,1.0,,,3.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-192,MEGAN,,xai,MIT,https://github.com/aimat-lab/graph_attention_student,Minimal implementation of graph attention student model architecture.,7,False,"['xai', 'rep-learn']",aimat-lab/graph_attention_student,https://github.com/aimat-lab/graph_attention_student,2022-07-28 06:22:50,2023-11-20 09:38:47.000,2023-11-20 09:38:42,34.0,11.0,1.0,3.0,1.0,,,3.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-193,2DMD dataset,,datasets,Apache-2.0,https://github.com/HSE-LAMBDA/ai4material_design/blob/main/docs/DATA.md,"Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of..",7,False,['material-defect'],HSE-LAMBDA/ai4material_design,https://github.com/HSE-LAMBDA/ai4material_design,2021-03-25 10:06:20,2023-11-21 11:30:42.000,2023-11-21 11:30:33,1118.0,2.0,1.0,7.0,28.0,,12.0,2.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-194,ai4material_design,,rep-learn,Apache-2.0,https://github.com/HSE-LAMBDA/ai4material_design,"Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of..",7,False,"['pre-trained', 'material-defect']",HSE-LAMBDA/ai4material_design,https://github.com/HSE-LAMBDA/ai4material_design,2021-03-25 10:06:20,2023-11-21 11:30:42.000,2023-11-21 11:30:33,1118.0,2.0,1.0,7.0,28.0,,12.0,2.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-195,ML4pXRDs,,rep-learn,MIT,https://github.com/aimat-lab/ML4pXRDs,Contains code to train neural networks based on simulated powder XRDs from synthetic crystals.,7,True,"['xrd', 'single-paper']",aimat-lab/ML4pXRDs,https://github.com/aimat-lab/ML4pXRDs,2022-12-01 16:24:29,2023-07-14 08:17:06.000,2023-07-14 08:17:04,1320.0,,,3.0,,,,,2023-03-22 11:04:31,1.0,1.0,,,,,,,,0.0,,,,3.0,,,,,,2.0,,,,,,,,,,
-196,The Collection of Database and Dataset Resources in Materials Science,,community,,https://github.com/sedaoturak/data-resources-for-materials-science,"A list of databases, datasets and books/handbooks where you can find materials properties for machine learning..",6,True,['datasets'],sedaoturak/data-resources-for-materials-science,https://github.com/sedaoturak/data-resources-for-materials-science,2021-02-20 06:38:45,2023-11-03 12:16:07.000,2023-11-03 12:16:07,28.0,2.0,28.0,10.0,1.0,,1.0,187.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-197,GEOM,,datasets,,https://github.com/learningmatter-mit/geom,GEOM: Energy-annotated molecular conformations.,6,False,['drug-discovery'],learningmatter-mit/geom,https://github.com/learningmatter-mit/geom,2020-06-03 17:58:37,2022-04-24 18:57:39.000,2022-04-24 18:57:39,95.0,,18.0,9.0,,1.0,10.0,154.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-198,EquiformerV2,,rep-learn,MIT,https://github.com/atomicarchitects/equiformer_v2,[arXiv23] EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations.,6,True,,atomicarchitects/equiformer_v2,https://github.com/atomicarchitects/equiformer_v2,2023-06-21 07:09:58,2023-12-02 16:53:28.000,2023-12-02 16:53:11,9.0,1.0,14.0,4.0,,7.0,,90.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-199,Applied AI for Materials,,educational,,https://github.com/WardLT/applied-ai-for-materials,Course materials for Applied AI for Materials Science and Engineering.,6,False,,WardLT/applied-ai-for-materials,https://github.com/WardLT/applied-ai-for-materials,2020-10-12 19:39:06,2022-03-12 02:26:58.000,2022-03-12 02:26:41,107.0,,29.0,4.0,13.0,5.0,,50.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-200,ANI-1x Datasets,,datasets,MIT,https://github.com/aiqm/ANI1x_datasets,"The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for organic molecules.",6,False,,aiqm/ANI1x_datasets,https://github.com/aiqm/ANI1x_datasets,2019-09-17 18:19:28,2022-04-11 17:25:55.000,2022-04-11 17:25:55,12.0,,5.0,6.0,,2.0,3.0,47.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-201,DeepDFT,,ml-dft,MIT,https://github.com/peterbjorgensen/DeepDFT,Official implementation of DeepDFT model.,6,True,,peterbjorgensen/DeepDFT,https://github.com/peterbjorgensen/DeepDFT,2020-11-03 11:51:15,2023-02-28 15:37:49.000,2023-02-28 15:37:37,128.0,,7.0,1.0,,,3.0,42.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-202,MACE-Jax,,ml-iap,MIT,https://github.com/ACEsuit/mace-jax,Equivariant machine learning interatomic potentials in JAX.,6,True,,ACEsuit/mace-jax,https://github.com/ACEsuit/mace-jax,2023-02-06 12:10:16,2023-10-04 08:07:35.000,2023-10-04 08:07:35,207.0,1.0,1.0,10.0,1.0,2.0,1.0,37.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-203,COMP6 Benchmark dataset,,datasets,MIT,https://github.com/isayev/COMP6,COMP6 Benchmark dataset for ML potentials.,6,False,,isayev/COMP6,https://github.com/isayev/COMP6,2017-12-29 16:58:35,2018-07-09 23:56:35.000,2018-07-09 23:56:34,27.0,,4.0,5.0,,2.0,1.0,36.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-204,DeepH-E3,,ml-dft,MIT,https://github.com/Xiaoxun-Gong/DeepH-E3,General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian.,6,True,['magnetism'],Xiaoxun-Gong/DeepH-E3,https://github.com/Xiaoxun-Gong/DeepH-E3,2023-03-16 11:25:58,2023-04-04 13:27:01.000,2023-04-04 13:26:27,16.0,,9.0,5.0,,3.0,6.0,36.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-205,milad,,rep-eng,GPL-3.0,https://github.com/muhrin/milad,Moment Invariants Local Atomic Descriptor.,6,True,['generative'],muhrin/milad,https://github.com/muhrin/milad,2020-04-23 09:14:24,2022-12-03 10:40:05.000,2022-12-03 10:39:59,110.0,,1.0,4.0,,,,27.0,,,,,,,1.0,1.0,,,,,,,3.0,,,,,,,,,,,,,,,,
-206,MACE-Layer,,rep-learn,MIT,https://github.com/ACEsuit/mace-layer,Higher order equivariant graph neural networks for 3D point clouds.,6,True,,ACEsuit/mace-layer,https://github.com/ACEsuit/mace-layer,2022-11-09 17:03:41,2023-06-27 15:32:49.000,2023-06-06 10:09:58,19.0,,4.0,5.0,2.0,1.0,,26.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-207,charge_transfer_nnp,,rep-learn,MIT,https://github.com/pfnet-research/charge_transfer_nnp,Graph neural network potential with charge transfer.,6,False,['electrostatics'],pfnet-research/charge_transfer_nnp,https://github.com/pfnet-research/charge_transfer_nnp,2022-04-06 01:48:18,2022-04-06 01:53:35.000,2022-04-06 01:53:22,1.0,,6.0,13.0,,,,24.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-208,ALF,,ml-iap,https://github.com/lanl/ALF/blob/main/LICENSE,https://github.com/lanl/ALF,A framework for performing active learning for training machine-learned interatomic potentials.,6,True,['active-learning'],lanl/alf,https://github.com/lanl/ALF,2023-01-04 23:13:24,2023-09-26 19:47:46.000,2023-08-04 15:53:59,139.0,,9.0,7.0,25.0,,,20.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-209,GLAMOUR,,rep-learn,MIT,https://github.com/learningmatter-mit/GLAMOUR,Graph Learning over Macromolecule Representations.,6,True,['single-paper'],learningmatter-mit/GLAMOUR,https://github.com/learningmatter-mit/GLAMOUR,2021-08-20 18:16:40,2022-12-31 17:56:21.000,2022-12-31 17:56:21,14.0,,6.0,3.0,,,8.0,18.0,2021-08-23 18:58:52,0.1,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-210,SA-GPR,,rep-eng,LGPL-3.0,https://github.com/dilkins/TENSOAP,Public repository for symmetry-adapted Gaussian Process Regression (SA-GPR).,6,False,['lang-c'],dilkins/TENSOAP,https://github.com/dilkins/TENSOAP,2020-05-04 14:19:01,2023-04-07 09:58:08.000,2022-09-29 09:30:45,25.0,,9.0,3.0,10.0,2.0,5.0,14.0,2020-12-17 16:51:47,2020.0,1.0,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-211,NICE,,rep-eng,MIT,https://github.com/lab-cosmo/nice,NICE (N-body Iteratively Contracted Equivariants) is a set of tools designed for the calculation of invariant and..,6,True,,lab-cosmo/nice,https://github.com/lab-cosmo/nice,2020-07-03 08:47:41,2023-05-01 09:22:21.000,2023-05-01 09:21:56,231.0,,2.0,6.0,7.0,2.0,1.0,12.0,,,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-212,testing-framework,,ml-iap,,https://github.com/libAtoms/testing-framework,The purpose of this repository is to aid the testing of a large number of interatomic potentials for a variety of..,6,False,['benchmarking'],libAtoms/testing-framework,https://github.com/libAtoms/testing-framework,2020-03-04 11:43:15,2022-02-10 17:23:46.000,2022-02-10 17:23:46,225.0,,6.0,16.0,10.0,5.0,3.0,11.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-213,CatGym,,reinforcement-learning,GPL,https://github.com/ulissigroup/catgym,Surface segregation using Deep Reinforcement Learning.,6,False,,ulissigroup/catgym,https://github.com/ulissigroup/catgym,2019-08-06 19:25:27,2021-08-30 17:05:36.000,2021-08-30 17:05:32,162.0,,2.0,4.0,,1.0,,10.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-214,AGOX,,materials-discovery,GPL-3.0,https://gitlab.com/agox/agox,AGOX is a package for global optimization of atomic system using e.g. the energy calculated from density functional..,6,False,['structure-optimization'],,,2022-03-08 09:08:13,2022-03-08 09:08:13.000,,,,4.0,,,10.0,7.0,10.0,,,2.0,,agox,,,,https://pypi.org/project/agox,49.0,49.0,,,,2.0,,,,,,,,,,,,,agox/agox,https://gitlab.com/agox/agox,,
-215,ACEHAL,,active-learning,,https://github.com/ACEsuit/ACEHAL,Hyperactive Learning (HAL) Python interface for building Atomic Cluster Expansion potentials.,6,True,['lang-julia'],ACEsuit/ACEHAL,https://github.com/ACEsuit/ACEHAL,2023-02-24 17:33:47,2023-10-01 12:19:41.000,2023-09-21 21:50:43,121.0,14.0,2.0,5.0,15.0,4.0,6.0,9.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-216,PANNA,,ml-iap,MIT,https://gitlab.com/PANNAdevs/panna,A package to train and validate all-to-all connected network models for BP[1] and modified-BP[2] type local atomic..,6,False,['benchmarking'],,,2018-11-09 10:47:48,2018-11-09 10:47:48.000,,,,10.0,,,,,7.0,,,2.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,PANNAdevs/panna,https://gitlab.com/PANNAdevs/panna,,
-217,fplib,,rep-eng,MIT,https://github.com/zhuligs/fplib,a fingerprint library.,6,False,"['lang-c', 'single-paper']",zhuligs/fplib,https://github.com/zhuligs/fplib,2015-09-07 08:18:27,2022-02-09 05:31:21.000,2022-02-09 05:31:12,37.0,,2.0,3.0,,,3.0,7.0,2021-02-03 21:40:23,pub,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-218,SOAPxx,,rep-eng,GPL-2.0,https://github.com/capoe/soapxx,A SOAP implementation.,6,False,['lang-cpp'],capoe/soapxx,https://github.com/capoe/soapxx,2016-03-29 10:00:00,2020-03-27 13:47:44.000,2020-03-27 13:47:36,289.0,,3.0,3.0,1.0,,2.0,7.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-219,SciGlass,,datasets,MIT,https://github.com/drcassar/SciGlass,The database contains a vast set of data on the properties of glass materials.,6,True,,drcassar/SciGlass,https://github.com/drcassar/SciGlass,2019-06-19 19:36:32,2023-08-27 13:46:44.000,2023-08-27 13:46:44,28.0,,3.0,1.0,,,,6.0,2023-08-27 13:48:09,2.0.1,1.0,2.0,,,,,,,0.0,,,,3.0,,,,,,3.0,,,,,,,,,,
-220,COSMO Toolbox,,math,,https://github.com/lab-cosmo/toolbox,Assorted libraries and utilities for atomistic simulation analysis.,6,True,['lang-cpp'],lab-cosmo/toolbox,https://github.com/lab-cosmo/toolbox,2014-05-20 11:23:13,2023-06-23 15:07:59.000,2023-06-23 15:07:29,106.0,,5.0,26.0,1.0,,,6.0,,,,9.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-221,pyLODE,,rep-eng,Apache-2.0,https://github.com/ceriottm/lode,Pythonic implementation of LOng Distance Equivariants.,6,False,['electrostatics'],ceriottm/lode,https://github.com/ceriottm/lode,2022-01-19 17:01:38,2023-07-05 09:57:29.000,2023-07-05 09:57:14,241.0,,1.0,3.0,,1.0,,2.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-222,Visual Graph Datasets,,datasets,MIT,https://github.com/aimat-lab/visual_graph_datasets,Datasets for the training of graph neural networks (GNNs) and subsequent visualization of attributional explanations..,6,False,,aimat-lab/visual_graph_datasets,https://github.com/aimat-lab/visual_graph_datasets,2023-06-01 11:33:18,2023-11-15 13:38:38.000,2023-11-15 13:38:25,32.0,28.0,1.0,3.0,,,,1.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-223,Computational Autonomy for Materials Discovery (CAMD),,materials-discovery,Apache-2.0,https://github.com/ulissigroup/CAMD,Agent-based sequential learning software for materials discovery.,6,False,,ulissigroup/CAMD,https://github.com/ulissigroup/CAMD,2023-01-10 19:42:57,2023-01-10 19:49:35.000,2023-01-10 19:49:13,1336.0,,,1.0,,,,1.0,,,,17.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,
-224,"Data Handling, DoE and Statistical Analysis for Material Chemists",,educational,GPL-3.0,https://github.com/Teoroo-CMC/DoE_Course_Material,"Notebooks for workshops of DoE course, hosted by the Computational Materials Chemistry group at Uppsala University.",6,True,,Teoroo-CMC/DoE_Course_Material,https://github.com/Teoroo-CMC/DoE_Course_Material,2023-05-22 08:11:41,2023-06-26 12:48:17.000,2023-06-26 12:48:15,157.0,,13.0,2.0,1.0,,,,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-225,Per-site PAiNN,,rep-learn,MIT,https://github.com/learningmatter-mit/per-site_painn,Fork of PaiNN for PerovskiteOrderingGCNNs.,6,True,"['probabilistic', 'pre-trained', 'single-paper']",learningmatter-mit/per-site_painn,https://github.com/learningmatter-mit/per-site_painn,2023-06-04 14:23:49,2023-06-05 17:35:19.000,2023-06-05 17:30:34,123.0,,,,,,,,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-226,tensorfieldnetworks,,rep-learn,MIT,https://github.com/tensorfieldnetworks/tensorfieldnetworks,,5,False,,tensorfieldnetworks/tensorfieldnetworks,https://github.com/tensorfieldnetworks/tensorfieldnetworks,2018-02-09 23:18:13,2020-01-07 17:22:16.000,2020-01-07 17:22:15,10.0,,28.0,9.0,2.0,,2.0,144.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-227,AI4Science101,,educational,,https://github.com/deepmodeling/AI4Science101,AI for Science.,5,False,,deepmodeling/AI4Science101,https://github.com/deepmodeling/AI4Science101,2022-06-19 02:26:48,2022-09-04 02:06:18.000,2022-09-04 02:06:18,139.0,,12.0,10.0,28.0,,1.0,72.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-228,SchNOrb,,ml-wft,MIT,https://github.com/atomistic-machine-learning/SchNOrb,Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions.,5,False,,atomistic-machine-learning/SchNOrb,https://github.com/atomistic-machine-learning/SchNOrb,2019-09-17 12:41:48,2019-09-17 14:31:47.000,2019-09-17 14:31:19,2.0,,17.0,5.0,,1.0,,55.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-229,Machine Learning for Materials Hard and Soft,,educational,,https://github.com/CompPhysVienna/MLSummerSchoolVienna2022,ESI-DCAFM-TACO-VDSP Summer School on Machine Learning for Materials Hard and Soft.,5,False,,CompPhysVienna/MLSummerSchoolVienna2022,https://github.com/CompPhysVienna/MLSummerSchoolVienna2022,2022-07-01 08:42:41,2022-07-22 08:10:24.000,2022-07-22 08:10:24,49.0,,17.0,1.0,14.0,,,33.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-230,Autobahn,,rep-learn,MIT,https://github.com/risilab/Autobahn,Repository for Autobahn: Automorphism Based Graph Neural Networks.,5,False,,risilab/Autobahn,https://github.com/risilab/Autobahn,2021-03-02 01:14:40,2022-03-01 21:04:09.000,2022-03-01 21:04:04,11.0,,2.0,5.0,,,,28.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-231,MLIP-3,,ml-iap,BSD-2-Clause,https://gitlab.com/ashapeev/mlip-3,MLIP-3: Active learning on atomic environments with Moment Tensor Potentials (MTP).,5,True,['lang-cpp'],,,2023-04-24 14:05:53,2023-04-24 14:05:53.000,,,,3.0,,,15.0,5.0,18.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,ashapeev/mlip-3,https://gitlab.com/ashapeev/mlip-3,,
-232,EquivariantOperators.jl,,math,MIT,https://github.com/aced-differentiate/EquivariantOperators.jl,,5,False,['lang-julia'],aced-differentiate/EquivariantOperators.jl,https://github.com/aced-differentiate/EquivariantOperators.jl,2021-11-29 03:36:21,2023-09-27 18:34:44.000,2023-09-27 18:34:44,62.0,4.0,,4.0,,,,17.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-233,SCFNN,,rep-learn,MIT,https://github.com/andy90/SCFNN,Self-consistent determination of long-range electrostatics in neural network potentials.,5,False,"['lang-cpp', 'electrostatics', 'single-paper']",andy90/SCFNN,https://github.com/andy90/SCFNN,2021-09-22 12:02:00,2022-01-30 02:29:03.000,2022-01-24 09:40:40,10.0,,8.0,2.0,,,,15.0,2022-01-30 02:29:04,1.0.0,1.0,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-234,rxngenerator,,generative,MIT,https://github.com/tsudalab/rxngenerator,A generative model for molecular generation via multi-step chemical reactions.,5,False,,tsudalab/rxngenerator,https://github.com/tsudalab/rxngenerator,2021-06-18 07:44:53,2022-08-09 07:21:44.000,2022-08-09 07:21:05,16.0,,2.0,9.0,2.0,1.0,,12.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-235,FieldSchNet,,rep-learn,MIT,https://github.com/atomistic-machine-learning/field_schnet,,5,False,,atomistic-machine-learning/field_schnet,https://github.com/atomistic-machine-learning/field_schnet,2020-11-18 10:26:59,2022-05-19 09:28:38.000,2022-05-19 09:28:38,26.0,,4.0,3.0,1.0,1.0,,11.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-236,charge-density-models,,ml-dft,MIT,https://github.com/ulissigroup/charge-density-models,Tools to build charge density models using ocpmodels.,5,True,,ulissigroup/charge-density-models,https://github.com/ulissigroup/charge-density-models,2022-06-22 13:47:53,2023-11-29 15:07:42.000,2023-11-29 15:07:42,96.0,1.0,3.0,2.0,16.0,,2.0,8.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-237,CraTENet,,rep-learn,MIT,https://github.com/lantunes/CraTENet,An attention-based deep neural network for thermoelectric transport properties.,5,True,['transport-phenomena'],lantunes/CraTENet,https://github.com/lantunes/CraTENet,2022-06-30 10:40:06,2023-04-05 01:13:22.000,2023-04-05 01:13:11,24.0,,1.0,1.0,,,,8.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-238,MolSLEPA,,generative,MIT,https://github.com/tsudalab/MolSLEPA,Interpretable Fragment-based Molecule Design with Self-learning Entropic Population Annealing.,5,True,['xai'],tsudalab/MolSLEPA,https://github.com/tsudalab/MolSLEPA,2023-04-10 15:04:55,2023-04-13 12:48:49.000,2023-04-13 12:48:49,11.0,,1.0,8.0,2.0,,,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-239,COSMO tools,,others,,https://github.com/lab-cosmo/cosmo-tools,"Scripts, jupyter nbs, and general helpful stuff from COSMO by COSMO.",5,False,,lab-cosmo/cosmo-tools,https://github.com/lab-cosmo/cosmo-tools,2018-11-06 09:40:00,2023-11-13 06:28:17.000,2023-11-13 06:28:17,60.0,1.0,3.0,22.0,,,,2.0,,,,4.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,True,
-240,Alchemical learning,,ml-iap,BSD-3-Clause,https://github.com/Luthaf/alchemical-learning,Code for the Modeling high-entropy transition metal alloys with alchemical compression article.,5,False,,Luthaf/alchemical-learning,https://github.com/Luthaf/alchemical-learning,2021-12-02 17:02:00,2023-04-24 18:35:45.000,2023-04-07 10:19:10,120.0,,1.0,6.0,1.0,,4.0,2.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-241,linear-regression-benchmarks,,datasets,MIT,https://github.com/BingqingCheng/linear-regression-benchmarks,Data sets used for linear regression benchmarks.,5,False,"['benchmarking', 'single-paper']",BingqingCheng/linear-regression-benchmarks,https://github.com/BingqingCheng/linear-regression-benchmarks,2020-04-16 20:48:28,2022-01-26 08:29:46.000,2022-01-26 08:29:46,24.0,,,3.0,2.0,,,1.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-242,Per-Site CGCNN,,rep-learn,MIT,https://github.com/learningmatter-mit/per-site_cgcnn,Crystal graph convolutional neural networks for predicting material properties.,5,False,"['pre-trained', 'single-paper']",learningmatter-mit/per-site_cgcnn,https://github.com/learningmatter-mit/per-site_cgcnn,2023-05-30 18:59:03,2023-06-05 17:38:46.000,2023-06-05 17:38:41,28.0,,,,,,,1.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-243,ACE1Pack.jl,,ml-iap,MIT,https://github.com/ACEsuit/ACE1pack.jl,"Provides convenience functionality for the usage of ACE1.jl, ACEfit.jl, JuLIP.jl for fitting interatomic potentials..",5,True,['lang-julia'],ACEsuit/ACE1pack.jl,https://github.com/ACEsuit/ACE1pack.jl,2023-08-21 16:25:00,2023-08-21 16:30:19.000,2023-08-21 15:48:54,547.0,,,1.0,,,,,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,https://acesuit.github.io/ACE1pack.jl
-244,ACE Workflows,,ml-iap,,https://github.com/ACEsuit/ACEworkflows,Workflow Examples for ACE Models.,5,True,"['lang-julia', 'workflows']",ACEsuit/ACEworkflows,https://github.com/ACEsuit/ACEworkflows,2023-04-04 16:57:36,2023-10-12 18:01:00.000,2023-10-12 18:00:39,45.0,9.0,1.0,3.0,7.0,1.0,,,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-245,ML-in-chemistry-101,,educational,,https://github.com/BingqingCheng/ML-in-chemistry-101,The course materials for Machine Learning in Chemistry 101.,4,False,,BingqingCheng/ML-in-chemistry-101,https://github.com/BingqingCheng/ML-in-chemistry-101,2020-02-09 17:47:07,2020-10-19 08:10:31.000,2020-10-19 08:10:30,13.0,,15.0,2.0,,,,57.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-246,Atom2Vec,,rep-learn,,https://github.com/idocx/Atom2Vec,Atom2Vec: a simple way to describe atoms for machine learning.,4,False,,idocx/Atom2Vec,https://github.com/idocx/Atom2Vec,2020-01-18 23:31:47,2022-10-16 05:43:31.000,2021-06-21 16:31:09,3.0,,8.0,1.0,1.0,1.0,1.0,26.0,,,,,atom2vec,,1.0,1.0,https://pypi.org/project/atom2vec,33.0,33.0,,,,3.0,,,,,,,,,,,,,,,,
-247,Graph Transport Network,,rep-learn,https://github.com/gasteigerjo/gtn/blob/main/LICENSE.md,https://github.com/gasteigerjo/gtn,"Graph transport network (GTN), as proposed in Scalable Optimal Transport in High Dimensions for Graph Distances,..",4,False,['transport-phenomena'],gasteigerjo/gtn,https://github.com/gasteigerjo/gtn,2021-07-11 23:36:22,2023-04-26 14:22:00.000,2023-04-26 14:22:00,9.0,,3.0,2.0,,,,15.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-248,glp,,ml-iap,MIT,https://github.com/sirmarcel/glp,tools for graph-based machine-learning potentials in jax.,4,False,,sirmarcel/glp,https://github.com/sirmarcel/glp,2023-03-27 15:19:40,2023-08-07 14:41:10.000,2023-08-07 14:41:05,10.0,,,1.0,2.0,,,13.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-249,3DSC Database,,datasets,https://github.com/aimat-lab/3DSC/blob/main/LICENSE.md,https://github.com/aimat-lab/3DSC,Repo for the paper publishing the superconductor database with 3D crystal structures.,4,False,"['superconductors', 'materials-discovery']",aimat-lab/3DSC,https://github.com/aimat-lab/3DSC,2021-11-02 09:07:57,2023-07-21 09:28:43.000,2023-07-21 09:26:12,52.0,,2.0,2.0,,,,9.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-250,chemrev-gpr,,educational,,https://github.com/gabor1/chemrev-gpr,Notebooks accompanying the paper on GPR in materials and molecules in Chemical Reviews 2020.,4,False,,gabor1/chemrev-gpr,https://github.com/gabor1/chemrev-gpr,2020-12-18 23:48:06,2021-05-04 19:21:34.000,2021-05-04 19:21:30,10.0,,6.0,4.0,,,,6.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-251,TensorPotential,,ml-iap,https://github.com/ICAMS/TensorPotential/blob/main/LICENSE.md,https://cortner.github.io/ACEweb/software/,"Tensorpotential is a TensorFlow based tool for development, fitting ML interatomic potentials from electronic..",4,False,,ICAMS/TensorPotential,https://github.com/ICAMS/TensorPotential,2021-12-08 12:10:04,2023-07-10 16:37:18.000,2023-07-10 16:37:18,18.0,,4.0,2.0,2.0,,,5.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-252,interface-lammps-mlip-3,,md,GPL-2.0,https://gitlab.com/ivannovikov/interface-lammps-mlip-3,An interface between LAMMPS and MLIP (version 3).,4,False,,,,2023-04-24 12:48:51,2023-04-24 12:48:51.000,,,,3.0,,,4.0,,5.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,ivannovikov/interface-lammps-mlip-3,https://gitlab.com/ivannovikov/interface-lammps-mlip-3,,
-253,ACEatoms,,general-tool,https://github.com/ACEsuit/ACEatoms.jl/blob/main/ASL.md,https://github.com/ACEsuit/ACEatoms.jl,Generic code for modelling atomic properties using ACE.,4,False,['lang-julia'],ACEsuit/ACEatoms.jl,https://github.com/ACEsuit/ACEatoms.jl,2021-03-23 23:50:03,2023-01-13 21:35:06.000,2023-01-13 21:28:08,134.0,,1.0,3.0,14.0,4.0,3.0,2.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-254,atom_by_atom,,rep-learn,,https://github.com/learningmatter-mit/atom_by_atom,Atom-by-atom design of metal oxide catalysts for the oxygen evolution reaction with Machine Learning.,4,False,"['surface-science', 'single-paper']",learningmatter-mit/atom_by_atom,https://github.com/learningmatter-mit/atom_by_atom,2023-05-30 20:18:00,2023-10-19 15:59:08.000,2023-10-19 15:35:49,74.0,10.0,,2.0,,,,2.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-255,SISSO++,,rep-eng,Apache-2.0,https://gitlab.com/sissopp_developers/sissopp,C++ Implementation of SISSO with python bindings.,4,False,['lang-cpp'],,,2021-04-30 14:20:59,2021-04-30 14:20:59.000,,,,3.0,,,,12.0,2.0,,,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,sissopp_developers/sissopp,https://gitlab.com/sissopp_developers/sissopp,,
-256,cnine,,math,,https://github.com/risi-kondor/cnine,Cnine tensor library.,4,False,['lang-cpp'],risi-kondor/cnine,https://github.com/risi-kondor/cnine,2022-10-07 20:54:54,2023-12-01 09:48:24.000,2023-12-01 09:48:18,257.0,67.0,1.0,1.0,1.0,,1.0,2.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,https://risi-kondor.github.io/cnine/
-257,magnetism-prediction,,rep-eng,Apache-2.0,https://github.com/dppant/magnetism-prediction,DFT-aided Machine Learning Search for Magnetism in Fe-based Bimetallic Chalcogenides.,4,False,"['magnetism', 'single-paper']",dppant/magnetism-prediction,https://github.com/dppant/magnetism-prediction,2022-09-13 03:58:10,2023-07-19 13:25:49.000,2023-07-19 13:25:49,46.0,,,3.0,,,,1.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-258,MLatom,,general-tool,https://creativecommons.org/licenses/by-nc-nd/4.0/,http://mlatom.com/,Machine learning for atomistic simulations.,4,False,,,,,,,,,,,,,,,,,,,MLatom,,,,https://pypi.org/project/MLatom,280.0,280.0,,,,3.0,,,,,,,,,,,,,,,,http://mlatom.com/manual/
-259,gprep,,ml-dft,MIT,https://gitlab.com/jmargraf/gprep,Fitting DFTB repulsive potentials with GPR.,4,False,['single-paper'],,,2019-09-30 09:15:04,2019-09-30 09:15:04.000,,,,0.0,,,,,,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,jmargraf/gprep,https://gitlab.com/jmargraf/gprep,,
-260,closed-loop-acceleration-benchmarks,,materials-discovery,MIT,https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks,Data and scripts in support of the publication By how much can closed-loop frameworks accelerate computational..,4,False,"['materials-discovery', 'active-learning', 'single-paper']",aced-differentiate/closed-loop-acceleration-benchmarks,https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks,2022-11-10 20:22:30,2023-07-25 21:25:42.000,2023-05-02 17:07:48,17.0,,1.0,4.0,3.0,,,,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-261,ML-for-CurieTemp-Predictions,,rep-eng,MIT,https://github.com/msg-byu/ML-for-CurieTemp-Predictions,Machine Learning Predictions of High-Curie-Temperature Materials.,4,False,"['single-paper', 'magnetism']",msg-byu/ML-for-CurieTemp-Predictions,https://github.com/msg-byu/ML-for-CurieTemp-Predictions,2023-06-05 22:46:47,2023-06-14 19:05:50.000,2023-06-14 19:05:47,25.0,,,1.0,,,,,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-262,xDeepH,,ml-dft,LGPL-3.0,https://github.com/mzjb/xDeepH,Extended DeepH (xDeepH) method for magnetic materials.,3,False,"['magnetism', 'lang-julia']",mzjb/xDeepH,https://github.com/mzjb/xDeepH,2023-02-23 12:56:49,2023-06-14 11:44:53.000,2023-06-14 11:44:46,4.0,,1.0,2.0,,,,23.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-263,Coarse-Graining-Auto-encoders,,unsupervised,,https://github.com/learningmatter-mit/Coarse-Graining-Auto-encoders,,3,False,['single-paper'],learningmatter-mit/Coarse-Graining-Auto-encoders,https://github.com/learningmatter-mit/Coarse-Graining-Auto-encoders,2019-09-16 15:27:57,2019-08-16 21:39:34.000,2019-08-16 21:39:33,14.0,,7.0,6.0,,,,20.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-264,ML-DFT,,ml-dft,MIT,https://github.com/MihailBogojeski/ml-dft,A package for density functional approximation using machine learning.,3,False,,MihailBogojeski/ml-dft,https://github.com/MihailBogojeski/ml-dft,2020-09-14 22:15:56,2020-09-18 16:36:30.000,2020-09-18 16:36:30,9.0,,6.0,2.0,,1.0,1.0,19.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-265,SPINNER,,materials-discovery,GPL-3.0,https://github.com/MDIL-SNU/SPINNER,SPINNER (Structure Prediction of Inorganic crystals using Neural Network potentials with Evolutionary and Random..,3,False,"['lang-cpp', 'structure-prediction']",MDIL-SNU/SPINNER,https://github.com/MDIL-SNU/SPINNER,2021-07-15 02:10:58,2021-11-25 07:58:15.000,2021-11-25 07:58:15,102.0,,2.0,1.0,,1.0,,9.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-266,sl_discovery,,materials-discovery,Apache-2.0,https://github.com/CitrineInformatics-ERD-public/sl_discovery,Data processing and models related to Quantifying the performance of machine learning models in materials discovery.,3,False,"['materials-discovery', 'single-paper']",CitrineInformatics-ERD-public/sl_discovery,https://github.com/CitrineInformatics-ERD-public/sl_discovery,2022-10-24 18:10:14,2022-12-20 23:46:05.000,2022-12-20 23:45:57,5.0,,2.0,2.0,,,,5.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-267,Element encoder,,rep-learn,GPL-3.0,https://github.com/jeherr/element-encoder,Autoencoder neural network to compress properties of atomic species into a vector representation.,3,False,['single-paper'],jeherr/element-encoder,https://github.com/jeherr/element-encoder,2019-03-27 17:11:30,2020-01-09 15:54:27.000,2020-01-09 15:54:26,8.0,,1.0,4.0,,,1.0,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-268,KmdPlus,,unsupervised,,https://github.com/Minoru938/KmdPlus,"This module contains a class for treating kernel mean descriptor (KMD), and a function for generating descriptors with..",3,False,,Minoru938/KmdPlus,https://github.com/Minoru938/KmdPlus,2023-03-26 10:06:34,2023-10-17 08:28:01.000,2023-10-17 08:28:01,7.0,3.0,,1.0,,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-269,DeepCDP,,ml-dft,,https://github.com/siddarthachar/deepcdp,DeepCDP: Deep learning Charge Density Prediction.,3,False,,siddarthachar/deepcdp,https://github.com/siddarthachar/deepcdp,2021-12-18 14:26:56,2023-06-16 20:38:23.000,2023-06-16 20:38:23,96.0,,,2.0,27.0,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-270,BERT-PSIE-TC,,lm,MIT,https://github.com/StefanoSanvitoGroup/BERT-PSIE-TC,A dataset of Curie temperatures automatically extracted from scientific literature with the use of the BERT-PSIE..,3,False,['magnetism'],StefanoSanvitoGroup/BERT-PSIE-TC,https://github.com/StefanoSanvitoGroup/BERT-PSIE-TC,2023-01-25 10:27:26,2023-08-18 11:47:45.000,2023-08-18 12:48:31,36.0,,2.0,1.0,,,,2.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-271,Linear vs blackbox,,xai,MIT,https://github.com/CitrineInformatics-ERD-public/linear-vs-blackbox,Code and data related to the publication: Interpretable models for extrapolation in scientific machine learning.,3,False,"['xai', 'single-paper', 'rep-eng']",CitrineInformatics-ERD-public/linear-vs-blackbox,https://github.com/CitrineInformatics-ERD-public/linear-vs-blackbox,2022-12-02 20:32:53,2022-12-16 18:48:12.000,2022-12-16 18:48:12,4.0,,,1.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-272,CSNN,,ml-dft,BSD-3-Clause,https://github.com/foxjas/CSNN,Primary codebase of CSNN - Concentric Spherical Neural Network for 3D Representation Learning.,3,False,,foxjas/CSNN,https://github.com/foxjas/CSNN,2022-05-19 15:40:49,2022-10-11 04:27:40.000,2022-10-11 04:27:40,6.0,,,1.0,,,,1.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-273,Magpie,,general-tool,MIT,https://bitbucket.org/wolverton/magpie/,Materials Agnostic Platform for Informatics and Exploration (Magpie).,3,False,['lang-java'],,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-274,MALADA,,ml-dft,BSD-3-Clause,https://github.com/mala-project/malada,MALA Data Acquisition: Helpful tools to build data for MALA.,3,False,,mala-project/malada,https://github.com/mala-project/malada,2021-07-26 05:46:08,2023-05-24 09:18:24.000,2023-05-24 09:18:24,111.0,,1.0,2.0,4.0,17.0,2.0,,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-275,CSPML (crystal structure prediction with machine learning-based element substitution),,materials-discovery,,https://github.com/Minoru938/CSPML,Original implementation of CSPML.,2,False,['structure-prediction'],minoru938/cspml,https://github.com/Minoru938/CSPML,2022-01-15 10:59:27,2022-06-02 23:26:26.000,2022-06-02 23:26:26,7.0,,8.0,2.0,,2.0,1.0,14.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-276,SingleNN,,ml-iap,,https://github.com/lmj1029123/SingleNN,An efficient package for training and executing neural-network interatomic potentials.,2,False,['lang-cpp'],lmj1029123/SingleNN,https://github.com/lmj1029123/SingleNN,2020-03-11 18:36:16,2021-11-09 00:40:18.000,2021-11-09 00:40:10,17.0,,1.0,1.0,,1.0,,7.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-277,MLDensity_tutorial,,educational,,https://github.com/bfocassio/MLDensity_tutorial,Tutorial files to work with ML for the charge density in molecules and solids.,2,False,,bfocassio/MLDensity_tutorial,https://github.com/bfocassio/MLDensity_tutorial,2023-01-31 10:33:23,2023-02-22 19:20:32.000,2023-02-22 19:20:32,8.0,,1.0,1.0,,,,6.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-278,MALA Tutorial,,educational,,https://github.com/mala-project/mala_tutorial,A full MALA hands-on tutorial.,2,False,,mala-project/mala_tutorial,https://github.com/mala-project/mala_tutorial,2023-03-09 14:01:54,2023-11-28 11:20:39.000,2023-11-28 11:17:01,24.0,1.0,,2.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-279,PiNN Lab,,educational,GPL-3.0,https://github.com/Teoroo-CMC/PiNN_lab,,2,False,,Teoroo-CMC/PiNN_lab,https://github.com/Teoroo-CMC/PiNN_lab,2019-03-17 22:09:30,2023-05-01 15:59:56.000,2023-05-01 15:59:22,9.0,,1.0,3.0,1.0,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-280,gkx: Green-Kubo Method in JAX,,rep-learn,MIT,https://github.com/sirmarcel/gkx,Green-Kubo + JAX + MLPs = Anharmonic Thermal Conductivities Done Fast.,2,False,['transport-phenomena'],sirmarcel/gkx,https://github.com/sirmarcel/gkx,2023-04-30 12:25:16,2023-04-30 14:14:57.000,2023-04-30 14:14:46,2.0,,,1.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-281,e3psi,,ml-esm,LGPL-3.0,https://github.com/muhrin/e3psi,Equivariant machine learning library for learning from electronic structures.,2,False,,muhrin/e3psi,https://github.com/muhrin/e3psi,2022-08-08 10:48:30,2023-08-09 17:04:49.000,2023-04-10 17:04:33,14.0,,,2.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-282,Wigner Kernels,,math,,https://github.com/lab-cosmo/wigner_kernels,Collection of programs to benchmark Wigner kernels.,2,False,['benchmarking'],lab-cosmo/wigner_kernels,https://github.com/lab-cosmo/wigner_kernels,2022-12-08 12:28:26,2023-07-08 15:48:41.000,2023-07-08 15:48:37,109.0,,,1.0,,,,1.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-283,quantum-structure-ml,,general-tool,,https://github.com/hgheiberger/quantum-structure-ml,Multi-class classification model for predicting the magnetic order of magnetic structures and a binary classification..,2,False,"['magnetism', 'benchmarking']",hgheiberger/quantum-structure-ml,https://github.com/hgheiberger/quantum-structure-ml,2020-10-05 01:11:01,2022-12-22 21:45:40.000,2022-12-22 21:45:40,19.0,,,2.0,,,,1.0,2022-08-18 05:25:24,1.0.0,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-284,AMP,,rep-eng,,https://bitbucket.org/andrewpeterson/amp/,Amp is an open-source package designed to easily bring machine-learning to atomistic calculations.,2,False,,,,,,,,,,,,,,,,,,,amp-atomistics,,,,https://pypi.org/project/amp-atomistics,87.0,87.0,,,,3.0,,,,,,,,,,,,,,,,https://amp.readthedocs.io/
-285,q-pac,,ml-esm,MIT,,,2,False,['electrostatics'],,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,jmargraf/kqeq,,,
-286,RuNNer,,ml-iap,GPL-3.0,https://www.uni-goettingen.de/de/560580.html,The RuNNer Neural Network Energy Representation is a Fortran-based framework for the construction of Behler-..,2,False,['lang-fortran'],,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,https://theochemgoettingen.gitlab.io/RuNNer/
-287,Point Edge Transformer,,rep-learn,CC-BY-4.0,https://zenodo.org/record/7967079,"Smooth, exact rotational symmetrization for deep learning on point clouds.",2,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-288,SphericalNet,,rep-learn,,https://github.com/risilab/SphericalNet,Implementation of Clebsch-Gordan Networks (CGnet: https://arxiv.org/pdf/1806.09231.pdf) by GElib & cnine libraries in..,1,False,,risilab/SphericalNet,https://github.com/risilab/SphericalNet,2022-05-31 14:39:05,2022-06-07 03:57:10.000,2022-06-07 03:53:49,1.0,,,2.0,,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,
-289,kdft,,ml-dft,,https://gitlab.com/jmargraf/kdf,The Kernel Density Functional (KDF) code allows generating ML based DFT functionals.,1,False,,,,2020-11-07 21:50:22,2020-11-07 21:50:22.000,,,,0.0,,,,,2.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,jmargraf/kdf,https://gitlab.com/jmargraf/kdf,,
-290,Descriptor Embedding and Clustering for Atomisitic-environment Framework (DECAF),,unsupervised,,https://gitlab.mpcdf.mpg.de/klai/decaf,Provides a workflow to obtain clustering of local environments in dataset of structures.,0,False,,,,,,,41.0,,,,,,,2.0,,,,2.0,,,,,,,,,,,,,,,,,,,,,,,,,,,
-291,GitHub topic materials-informatics,,community,,https://github.com/topics/materials-informatics,,0,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-292,MateriApps,,community,,https://ma.issp.u-tokyo.ac.jp/en/,,0,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
-293,MLDensity,,ml-dft,,{},Linear Jacobi-Legendre expansion of the charge density for machine learning-accelerated electronic structure..,0,False,,StefanoSanvitoGroup/MLdensity,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+,name,resource,category,license,homepage,description,projectrank,show,labels,github_id,github_url,created_at,updated_at,last_commit_pushed_at,commit_count,recent_commit_count,fork_count,watchers_count,pr_count,open_issue_count,closed_issue_count,star_count,latest_stable_release_published_at,latest_stable_release_number,release_count,contributor_count,pypi_id,conda_id,dependent_project_count,github_dependent_project_count,pypi_url,pypi_monthly_downloads,monthly_downloads,conda_url,conda_latest_release_published_at,conda_total_downloads,projectrank_placing,dockerhub_id,dockerhub_url,dockerhub_latest_release_published_at,dockerhub_stars,dockerhub_pulls,github_release_downloads,new_addition,maven_id,maven_url,updated_github_id,npm_id,npm_url,npm_monthly_downloads,gitlab_id,gitlab_url,ignore,docs_url
+0,AI for Science Map,True,community,GPL-3.0 license,https://www.air4.science/map,"Interactive mindmap of the AI4Science research field, including atomistic machine learning, including papers,..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+1,Atomic Cluster Expansion,True,community,,https://cortner.github.io/ACEweb/,Atomic Cluster Expansion (ACE) community homepage.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+2,CrystaLLM,True,community,https://materialis.ai/terms.html,https://crystallm.com,Generate a crystal structure from a composition.,0,True,"['language-models', 'generative', 'pre-trained', 'transformer']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+3,matsci.org,True,community,,https://matsci.org/,"A community forum for the discussion of anything materials science, with a focus on computational materials science..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+4,Matter Modeling Stack Exchange - Machine Learning,True,community,,https://mattermodeling.stackexchange.com/questions/tagged/machine-learning,"Forum StackExchange, site Matter Modeling, ML-tagged questions.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+5,Catalysis Hub,True,datasets,,https://www.catalysis-hub.org/,A web-platform for sharing data and software for computational catalysis research!.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+6,Citrination Datasets,True,datasets,MIT,https://citrination.com/,AI-Powered Materials Data Platform. Open Citrination has been decommissioned.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+7,crystals.ai,True,datasets,,https://crystals.ai/,Curated datasets for reproducible AI in materials science.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+8,DeepChem Models,True,datasets,,https://huggingface.co/DeepChem,DeepChem models on HuggingFace.,0,True,"['pre-trained', 'language-models']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+9,JARVIS-Leaderboard,True,datasets,https://github.com/usnistgov/jarvis_leaderboard/blob/main/LICENSE.rst,https://pages.nist.gov/jarvis_leaderboard/,This project provides benchmark-performances for materials science applications including Artificial Intelligence..,0,True,['benchmarking'],usnistgov/jarvis_leaderboard,https://github.com/usnistgov/jarvis_leaderboard,2022-07-15 16:48:33,2023-11-27 01:50:42.000,2023-10-13 13:39:27,706.0,30.0,26.0,6.0,275.0,4.0,2.0,41.0,2023-08-04 17:33:22,2023.08.01,21.0,24.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+10,Materials Project - Charge Densities,True,datasets,,https://materialsproject.org/ml/charge_densities,Materials Project has started offering charge density information available for download via their public API.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+11,matterverse.ai,True,datasets,,https://matterverse.ai/,Database of yet-to-be-sythesized materials predicted using state-of-the-art machine learning algorithms.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+12,Quantum-Machine.org Datasets,True,datasets,,http://quantum-machine.org/datasets/,"Collection of datasets, including QM7, QM9, etc. MD, DFT. Small organic molecules, mostly.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+13,sGDML Datasets,True,datasets,,http://sgdml.org/#datasets,"MD17, MD22, DFT datasets.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+14,MoleculeNet,True,datasets,TBD,https://moleculenet.org/,,0,True,['benchmarking'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+15,ZINC15,True,datasets,,https://zinc15.docking.org/,,0,True,"['graph', 'biomolecules']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+16,ZINC,True,datasets,,https://zinc.docking.org/,,0,True,"['graph', 'biomolecules']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+17,NRELMatDB,True,datasets,,https://materials.nrel.gov/,"Computational materials database with the specific focus on materials for renewable energy applications including, but..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+18,Quantum Chemistry in the Age of Machine Learning,True,educational,,https://www.elsevier.com/books-and-journals/book-companion/9780323900492,"Book, 2022.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+19,AL4MS 2023 workshop tutorials,True,educational,,https://sites.utu.fi/al4ms2023/media-and-tutorials/,,0,True,['active-learning'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+20,Deep Graph Library (DGL),,rep-learn,Apache-2.0,https://github.com/dmlc/dgl,"Python package built to ease deep learning on graph, on top of existing DL frameworks.",38,True,,dmlc/dgl,https://github.com/dmlc/dgl,2018-04-20 14:49:09,2023-12-02 12:26:24.000,2023-12-01 08:30:42,3656.0,277.0,2828.0,170.0,4213.0,324.0,2119.0,12505.0,2023-08-15 07:31:40,1.1.2,76.0,281.0,dgl,dglteam/dgl,166.0,166.0,https://pypi.org/project/dgl,69432.0,74469.0,https://anaconda.org/dglteam/dgl,2023-09-14 15:04:21.699,302272.0,1.0,,,,,,,,,,,,,,,,,
+21,DeepChem,,general-tool,MIT,https://github.com/deepchem/deepchem,"Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, Materials Science and Biology.",36,True,,deepchem/deepchem,https://github.com/deepchem/deepchem,2015-09-24 23:20:28,2023-12-02 20:50:00.000,2023-12-01 17:26:24,9737.0,447.0,1477.0,146.0,2054.0,429.0,1211.0,4750.0,2022-12-01 13:22:37,2.7.1,18.0,230.0,deepchem,conda-forge/deepchem,286.0,286.0,https://pypi.org/project/deepchem,16179.0,18515.0,https://anaconda.org/conda-forge/deepchem,2023-06-16 19:18:02.015,104276.0,1.0,deepchemio/deepchem,https://hub.docker.com/r/deepchemio/deepchem,2022-03-11 05:24:00.723691,4.0,7027.0,,,,,,,,,,,,
+22,PyG Models,,rep-learn,MIT,https://github.com/pyg-team/pytorch_geometric/tree/master/torch_geometric/nn/models,Representation learning models implemented in PyTorch Geometric.,30,True,['general-ml'],pyg-team/pytorch_geometric,https://github.com/pyg-team/pytorch_geometric,2017-10-06 16:03:03,2023-12-03 19:07:33.000,2023-12-03 19:07:32,7176.0,248.0,3333.0,254.0,2600.0,757.0,2504.0,19060.0,2023-10-12 08:28:59,2.4.0,36.0,468.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,
+23,RDKit,,general-tool,BSD-3-Clause,https://github.com/rdkit/rdkit,,30,True,['lang-cpp'],rdkit/rdkit,https://github.com/rdkit/rdkit,2013-05-12 06:19:15,2023-12-03 18:49:22.000,2023-12-02 06:31:04,7551.0,82.0,775.0,85.0,2895.0,874.0,2083.0,2258.0,2023-11-10 06:45:02,Release_2023_09_2,98.0,207.0,rdkit,rdkit/rdkit,2.0,2.0,https://pypi.org/project/rdkit,324378.0,346727.0,https://anaconda.org/rdkit/rdkit,2023-06-16 12:54:07.547,2546600.0,1.0,,,,,,1407.0,,,,,,,,,,,
+24,DeePMD-kit,,ml-iap,LGPL-3.0,https://github.com/deepmodeling/deepmd-kit,A deep learning package for many-body potential energy representation and molecular dynamics.,28,True,['lang-cpp'],deepmodeling/deepmd-kit,https://github.com/deepmodeling/deepmd-kit,2017-12-12 15:23:44,2023-12-02 23:23:49.000,2023-10-27 13:10:24,2353.0,106.0,438.0,46.0,1373.0,26.0,451.0,1267.0,2023-10-27 19:33:04,2.2.7,41.0,64.0,deepmd-kit,deepmodeling/deepmd-kit,12.0,12.0,https://pypi.org/project/deepmd-kit,893.0,1521.0,https://anaconda.org/deepmodeling/deepmd-kit,2023-10-27 21:14:49.194,353.0,1.0,deepmodeling/deepmd-kit,https://hub.docker.com/r/deepmodeling/deepmd-kit,2023-10-29 23:31:03.651515,1.0,2033.0,29095.0,,,,,,,,,,,
+25,SchNetPack,,rep-learn,MIT,https://github.com/atomistic-machine-learning/schnetpack,SchNetPack - Deep Neural Networks for Atomistic Systems.,28,True,,atomistic-machine-learning/schnetpack,https://github.com/atomistic-machine-learning/schnetpack,2018-09-03 15:44:35,2023-12-01 09:07:49.000,2023-12-01 08:57:55,1598.0,43.0,188.0,31.0,370.0,2.0,217.0,670.0,2023-09-29 14:31:19,2.0.4,8.0,32.0,schnetpack,,64.0,64.0,https://pypi.org/project/schnetpack,602.0,602.0,,,,1.0,,,,,,,,,,,,,,,,,
+26,Matminer,,general-tool,https://github.com/hackingmaterials/matminer/blob/main/LICENSE,https://github.com/hackingmaterials/matminer,Data mining for materials science.,27,True,,hackingmaterials/matminer,https://github.com/hackingmaterials/matminer,2015-09-24 20:37:00,2023-11-27 08:05:39.000,2023-11-10 10:02:34,4112.0,4.0,176.0,28.0,701.0,27.0,187.0,419.0,2023-06-27 15:36:52,0.9.0,66.0,50.0,matminer,conda-forge/matminer,252.0,252.0,https://pypi.org/project/matminer,14008.0,15412.0,https://anaconda.org/conda-forge/matminer,2023-10-24 08:40:46.186,53358.0,1.0,,,,,,,,,,,,,,,,,
+27,JAX-DFT,,ml-dft,Apache-2.0,https://github.com/google-research/google-research/tree/master/jax_dft,Google Research.,25,True,,google-research/google-research,https://github.com/google-research/google-research,2018-10-04 18:42:48,2023-12-02 23:50:17.000,2023-12-02 23:50:14,4340.0,143.0,7410.0,747.0,652.0,814.0,296.0,31538.0,,,,751.0,,,,,,,,,,,1.0,,,,,,,True,,,,,,,,,,
+28,paper-qa,,language-models,Apache-2.0,https://github.com/whitead/paper-qa,LLM Chain for answering questions from documents with citations.,25,True,,whitead/paper-qa,https://github.com/whitead/paper-qa,2023-02-05 01:07:25,2023-12-01 22:47:51.000,2023-12-01 22:47:34,178.0,11.0,297.0,41.0,90.0,46.0,66.0,3268.0,2023-12-01 22:47:51,3.13.3,74.0,12.0,paper-qa,,39.0,39.0,https://pypi.org/project/paper-qa,2756.0,2756.0,,,,1.0,,,,,,,,,,,,,,,,,
+29,e3nn,,rep-learn,MIT,https://github.com/e3nn/e3nn,A modular framework for neural networks with Euclidean symmetry.,25,True,,e3nn/e3nn,https://github.com/e3nn/e3nn,2020-01-31 13:06:42,2023-11-03 06:14:55.000,2023-09-02 22:23:35,2157.0,,111.0,18.0,204.0,16.0,131.0,797.0,2022-12-12 21:42:03,0.5.1,28.0,29.0,e3nn,conda-forge/e3nn,133.0,133.0,https://pypi.org/project/e3nn,97925.0,98498.0,https://anaconda.org/conda-forge/e3nn,2023-06-18 08:41:30.723,10900.0,1.0,,,,,,,,,,,,,,,,,
+30,cdk,,rep-eng,LGPL-2.1,https://github.com/cdk/cdk,The Chemistry Development Kit.,25,True,"['cheminformatics', 'lang-java']",cdk/cdk,https://github.com/cdk/cdk,2010-05-11 08:30:07,2023-12-02 12:41:00.000,2023-11-28 15:36:13,17429.0,15.0,147.0,39.0,762.0,25.0,237.0,446.0,2023-08-21 19:50:47,cdk-2.9,20.0,163.0,,,18.0,18.0,,,152.0,,,,1.0,,,,,,16896.0,,org.openscience.cdk:cdk-bundle,https://search.maven.org/artifact/org.openscience.cdk/cdk-bundle,,,,,,,,
+31,QUIP,,general-tool,GPL-2.0,https://github.com/libAtoms/QUIP,libAtoms/QUIP molecular dynamics framework: https://libatoms.github.io.,24,True,,libAtoms/QUIP,https://github.com/libAtoms/QUIP,2013-07-02 15:21:59,2023-10-09 12:20:02.000,2023-08-29 12:01:13,10833.0,,117.0,26.0,165.0,91.0,345.0,309.0,2023-06-15 19:11:24,0.9.14,15.0,80.0,quippy-ase,,25.0,25.0,https://pypi.org/project/quippy-ase,1289.0,1373.0,,,,2.0,libatomsquip/quip,https://hub.docker.com/r/libatomsquip/quip,2023-04-24 21:25:17.345957,4.0,9857.0,347.0,,,,,,,,,,,
+32,MAML,,general-tool,BSD-3-Clause,https://github.com/materialsvirtuallab/maml,"Python for Materials Machine Learning, Materials Descriptors, Machine Learning Force Fields, Deep Learning, etc.",24,True,,materialsvirtuallab/maml,https://github.com/materialsvirtuallab/maml,2020-01-25 15:04:21,2023-11-30 13:05:25.000,2023-11-06 19:58:55,1617.0,55.0,63.0,21.0,522.0,4.0,60.0,299.0,2023-09-09 22:24:24,2023.9.9,13.0,29.0,maml,,4.0,4.0,https://pypi.org/project/maml,228.0,228.0,,,,2.0,,,,,,,,,,,,,,,,,
+33,Best-of Machine Learning with Python,,community,CC-BY-4.0,https://github.com/ml-tooling/best-of-ml-python,A ranked list of awesome machine learning Python libraries. Updated weekly.,23,True,"['general-ml', 'lang-py']",ml-tooling/best-of-ml-python,https://github.com/ml-tooling/best-of-ml-python,2020-11-29 19:41:36,2023-11-30 16:05:11.000,2023-11-30 16:05:10,442.0,27.0,2102.0,382.0,234.0,17.0,33.0,14695.0,2023-11-30 16:05:19,2023.11.30,100.0,44.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,
+34,dgl-lifesci,,rep-learn,Apache-2.0,https://github.com/awslabs/dgl-lifesci,Python package for graph neural networks in chemistry and biology.,23,True,,awslabs/dgl-lifesci,https://github.com/awslabs/dgl-lifesci,2020-04-23 07:14:21,2023-11-01 19:32:07.000,2023-04-16 03:55:52,236.0,,135.0,17.0,141.0,24.0,57.0,641.0,2023-02-13 08:45:17,0.3.2,8.0,22.0,dgllife,,142.0,142.0,https://pypi.org/project/dgllife,13202.0,13202.0,,,,1.0,,,,,,,,,,,,,,,,,
+35,DP-GEN,,ml-iap,LGPL-3.0,https://github.com/deepmodeling/dpgen,The deep potential generator to generate a deep-learning based model of interatomic potential energy and force field.,23,True,['workflows'],deepmodeling/dpgen,https://github.com/deepmodeling/dpgen,2019-06-13 11:43:56,2023-11-28 05:00:21.000,2023-11-02 05:59:11,2047.0,23.0,162.0,13.0,758.0,17.0,233.0,246.0,2023-11-02 06:14:15,0.12.0,17.0,62.0,dpgen,deepmodeling/dpgen,4.0,4.0,https://pypi.org/project/dpgen,519.0,556.0,https://anaconda.org/deepmodeling/dpgen,2023-06-16 19:27:03.566,191.0,1.0,,,,,,1529.0,,,,,,,,,,,
+36,dpdata,,data-structures,LGPL-3.0,https://github.com/deepmodeling/dpdata,"Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc.",23,True,,deepmodeling/dpdata,https://github.com/deepmodeling/dpdata,2019-04-12 13:24:23,2023-12-03 04:35:56.000,2023-10-31 01:50:24,666.0,23.0,109.0,8.0,407.0,10.0,66.0,152.0,2023-10-31 02:23:47,0.2.17,24.0,51.0,dpdata,deepmodeling/dpdata,109.0,109.0,https://pypi.org/project/dpdata,4298.0,4304.0,https://anaconda.org/deepmodeling/dpdata,2023-09-27 20:07:36.945,174.0,1.0,,,,,,,,,,,,,,,,,
+37,kgcnn,,rep-learn,MIT,https://github.com/aimat-lab/gcnn_keras,"Graph convolutions in Keras with TensorFlow, PyTorch or Jax.",23,True,,aimat-lab/gcnn_keras,https://github.com/aimat-lab/gcnn_keras,2020-07-17 11:12:46,2023-12-02 14:51:47.000,2023-12-02 14:47:51,3016.0,231.0,25.0,7.0,30.0,8.0,73.0,90.0,2023-09-16 11:47:45,3.1.0,24.0,7.0,kgcnn,,15.0,15.0,https://pypi.org/project/kgcnn,290.0,290.0,,,,1.0,,,,,,,,,,,,,,,,,
+38,MPContribs,,datasets,MIT,https://github.com/materialsproject/MPContribs,Platform for materials scientists to contribute and disseminate their materials data through Materials Project.,23,True,,materialsproject/MPContribs,https://github.com/materialsproject/MPContribs,2014-12-11 18:25:27,2023-11-29 22:50:51.000,2023-11-29 22:50:41,5387.0,113.0,19.0,11.0,1581.0,20.0,78.0,32.0,2023-11-28 23:05:55,5.6.2,71.0,25.0,mpcontribs-client,,27.0,27.0,https://pypi.org/project/mpcontribs-client,6493.0,6493.0,,,,1.0,,,,,,,,,,,,,,,,,
+39,AlphaFold,,biomolecules,Apache-2.0,https://github.com/google-deepmind/alphafold,Open source code for AlphaFold.,22,True,,deepmind/alphafold,https://github.com/google-deepmind/alphafold,2021-06-17 14:06:06,2023-12-01 15:03:42.000,2023-11-01 12:32:02,133.0,5.0,1905.0,214.0,91.0,186.0,581.0,11091.0,2023-04-05 09:45:53,2.3.2,13.0,19.0,,,7.0,7.0,,,,,,,1.0,,,,,,,,,,google-deepmind/alphafold,,,,,,,
+40,JAX-MD,,md,Apache-2.0,https://github.com/jax-md/jax-md,"Differentiable, Hardware Accelerated, Molecular Dynamics.",22,True,,jax-md/jax-md,https://github.com/jax-md/jax-md,2019-05-13 21:03:37,2023-10-23 08:23:20.000,2023-08-29 15:10:31,838.0,,161.0,49.0,157.0,63.0,74.0,1022.0,2022-11-27 12:42:00,jax-md-v0.2.24,7.0,28.0,jax-md,,37.0,37.0,https://pypi.org/project/jax-md,1253.0,1253.0,,,,1.0,,,,,,,,,,,,,,,,,
+41,DeepQMC,,ml-wft,MIT,https://github.com/deepqmc/deepqmc,Deep learning quantum Monte Carlo for electrons in real space.,22,True,,deepqmc/deepqmc,https://github.com/deepqmc/deepqmc,2019-12-06 14:50:59,2023-11-20 10:29:54.000,2023-11-20 10:29:53,1456.0,135.0,56.0,23.0,154.0,3.0,36.0,307.0,2023-11-20 10:09:02,1.1.2,10.0,13.0,deepqmc,,1.0,1.0,https://pypi.org/project/deepqmc,149.0,149.0,,,,1.0,,,,,,,,,,,,,,,,,
+42,NVIDIA Deep Learning Examples for Tensor Cores,,rep-learn,https://github.com/NVIDIA/DeepLearningExamples/blob/master/DGLPyTorch/DrugDiscovery/SE3Transformer/LICENSE,https://github.com/NVIDIA/DeepLearningExamples#graph-neural-networks,State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and..,21,True,"['educational', 'drug-discovery']",NVIDIA/DeepLearningExamples,https://github.com/NVIDIA/DeepLearningExamples,2018-05-02 17:04:05,2023-11-08 13:05:42.000,2023-10-06 19:54:45,1427.0,3.0,2817.0,293.0,529.0,232.0,558.0,11794.0,,,,115.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+43,DIG: Dive into Graphs,,rep-learn,GPL-3.0,https://github.com/divelab/DIG,A library for graph deep learning research.,21,True,,divelab/DIG,https://github.com/divelab/DIG,2020-10-30 03:51:15,2023-10-25 22:04:21.000,2023-10-25 22:04:21,1073.0,4.0,253.0,33.0,36.0,24.0,168.0,1664.0,2023-04-07 20:33:15,1.1.0,10.0,49.0,dive-into-graphs,,,,https://pypi.org/project/dive-into-graphs,333.0,333.0,,,,2.0,,,,,,,True,,,,,,,,,,
+44,MEGNet,,ml-iap,BSD-3-Clause,https://github.com/materialsvirtuallab/megnet,Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals.,21,True,,materialsvirtuallab/megnet,https://github.com/materialsvirtuallab/megnet,2018-12-12 21:31:28,2023-04-27 02:39:17.000,2023-04-27 02:39:17,1146.0,,142.0,24.0,314.0,17.0,57.0,461.0,2022-11-16 21:24:36,1.3.2,34.0,13.0,megnet,,71.0,71.0,https://pypi.org/project/megnet,315.0,315.0,,,,1.0,,,,,,,,,,,,,,,,,
+45,TorchANI,,ml-iap,MIT,https://github.com/aiqm/torchani,Accurate Neural Network Potential on PyTorch.,21,True,,aiqm/torchani,https://github.com/aiqm/torchani,2018-04-02 15:43:04,2023-11-30 14:35:04.000,2023-11-14 16:32:59,434.0,1.0,112.0,28.0,481.0,19.0,142.0,413.0,2023-11-14 16:38:04,2.2.4,24.0,17.0,torchani,conda-forge/torchani,29.0,29.0,https://pypi.org/project/torchani,1935.0,7597.0,https://anaconda.org/conda-forge/torchani,2023-11-16 16:26:58.145,226497.0,1.0,,,,,,,,,,,,,,,,,
+46,DScribe,,rep-eng,Apache-2.0,https://github.com/SINGROUP/dscribe,DScribe is a python package for creating machine learning descriptors for atomistic systems.,21,True,,SINGROUP/dscribe,https://github.com/SINGROUP/dscribe,2017-05-08 08:29:51,2023-09-06 07:04:16.227,2023-09-05 18:02:57,1287.0,3.0,80.0,20.0,25.0,8.0,79.0,354.0,,,14.0,18.0,dscribe,conda-forge/dscribe,162.0,162.0,https://pypi.org/project/dscribe,7955.0,9917.0,https://anaconda.org/conda-forge/dscribe,2023-09-06 07:04:16.227,80470.0,1.0,,,,,,,,,,,,,,,,,
+47,JARVIS-Tools,,general-tool,https://github.com/usnistgov/jarvis/blob/master/LICENSE.rst,https://github.com/usnistgov/jarvis,JARVIS-Tools: an open-source software package for data-driven atomistic materials design. Publications:..,21,True,,usnistgov/jarvis,https://github.com/usnistgov/jarvis,2017-06-22 19:34:02,2023-10-18 14:10:33.000,2023-09-22 00:18:02,2094.0,1.0,107.0,27.0,222.0,41.0,43.0,255.0,2023-08-11 17:26:26,2023.08.01,69.0,15.0,jarvis-tools,conda-forge/jarvis-tools,66.0,66.0,https://pypi.org/project/jarvis-tools,929.0,2487.0,https://anaconda.org/conda-forge/jarvis-tools,2023-06-16 19:23:23.093,59226.0,2.0,,,,,,,,,,,,,,,,,
+48,MatGL (Materials Graph Library),,rep-learn,BSD-3-Clause,https://github.com/materialsvirtuallab/matgl,Graph deep learning library for materials.,21,True,,materialsvirtuallab/matgl,https://github.com/materialsvirtuallab/matgl,2022-08-29 18:36:05,2023-11-27 21:05:00.000,2023-11-27 21:04:36,903.0,51.0,32.0,8.0,143.0,3.0,43.0,146.0,2023-11-17 20:11:53,0.9.1,25.0,13.0,m3gnet,,17.0,17.0,https://pypi.org/project/m3gnet,487.0,487.0,,,,2.0,,,,,,,,,,,,,,,,,
+49,DM21,,ml-dft,Apache-2.0,https://github.com/deepmind/deepmind-research/tree/master/density_functional_approximation_dm21,This package provides a PySCF interface to the DM21 (DeepMind 21) family of exchange-correlation functionals described..,20,True,,deepmind/deepmind-research,https://github.com/google-deepmind/deepmind-research,2019-01-15 09:54:13,2023-11-27 23:26:48.000,2023-06-02 17:04:50,369.0,,2431.0,337.0,180.0,166.0,135.0,12311.0,,,,92.0,,,,,,,,,,,1.0,,,,,,,,,,google-deepmind/deepmind-research,,,,,,,
+50,NequIP,,ml-iap,MIT,https://github.com/mir-group/nequip,NequIP is a code for building E(3)-equivariant interatomic potentials.,20,True,,mir-group/nequip,https://github.com/mir-group/nequip,2021-03-15 23:44:39,2023-10-27 20:35:22.000,2023-03-26 21:37:08,1670.0,,105.0,18.0,149.0,14.0,52.0,471.0,2022-12-20 18:52:46,0.5.6,14.0,8.0,nequip,conda-forge/nequip,16.0,16.0,https://pypi.org/project/nequip,550.0,745.0,https://anaconda.org/conda-forge/nequip,2023-06-18 08:41:30.787,3708.0,1.0,,,,,,,,,,,,,,,,,
+51,CHGNet,,ml-iap,https://github.com/CederGroupHub/chgnet/blob/main/LICENSE,https://github.com/CederGroupHub/chgnet,Pretrained universal neural network potential for charge-informed atomistic modeling https://chgnet.lbl.gov.,20,True,"['md', 'pre-trained', 'electrostatics', 'magnetism', 'structure-relaxation']",CederGroupHub/chgnet,https://github.com/CederGroupHub/chgnet,2023-02-24 23:44:24,2023-11-19 04:15:36.000,2023-11-19 04:10:58,345.0,62.0,29.0,4.0,61.0,3.0,26.0,143.0,2023-11-19 04:15:36,0.3.2,10.0,7.0,chgnet,,9.0,9.0,https://pypi.org/project/chgnet,6985.0,6985.0,,,,1.0,,,,,,,,,,,,,,,,,
+52,ocp,,rep-learn,MIT,https://github.com/Open-Catalyst-Project/ocp,ocp is the Open Catalyst Projects library of state-of-the-art machine learning algorithms for catalysis.,19,True,,Open-Catalyst-Project/ocp,https://github.com/Open-Catalyst-Project/ocp,2019-09-26 04:47:27,2023-11-28 00:24:43.000,2023-11-27 18:44:01,710.0,12.0,179.0,23.0,457.0,13.0,132.0,520.0,2022-10-01 03:00:41,0.1.0,4.0,32.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+53,Pre-trained OCP models,,ml-iap,MIT,https://github.com/Open-Catalyst-Project/ocp/blob/main/MODELS.md,Pre-trained models released as part of the Open Catalyst Project.,19,True,['pre-trained'],Open-Catalyst-Project/ocp,https://github.com/Open-Catalyst-Project/ocp,2019-09-26 04:47:27,2023-11-28 00:24:43.000,2023-11-27 18:44:01,710.0,12.0,179.0,23.0,457.0,13.0,132.0,520.0,2022-10-01 03:00:41,0.1.0,4.0,32.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+54,exmol,,xai,MIT,https://github.com/ur-whitelab/exmol,Explainer for black box models that predict molecule properties.,19,True,,ur-whitelab/exmol,https://github.com/ur-whitelab/exmol,2021-08-03 17:56:06,2023-11-27 18:45:16.000,2023-06-19 19:49:27,188.0,,40.0,9.0,76.0,10.0,57.0,259.0,2023-06-19 20:50:51,3.0.3,27.0,7.0,exmol,,14.0,14.0,https://pypi.org/project/exmol,784.0,784.0,,,,1.0,,,,,,,,,,,,,,,,,
+55,Metatensor,,data-structures,BSD-3-Clause,https://github.com/lab-cosmo/metatensor,Self-describing sparse tensor data format for atomistic machine learning and beyond.,19,True,"['lang-rust', 'lang-c', 'lang-cpp', 'lang-py']",lab-cosmo/metatensor,https://github.com/lab-cosmo/metatensor,2022-03-01 15:58:28,2023-12-02 19:16:48.000,2023-11-30 14:51:44,461.0,84.0,11.0,17.0,306.0,41.0,80.0,29.0,2023-10-11 15:57:13,metatensor-torch-v0.1.0,13.0,17.0,,,6.0,6.0,,,1128.0,,,,2.0,,,,,,2256.0,,,,,,,,,,,
+56,Graph-based Deep Learning Literature,,community,MIT,https://github.com/naganandy/graph-based-deep-learning-literature,links to conference publications in graph-based deep learning.,18,True,"['general-ml', 'rep-learn']",naganandy/graph-based-deep-learning-literature,https://github.com/naganandy/graph-based-deep-learning-literature,2017-12-01 14:48:35,2023-11-19 05:55:34.000,2023-11-19 05:55:28,7632.0,10.0,725.0,243.0,21.0,,13.0,4451.0,,,,12.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,
+57,Open Catalyst datasets,,datasets,CC-BY-4.0,https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md,"The datasets of the Open Catalyst project, OC20, OC22.",18,True,,Open-Catalyst-Project/ocp,https://github.com/Open-Catalyst-Project/ocp,2019-09-26 04:47:27,2023-11-28 00:24:43.000,2023-11-27 18:44:01,710.0,12.0,179.0,23.0,457.0,13.0,132.0,520.0,2022-10-01 03:00:41,0.1.0,4.0,32.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,
+58,ATOM3D,,datasets,MIT,https://github.com/drorlab/atom3d,ATOM3D: tasks on molecules in three dimensions.,18,True,"['biomolecules', 'benchmarking']",drorlab/atom3d,https://github.com/drorlab/atom3d,2020-04-03 22:53:11,2023-03-02 18:21:02.000,2023-03-02 18:20:29,798.0,,33.0,16.0,6.0,19.0,40.0,279.0,2022-07-20 00:56:05,0.2.6,15.0,10.0,atom3d,,27.0,27.0,https://pypi.org/project/atom3d,435.0,435.0,,,,1.0,,,,,,,True,,,,,,,,,,
+59,FLARE,,active-learning,MIT,https://github.com/mir-group/flare,An open-source Python package for creating fast and accurate interatomic potentials.,18,True,"['lang-cpp', 'ml-iap']",mir-group/flare,https://github.com/mir-group/flare,2018-08-30 23:40:56,2023-09-29 22:57:11.000,2023-05-26 02:06:09,4382.0,,59.0,18.0,185.0,23.0,164.0,253.0,2022-04-21 18:33:10,0.2.4,5.0,37.0,,,10.0,10.0,,,0.0,,,,1.0,,,,,,2.0,,,,,,,,,,,
+60,MACE,,ml-iap,MIT,https://github.com/ACEsuit/mace,MACE - Fast and accurate machine learning interatomic potentials with higher order equivariant message passing.,18,True,,ACEsuit/mace,https://github.com/ACEsuit/mace,2022-06-21 18:44:34,2023-12-01 22:19:38.000,2023-12-01 11:29:48,373.0,70.0,77.0,18.0,99.0,18.0,86.0,218.0,2023-11-09 17:28:57,0.3.0,2.0,16.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+61,ALIGNN,,rep-learn,https://github.com/usnistgov/alignn/blob/main/LICENSE.rst,https://github.com/usnistgov/alignn,Atomistic Line Graph Neural Network.,18,True,,usnistgov/alignn,https://github.com/usnistgov/alignn,2021-04-19 20:08:09,2023-10-24 20:00:53.000,2023-10-24 20:00:52,623.0,19.0,64.0,11.0,90.0,24.0,23.0,165.0,2023-08-11 04:51:42,2023.08.01,40.0,7.0,alignn,,8.0,8.0,https://pypi.org/project/alignn,404.0,404.0,,,,2.0,,,,,,,,,,,,,,,,,
+62,e3nn-jax,,rep-learn,Apache-2.0,https://github.com/e3nn/e3nn-jax,jax library for E3 Equivariant Neural Networks.,18,True,,e3nn/e3nn-jax,https://github.com/e3nn/e3nn-jax,2021-06-08 13:21:51,2023-11-24 09:26:06.000,2023-11-24 09:26:01,951.0,57.0,14.0,9.0,30.0,,10.0,125.0,2023-11-17 11:39:54,0.20.3,39.0,5.0,e3nn-jax,,,,https://pypi.org/project/e3nn-jax,1878.0,1878.0,,,,2.0,,,,,,,,,,,,,,,,,
+63,FitSNAP,,md,GPL-2.0,https://github.com/FitSNAP/FitSNAP,Software for generating SNAP machine-learning interatomic potentials.,18,True,,FitSNAP/FitSNAP,https://github.com/FitSNAP/FitSNAP,2019-09-12 14:46:18,2023-11-07 18:49:16.000,2023-11-04 02:17:28,1366.0,62.0,45.0,7.0,174.0,8.0,55.0,125.0,2023-06-28 16:00:48,3.1.0,7.0,24.0,,conda-forge/fitsnap3,,,,,139.0,https://anaconda.org/conda-forge/fitsnap3,2023-06-16 00:19:04.615,5163.0,2.0,,,,,,7.0,,,,,,,,,,,
+64,Chemiscope,,visualization,BSD-3-Clause,https://github.com/lab-cosmo/chemiscope,An interactive structure/property explorer for materials and molecules.,18,True,['lang-js'],lab-cosmo/chemiscope,https://github.com/lab-cosmo/chemiscope,2019-10-03 09:59:42,2023-11-30 23:51:24.000,2023-11-30 23:49:13,684.0,33.0,27.0,18.0,205.0,33.0,80.0,94.0,2023-10-23 15:11:17,0.6.0,13.0,19.0,,,5.0,5.0,,,26.0,,,,1.0,,,,,,138.0,,,,,chemiscope,https://www.npmjs.com/package/chemiscope,23.0,,,,
+65,MALA,,ml-dft,BSD-3-Clause,https://github.com/mala-project/mala,Materials Learning Algorithms. A framework for machine learning materials properties from first-principles data.,18,True,,mala-project/mala,https://github.com/mala-project/mala,2021-03-31 11:40:38,2023-11-28 10:04:41.000,2023-10-26 10:42:52,2086.0,16.0,20.0,9.0,256.0,26.0,211.0,55.0,2023-09-28 13:54:19,1.2.0,8.0,41.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,
+66,Uni-Mol,,rep-learn,MIT,https://github.com/dptech-corp/Uni-Mol,Official Repository for the Uni-Mol Series Methods.,17,True,['pre-trained'],dptech-corp/Uni-Mol,https://github.com/dptech-corp/Uni-Mol,2022-05-22 13:26:41,2023-12-03 05:26:31.000,2023-12-03 05:26:31,95.0,12.0,86.0,16.0,70.0,44.0,75.0,456.0,2023-07-07 09:02:23,0.2,2.0,13.0,,,,,,,543.0,,,,2.0,,,,,,7604.0,,,,,,,,,,,
+67,ChemCrow,,language-models,MIT,https://github.com/ur-whitelab/chemcrow-public,Chemcrow.,17,False,,ur-whitelab/chemcrow-public,https://github.com/ur-whitelab/chemcrow-public,2023-06-04 15:59:05,2023-11-27 08:20:24.000,2023-11-27 08:09:11,62.0,23.0,37.0,14.0,5.0,6.0,3.0,316.0,2023-11-27 08:20:24,0.3.17,5.0,3.0,chemcrow,,2.0,2.0,https://pypi.org/project/chemcrow,1031.0,1031.0,,,,1.0,,,,,,,True,,,,,,,,,,
+68,GT4SD,,generative,MIT,https://github.com/GT4SD/gt4sd-core,"GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.",17,True,"['pre-trained', 'drug-discovery', 'rep-learn']",GT4SD/gt4sd-core,https://github.com/GT4SD/gt4sd-core,2022-02-11 19:06:58,2023-11-27 08:23:51.000,2023-10-16 07:22:44,283.0,3.0,56.0,16.0,136.0,2.0,92.0,280.0,2023-05-06 06:55:52,1.3.1,54.0,19.0,gt4sd,,,,https://pypi.org/project/gt4sd,817.0,817.0,,,,1.0,,,,,,,,,,,,,,,,,
+69,M3GNet,,ml-iap,BSD-3-Clause,https://github.com/materialsvirtuallab/m3gnet,Materials graph network with 3-body interactions featuring a DFT surrogate crystal relaxer and a state-of-the-art..,17,True,,materialsvirtuallab/m3gnet,https://github.com/materialsvirtuallab/m3gnet,2022-01-18 18:10:58,2023-06-06 23:56:08.000,2023-06-06 23:56:03,261.0,,53.0,10.0,33.0,15.0,20.0,188.0,2022-11-17 23:25:35,0.2.4,16.0,14.0,m3gnet,,18.0,18.0,https://pypi.org/project/m3gnet,487.0,487.0,,,,2.0,,,,,,,,,,,,,,,,,
+70,KFAC-JAX,,math,Apache-2.0,https://github.com/google-deepmind/kfac-jax,Second Order Optimization and Curvature Estimation with K-FAC in JAX.,17,True,,deepmind/kfac-jax,https://github.com/google-deepmind/kfac-jax,2022-03-18 10:19:24,2023-11-29 18:10:59.000,2023-11-29 18:10:53,168.0,25.0,13.0,8.0,180.0,2.0,9.0,173.0,2023-05-16 18:03:40,0.0.5,4.0,11.0,kfac-jax,,8.0,8.0,https://pypi.org/project/kfac-jax,692.0,692.0,,,,1.0,,,,,,,,,,google-deepmind/kfac-jax,,,,,,,
+71,XenonPy,,general-tool,BSD-3-Clause,https://github.com/yoshida-lab/XenonPy,XenonPy is a Python Software for Materials Informatics.,17,True,,yoshida-lab/XenonPy,https://github.com/yoshida-lab/XenonPy,2018-01-17 10:13:29,2023-11-20 14:25:49.000,2023-11-20 14:25:43,692.0,10.0,55.0,12.0,183.0,17.0,66.0,113.0,2023-05-21 15:54:32,0.6.8,45.0,10.0,xenonpy,,,,https://pypi.org/project/xenonpy,469.0,487.0,,,,2.0,,,,,,1244.0,,,,,,,,,,,
+72,MatBench,,community,MIT,https://github.com/materialsproject/matbench,Matbench: Benchmarks for materials science property prediction.,17,True,"['datasets', 'benchmarking']",materialsproject/matbench,https://github.com/materialsproject/matbench,2021-02-24 03:58:42,2023-11-14 15:38:45.000,2023-11-14 15:38:41,746.0,6.0,32.0,9.0,252.0,31.0,26.0,86.0,2022-07-27 04:40:26,0.6,5.0,23.0,matbench,,11.0,11.0,https://pypi.org/project/matbench,138.0,138.0,,,,2.0,,,,,,,,,,,,,,,,,
+73,Ultra-Fast Force Fields (UF3),,ml-iap,Apache-2.0,https://github.com/uf3/uf3,UF3: a python library for generating ultra-fast interatomic potentials.,17,True,,uf3/uf3,https://github.com/uf3/uf3,2021-10-01 13:21:44,2023-12-01 20:06:04.000,2023-10-27 16:18:56,514.0,51.0,18.0,6.0,70.0,12.0,24.0,45.0,2023-10-27 16:36:21,0.4.0,4.0,8.0,uf3,,,,https://pypi.org/project/uf3,38.0,38.0,,,,2.0,,,,,,,,,,,,,,,,,
+74,ChemDataExtractor,,language-models,MIT,https://github.com/mcs07/ChemDataExtractor,Automatically extract chemical information from scientific documents.,16,False,['literature-data'],mcs07/ChemDataExtractor,https://github.com/mcs07/ChemDataExtractor,2016-10-02 23:50:01,2023-07-27 18:05:13.000,2017-02-21 23:20:23,106.0,,105.0,19.0,16.0,17.0,9.0,267.0,2017-02-03 00:28:29,1.3.0,7.0,2.0,chemdataextractor,chemdataextractor/chemdataextractor,100.0,100.0,https://pypi.org/project/chemdataextractor,654.0,719.0,https://anaconda.org/chemdataextractor/chemdataextractor,2023-06-16 13:17:47.249,3009.0,2.0,,,,,,2723.0,True,,,,,,,,,,
+75,MoLeR,,generative,MIT,https://github.com/microsoft/molecule-generation,Implementation of MoLeR: a generative model of molecular graphs which supports scaffold-constrained generation.,16,True,,microsoft/molecule-generation,https://github.com/microsoft/molecule-generation,2022-02-17 19:16:29,2023-11-23 13:48:47.000,2023-08-09 14:17:01,63.0,,35.0,11.0,33.0,7.0,26.0,222.0,2023-06-18 21:03:46,0.4.0,4.0,5.0,molecule-generation,,,,https://pypi.org/project/molecule-generation,222.0,222.0,,,,1.0,,,,,,,,,,,,,,,,,
+76,ChemNLP project,,language-models,MIT,https://github.com/OpenBioML/chemnlp,ChemNLP project.,16,True,['datasets'],OpenBioML/chemnlp,https://github.com/OpenBioML/chemnlp,2023-02-13 16:20:23,2023-12-02 18:24:02.000,2023-12-01 17:23:50,323.0,78.0,43.0,3.0,271.0,110.0,139.0,113.0,,,,26.0,chemnlp,,,,https://pypi.org/project/chemnlp,61.0,61.0,,,,2.0,,,,,,,True,,,,,,,,,,
+77,CatLearn,,rep-eng,GPL-3.0,https://github.com/SUNCAT-Center/CatLearn,,16,True,['surface-science'],SUNCAT-Center/CatLearn,https://github.com/SUNCAT-Center/CatLearn,2018-04-20 04:16:14,2023-07-25 21:09:47.000,2023-02-07 09:31:25,1960.0,,50.0,19.0,79.0,10.0,16.0,94.0,2020-03-27 09:26:03,0.6.2,8.0,22.0,catlearn,,4.0,4.0,https://pypi.org/project/catlearn,250.0,250.0,,,,1.0,,,,,,,,,,,,,,,,,
+78,MAST-ML,,general-tool,MIT,https://github.com/uw-cmg/MAST-ML,MAterials Simulation Toolkit for Machine Learning (MAST-ML).,16,True,,uw-cmg/MAST-ML,https://github.com/uw-cmg/MAST-ML,2017-02-16 17:03:57,2023-12-01 20:57:10.000,2023-07-28 18:33:43,3162.0,,52.0,13.0,36.0,22.0,191.0,88.0,2023-05-01 21:32:25,3.1.7,6.0,19.0,,,7.0,7.0,,,2.0,,,,2.0,,,,,,84.0,,,,,,,,,,,
+79,matsciml,,rep-learn,MIT,https://github.com/IntelLabs/matsciml,Open MatSci ML Toolkit is a framework for prototyping and scaling out deep learning models for materials discovery..,16,True,"['workflows', 'benchmarking']",IntelLabs/matsciml,https://github.com/IntelLabs/matsciml,2022-09-13 20:27:28,2023-12-01 21:58:18.000,2023-12-01 17:55:58,1501.0,168.0,12.0,4.0,58.0,5.0,10.0,83.0,2023-08-31 23:59:40,1.0.0,2.0,8.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+80,Scikit-Matter,,general-tool,BSD-3-Clause,https://github.com/scikit-learn-contrib/scikit-matter,A collection of scikit-learn compatible utilities that implement methods born out of the materials science and..,16,True,['scikit-learn'],scikit-learn-contrib/scikit-matter,https://github.com/scikit-learn-contrib/scikit-matter,2020-10-12 19:23:26,2023-11-20 15:32:27.000,2023-09-22 08:33:28,364.0,2.0,15.0,17.0,150.0,12.0,56.0,65.0,2023-08-24 17:18:49,0.2.0,7.0,13.0,skmatter,conda-forge/skmatter,7.0,7.0,https://pypi.org/project/skmatter,421.0,499.0,https://anaconda.org/conda-forge/skmatter,2023-08-24 19:08:29.551,702.0,2.0,,,,,,,,,,,,,,,,,
+81,mlcolvar,,md,MIT,https://github.com/luigibonati/mlcolvar,A unified framework for machine learning collective variables for enhanced sampling simulations.,16,True,['enhanced-sampling'],luigibonati/mlcolvar,https://github.com/luigibonati/mlcolvar,2021-09-21 21:32:04,2023-11-17 11:27:21.000,2023-11-17 11:27:16,815.0,21.0,13.0,5.0,56.0,12.0,36.0,59.0,2023-10-25 08:58:49,1.0.1,8.0,7.0,mlcolvar,,,,https://pypi.org/project/mlcolvar,80.0,80.0,,,,2.0,,,,,,,,,,,,,,,,,
+82,MatBench Discovery,,community,MIT,https://github.com/janosh/matbench-discovery,An evaluation framework for machine learning models simulating high-throughput materials discovery.,16,True,"['datasets', 'benchmarking']",janosh/matbench-discovery,https://github.com/janosh/matbench-discovery,2022-06-20 18:32:44,2023-12-03 20:35:36.000,2023-12-03 20:35:29,298.0,33.0,5.0,7.0,41.0,3.0,24.0,44.0,2023-09-13 14:29:49,1.0.0,2.0,5.0,matbench-discovery,,,,https://pypi.org/project/matbench-discovery,32.0,32.0,,,,2.0,,,,,,,,,,,,,,,,,
+83,FermiNet,,ml-wft,Apache-2.0,https://github.com/google-deepmind/ferminet,An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations.,15,True,['transformer'],deepmind/ferminet,https://github.com/google-deepmind/ferminet,2020-10-06 12:21:06,2023-11-27 07:54:15.000,2023-11-27 07:53:26,216.0,24.0,102.0,34.0,28.0,,42.0,615.0,,,,18.0,,,,,,,,,,,2.0,,,,,,,,,,google-deepmind/ferminet,,,,,,,
+84,Uni-Fold,,biomolecules,Apache-2.0,https://github.com/dptech-corp/Uni-Fold,An open-source platform for developing protein models beyond AlphaFold.,15,True,,dptech-corp/Uni-Fold,https://github.com/dptech-corp/Uni-Fold,2022-07-30 03:37:29,2023-11-30 07:37:27.000,2023-11-30 07:37:23,97.0,2.0,53.0,7.0,76.0,14.0,48.0,313.0,2022-10-19 12:44:31,2.2.0,3.0,7.0,,,,,,,187.0,,,,3.0,,,,,,2618.0,,,,,,,,,,,
+85,GT4SD - Generative Toolkit for Scientific Discovery,,community,MIT,https://huggingface.co/GT4SD,Gradio apps of generative models in GT4SD.,15,True,"['generative', 'pre-trained', 'drug-discovery']",GT4SD/gt4sd-core,https://github.com/GT4SD/gt4sd-core,2022-02-11 19:06:58,2023-11-27 08:23:51.000,2023-10-16 07:22:44,283.0,3.0,56.0,16.0,136.0,2.0,92.0,280.0,2023-05-06 06:55:52,1.3.1,54.0,19.0,,,,,,,,,,,2.0,,,,,,,True,,,,,,,,,,
+86,QML,,general-tool,MIT,https://github.com/qmlcode/qml,QML: Quantum Machine Learning.,15,False,,qmlcode/qml,https://github.com/qmlcode/qml,2017-04-22 04:48:38,2023-07-26 12:01:42.000,2018-09-10 11:14:35,75.0,,80.0,23.0,101.0,27.0,19.0,189.0,,,3.0,2.0,qml,,22.0,22.0,https://pypi.org/project/qml,294.0,294.0,,,,3.0,,,,,,,,,,,,,,,,,
+87,gpax,,math,MIT,https://github.com/ziatdinovmax/gpax,Gaussian Processes for Experimental Sciences.,15,True,"['probabilistic', 'active-learning']",ziatdinovmax/gpax,https://github.com/ziatdinovmax/gpax,2021-10-28 13:43:18,2023-12-02 18:09:54.000,2023-12-02 18:09:54,583.0,78.0,16.0,4.0,40.0,5.0,14.0,148.0,2023-10-11 22:13:25,0.1.1,10.0,2.0,gpax,,,,https://pypi.org/project/gpax,142.0,142.0,,,,1.0,,,,,,,,,,,,,,,,,
+88,openmm-torch,,md,https://github.com/openmm/openmm-torch#license,https://github.com/openmm/openmm-torch,OpenMM plugin to define forces with neural networks.,15,True,"['ml-iap', 'lang-cpp']",openmm/openmm-torch,https://github.com/openmm/openmm-torch,2019-09-27 18:15:19,2023-11-29 21:24:23.296,2023-10-03 16:21:43,61.0,5.0,22.0,13.0,56.0,16.0,54.0,137.0,2023-10-09 08:49:10,1.4,16.0,7.0,,conda-forge/openmm-torch,,,,,6504.0,https://anaconda.org/conda-forge/openmm-torch,2023-11-29 21:24:23.296,227674.0,2.0,,,,,,,,,,,,,,,,,
+89,Automatminer,,general-tool,https://github.com/hackingmaterials/automatminer/blob/main/LICENSE,https://github.com/hackingmaterials/automatminer,An automatic engine for predicting materials properties.,15,False,,hackingmaterials/automatminer,https://github.com/hackingmaterials/automatminer,2018-05-10 18:27:08,2023-11-12 10:09:39.000,2022-01-06 19:39:49,1666.0,,47.0,12.0,233.0,36.0,138.0,131.0,2020-07-28 02:19:07,1.0.3.20200727,17.0,13.0,automatminer,,7.0,7.0,https://pypi.org/project/automatminer,135.0,135.0,,,,3.0,,,,,,,,,,,,,,,,,
+90,sGDML,,ml-iap,MIT,https://github.com/stefanch/sGDML,sGDML - Reference implementation of the Symmetric Gradient Domain Machine Learning model.,15,True,,stefanch/sGDML,https://github.com/stefanch/sGDML,2018-07-11 15:20:30,2023-08-31 12:58:49.000,2023-08-31 12:57:53,205.0,,35.0,8.0,12.0,6.0,11.0,127.0,2023-08-31 12:58:49,1.0.2,15.0,8.0,sgdml,,8.0,8.0,https://pypi.org/project/sgdml,111.0,111.0,,,,2.0,,,,,,,,,,,,,,,,,
+91,NNPOps,,ml-iap,MIT,https://github.com/openmm/NNPOps,High-performance operations for neural network potentials.,15,True,"['md', 'lang-cpp']",openmm/NNPOps,https://github.com/openmm/NNPOps,2020-09-10 21:02:00,2023-11-17 10:54:59.000,2023-07-25 21:23:53,94.0,,15.0,10.0,62.0,20.0,33.0,72.0,2023-07-26 11:21:58,0.6,7.0,7.0,,conda-forge/nnpops,,,,,3492.0,https://anaconda.org/conda-forge/nnpops,2023-11-06 09:36:30.898,73337.0,2.0,,,,,,,,,,,,,,,,,
+92,Open Databases Integration for Materials Design (OPTIMADE),,datasets,CC-BY-4.0,https://github.com/Materials-Consortia/OPTIMADE,Specification of a common REST API for access to materials databases.,15,True,,Materials-Consortia/OPTIMADE,https://github.com/Materials-Consortia/OPTIMADE,2018-01-08 23:32:29,2023-12-03 16:46:00.000,2023-06-22 15:32:33,1276.0,,35.0,22.0,266.0,72.0,145.0,62.0,2021-07-08 15:20:37,1.1.0,7.0,19.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+93,MODNet,,rep-eng,MIT,https://github.com/ppdebreuck/modnet,MODNet: a framework for machine learning materials properties.,15,True,"['pre-trained', 'small-data', 'transfer-learning']",ppdebreuck/modnet,https://github.com/ppdebreuck/modnet,2020-03-13 07:39:21,2023-12-01 21:36:10.000,2023-11-13 22:45:08,259.0,2.0,28.0,7.0,145.0,13.0,23.0,62.0,2023-07-29 11:00:10,0.4.1,18.0,7.0,,,5.0,5.0,,,,,,,2.0,,,,,,,,,,,,,,,,,
+94,benchmarking-gnns,,rep-learn,MIT,https://github.com/graphdeeplearning/benchmarking-gnns,Repository for benchmarking graph neural networks.,14,False,"['single-paper', 'benchmarking']",graphdeeplearning/benchmarking-gnns,https://github.com/graphdeeplearning/benchmarking-gnns,2020-03-03 03:42:50,2023-06-22 04:03:53.000,2022-05-10 13:22:20,45.0,,421.0,59.0,17.0,4.0,61.0,2300.0,,,,5.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+95,dlpack,,data-structures,Apache-2.0,https://github.com/dmlc/dlpack,common in-memory tensor structure.,14,True,['lang-cpp'],dmlc/dlpack,https://github.com/dmlc/dlpack,2017-02-24 16:56:47,2023-03-20 13:30:47.000,2023-01-24 14:10:09,68.0,,126.0,47.0,70.0,24.0,35.0,800.0,2023-01-05 18:42:00,0.8,8.0,21.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+96,escnn,,rep-learn,https://github.com/QUVA-Lab/escnn/blob/master/LICENSE,https://github.com/QUVA-Lab/escnn,Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/.,14,True,,QUVA-Lab/escnn,https://github.com/QUVA-Lab/escnn,2022-03-16 10:15:02,2023-11-27 17:43:58.000,2023-10-17 22:37:11,244.0,4.0,35.0,16.0,32.0,21.0,36.0,255.0,,,,10.0,escnn,,,,https://pypi.org/project/escnn,518.0,518.0,,,,2.0,,,,,,,,,,,,,,,,,
+97,gptchem,,language-models,MIT,https://github.com/kjappelbaum/gptchem,Use GPT-3 to solve chemistry problems.,14,True,,kjappelbaum/gptchem,https://github.com/kjappelbaum/gptchem,2023-01-06 15:34:32,2023-11-30 09:31:35.000,2023-10-04 11:27:09,147.0,29.0,30.0,8.0,4.0,15.0,2.0,165.0,2023-11-30 09:31:51,0.0.4,2.0,2.0,gptchem,,,,https://pypi.org/project/gptchem,39.0,39.0,,,,2.0,,,,,,,,,,,,,,,,,
+98,DADApy,,unsupervised,Apache-2.0,https://github.com/sissa-data-science/DADApy,Distance-based Analysis of DAta-manifolds in python.,14,True,,sissa-data-science/DADApy,https://github.com/sissa-data-science/DADApy,2021-02-16 17:45:23,2023-12-03 20:31:07.000,2023-11-16 14:28:31,654.0,11.0,11.0,8.0,77.0,11.0,15.0,77.0,2023-05-25 16:37:17,0.2.0,3.0,16.0,dadapy,,2.0,2.0,https://pypi.org/project/dadapy,80.0,80.0,,,,1.0,,,,,,,,,,,,,,,,,
+99,SpheriCart,,math,Apache-2.0,https://github.com/lab-cosmo/sphericart,Multi-language library for the calculation of spherical harmonics in Cartesian coordinates.,14,True,,lab-cosmo/sphericart,https://github.com/lab-cosmo/sphericart,2023-02-04 15:15:25,2023-11-29 14:24:27.000,2023-11-27 12:47:38,332.0,15.0,5.0,4.0,72.0,9.0,7.0,46.0,2023-04-26 12:06:09,0.3.0,1.0,9.0,sphericart,,1.0,1.0,https://pypi.org/project/sphericart,212.0,212.0,,,,2.0,,,,,,1.0,,,,,,,,,,,
+100,mp-pyrho,,data-structures,https://github.com/materialsproject/pyrho,https://github.com/materialsproject/pyrho,Tools for re-griding volumetric quantum chemistry data for machine-learning purposes.,14,True,['ml-dft'],materialsproject/pyrho,https://github.com/materialsproject/pyrho,2020-05-25 22:44:02,2023-11-28 00:13:22.000,2023-03-21 17:22:18,244.0,,6.0,9.0,104.0,1.0,3.0,29.0,2022-10-20 05:07:16,0.3.0,23.0,8.0,mp-pyrho,,18.0,18.0,https://pypi.org/project/mp-pyrho,81.0,81.0,,,,3.0,,,,,,,,,,,,,,,,,
+101,KLIFF,,ml-iap,LGPL-2.1,https://github.com/openkim/kliff,KIM-based Learning-Integrated Fitting Framework (KLIFF).,14,True,"['probabilistic', 'workflows']",openkim/kliff,https://github.com/openkim/kliff,2017-08-01 20:33:58,2023-11-28 00:02:15.000,2023-11-16 05:26:53,994.0,10.0,17.0,2.0,105.0,18.0,16.0,27.0,2022-10-07 05:16:11,0.4.1,16.0,10.0,kliff,conda-forge/kliff,,,https://pypi.org/project/kliff,45.0,1767.0,https://anaconda.org/conda-forge/kliff,2023-10-07 06:09:56.646,65461.0,2.0,,,,,,,,,,,,,,,,,
+102,Polynomials4ML.jl,,math,MIT,https://github.com/ACEsuit/Polynomials4ML.jl,"Polynomials for ML: fast evaluation, batching, differentiation.",14,True,['lang-julia'],ACEsuit/Polynomials4ML.jl,https://github.com/ACEsuit/Polynomials4ML.jl,2022-09-20 23:05:53,2023-11-25 22:48:16.000,2023-11-23 22:48:55,327.0,41.0,5.0,4.0,34.0,15.0,29.0,12.0,2023-11-15 23:52:25,0.2.7,11.0,9.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+103,n2p2,,ml-iap,GPL-3.0,https://github.com/CompPhysVienna/n2p2,n2p2 - A Neural Network Potential Package.,13,False,['lang-cpp'],CompPhysVienna/n2p2,https://github.com/CompPhysVienna/n2p2,2018-07-25 12:29:17,2023-05-11 16:26:02.000,2022-09-05 10:56:20,387.0,,69.0,12.0,53.0,57.0,85.0,195.0,2022-05-23 12:53:39,2.2.0,11.0,9.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+104,DeepH-pack,,ml-dft,LGPL-3.0,https://github.com/mzjb/DeepH-pack,Deep neural networks for density functional theory Hamiltonian.,13,True,['lang-julia'],mzjb/DeepH-pack,https://github.com/mzjb/DeepH-pack,2022-05-13 02:51:32,2023-08-03 05:36:54.000,2023-07-11 08:11:15,54.0,,27.0,5.0,13.0,5.0,31.0,155.0,2023-07-11 08:13:06,0.2.2,2.0,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+105,DMFF,,ml-iap,LGPL-3.0,https://github.com/deepmodeling/DMFF,DMFF (Differentiable Molecular Force Field) is a Jax-based python package that provides a full differentiable..,13,True,,deepmodeling/DMFF,https://github.com/deepmodeling/DMFF,2022-02-14 01:35:50,2023-11-22 10:04:10.000,2023-11-09 06:31:11,427.0,6.0,32.0,11.0,131.0,7.0,14.0,119.0,2023-11-09 14:32:37,1.0.0,4.0,13.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+106,SPICE,,datasets,MIT,https://github.com/openmm/spice-dataset,A collection of QM data for training potential functions.,13,True,"['ml-iap', 'md']",openmm/spice-dataset,https://github.com/openmm/spice-dataset,2021-08-31 18:52:05,2023-10-22 18:03:55.000,2023-10-22 18:03:55,34.0,3.0,5.0,16.0,38.0,12.0,37.0,104.0,2023-08-07 19:52:03,1.1.4,6.0,,,,,,,,13.0,,,,2.0,,,,,,221.0,,,,,,,,,,,
+107,PyXtalFF,,ml-iap,MIT,https://github.com/MaterSim/PyXtal_FF,Machine Learning Interatomic Potential Predictions.,13,True,,MaterSim/PyXtal_FF,https://github.com/MaterSim/PyXtal_FF,2019-01-08 08:43:35,2023-08-17 01:22:23.000,2023-08-17 01:22:18,559.0,,19.0,9.0,2.0,9.0,51.0,75.0,2023-06-09 17:17:24,0.2.3,19.0,8.0,pyxtal_ff,,,,https://pypi.org/project/pyxtal_ff,32.0,32.0,,,,2.0,,,,,,,,,,,,,,,,,
+108,aviary,,materials-discovery,MIT,https://github.com/CompRhys/aviary,The Wren sits on its Roost in the Aviary.,13,True,,CompRhys/aviary,https://github.com/CompRhys/aviary,2021-09-28 12:29:05,2023-11-10 23:21:39.000,2023-11-10 23:21:36,607.0,4.0,8.0,2.0,51.0,4.0,22.0,30.0,2023-08-10 01:55:58,0.1.1,4.0,4.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,
+109,mat2vec,,language-models,MIT,https://github.com/materialsintelligence/mat2vec,Supplementary Materials for Tshitoyan et al. Unsupervised word embeddings capture latent knowledge from materials..,12,True,['rep-learn'],materialsintelligence/mat2vec,https://github.com/materialsintelligence/mat2vec,2019-04-25 07:55:30,2023-05-06 22:45:49.000,2023-05-06 22:45:49,55.0,,174.0,39.0,7.0,7.0,17.0,598.0,,,,5.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+110,Crystal Graph Convolutional Neural Networks (CGCNN),,rep-learn,MIT,https://github.com/txie-93/cgcnn,Crystal graph convolutional neural networks for predicting material properties.,12,False,,txie-93/cgcnn,https://github.com/txie-93/cgcnn,2018-03-14 20:41:21,2021-09-06 05:23:51.000,2021-09-06 05:23:38,25.0,,253.0,23.0,7.0,16.0,20.0,535.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+111,Geometric GNN Dojo,,educational,MIT,https://github.com/chaitjo/geometric-gnn-dojo/blob/main/geometric_gnn_101.ipynb,"New to geometric GNNs: try our practical notebook, prepared for MPhil students at the University of Cambridge.",12,True,['rep-learn'],chaitjo/geometric-gnn-dojo,https://github.com/chaitjo/geometric-gnn-dojo,2023-01-21 20:08:45,2023-06-18 23:20:44.000,2023-06-18 23:17:32,26.0,,37.0,9.0,5.0,,3.0,354.0,2023-06-18 23:20:44,0.2.0,2.0,3.0,,,,,,,,,,,1.0,,,,,,,True,,,,,,,,,,
+112,AI for Science Resources,,community,GPL-3.0 license,https://github.com/divelab/AIRS/blob/main/Overview/resources.md,"List of resources for AI4Science research, including learning resources.",12,True,,divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2023-11-25 05:19:28.000,2023-11-25 05:19:28,353.0,29.0,37.0,18.0,4.0,,2.0,281.0,,,,24.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+113,QH9: A Quantum Hamiltonian Prediction Benchmark,,datasets,CC-BY-NC-SA 4.0,https://github.com/divelab/AIRS/tree/main/OpenDFT/QHBench/QH9,Artificial Intelligence for Science (AIRS).,12,True,['ml-dft'],divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2023-11-25 05:19:28.000,2023-11-25 05:19:28,353.0,29.0,37.0,18.0,4.0,,2.0,281.0,,,,24.0,,,,,,,,,,,2.0,,,,,,,True,,,,,,,,,,
+114,Artificial Intelligence for Science (AIRS),,general-tool,GPL-3.0 license,https://github.com/divelab/AIRS,Artificial Intelligence for Science (AIRS).,12,True,"['rep-learn', 'generative', 'ml-iap', 'md', 'ml-dft', 'ml-wft', 'biomolecules']",divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2023-11-25 05:19:28.000,2023-11-25 05:19:28,353.0,29.0,37.0,18.0,4.0,,2.0,281.0,,,,24.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+115,QHNet,,ml-dft,GPL-3.0,https://github.com/divelab/AIRS/tree/main/OpenDFT/QHNet,Artificial Intelligence for Science (AIRS).,12,True,['rep-learn'],divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2023-11-25 05:19:28.000,2023-11-25 05:19:28,353.0,29.0,37.0,18.0,4.0,,2.0,281.0,,,,24.0,,,,,,,,,,,2.0,,,,,,,True,,,,,,,,,,
+116,TensorMol,,ml-iap,GPL-3.0,https://github.com/jparkhill/TensorMol,Tensorflow + Molecules = TensorMol.,12,False,['single-paper'],jparkhill/TensorMol,https://github.com/jparkhill/TensorMol,2016-10-28 19:40:11,2021-02-11 00:12:00.000,2018-03-30 12:26:14,1724.0,,70.0,45.0,8.0,18.0,19.0,264.0,2017-11-08 18:05:50,0.1,1.0,12.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+117,ANI-1,,ml-iap,MIT,https://github.com/isayev/ASE_ANI,ANI-1 neural net potential with python interface (ASE).,12,False,,isayev/ASE_ANI,https://github.com/isayev/ASE_ANI,2016-12-08 05:09:32,2020-12-14 19:57:50.000,2020-06-05 22:46:43,111.0,,56.0,33.0,9.0,16.0,21.0,209.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+118,ASAP,,unsupervised,MIT,https://github.com/BingqingCheng/ASAP,ASAP is a package that can quickly analyze and visualize datasets of crystal or molecular structures.,12,True,,BingqingCheng/ASAP,https://github.com/BingqingCheng/ASAP,2019-08-11 12:45:14,2023-08-30 13:55:44.000,2023-08-30 13:55:44,759.0,,25.0,7.0,37.0,6.0,18.0,121.0,2023-08-30 13:54:23,1,1.0,6.0,,,5.0,5.0,,,,,,,2.0,,,,,,,,,,,,,,,,,
+119,Librascal,,rep-eng,LGPL-2.1,https://github.com/lab-cosmo/librascal,A scalable and versatile library to generate representations for atomic-scale learning.,12,True,,lab-cosmo/librascal,https://github.com/lab-cosmo/librascal,2018-02-01 08:38:51,2023-11-30 14:48:28.000,2023-11-30 14:48:28,2931.0,1.0,18.0,19.0,200.0,99.0,131.0,74.0,,,3.0,29.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+120,AMPtorch,,general-tool,GPL-3.0,https://github.com/ulissigroup/amptorch,AMPtorch: Atomistic Machine Learning Package (AMP) - PyTorch.,12,True,,ulissigroup/amptorch,https://github.com/ulissigroup/amptorch,2019-01-24 15:15:48,2023-07-16 02:11:38.000,2023-07-16 02:08:13,759.0,,32.0,9.0,99.0,5.0,26.0,57.0,2023-07-16 02:11:38,1.0,3.0,14.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+121,Neural fingerprint (nfp),,rep-learn,https://github.com/NREL/nfp/blob/master/LICENSE,https://github.com/NREL/nfp,Keras layers for end-to-end learning with rdkit and pymatgen.,12,False,,NREL/nfp,https://github.com/NREL/nfp,2018-11-20 23:55:23,2022-08-29 21:59:14.000,2022-06-14 22:18:28,143.0,,24.0,7.0,18.0,,6.0,56.0,2022-04-27 17:05:25,0.3.12,13.0,4.0,,,12.0,12.0,,,,,,,2.0,,,,,,,,,,,,,,,,,
+122,OpenMM-ML,,md,MIT,https://github.com/openmm/openmm-ml,High level API for using machine learning models in OpenMM simulations.,12,True,['ml-iap'],openmm/openmm-ml,https://github.com/openmm/openmm-ml,2021-02-10 20:55:25,2023-11-08 14:33:27.000,2023-08-21 20:11:13,28.0,,16.0,14.0,23.0,23.0,20.0,56.0,2023-08-21 23:32:24,1.1,5.0,2.0,,conda-forge/openmm-ml,,,,,165.0,https://anaconda.org/conda-forge/openmm-ml,2023-08-21 23:33:29.497,2655.0,3.0,,,,,,,,,,,,,,,,,
+123,Pacemaker,,ml-iap,https://github.com/ICAMS/python-ace/blob/master/LICENSE.md,https://cortner.github.io/ACEweb/software/,Python package for fitting atomic cluster expansion (ACE) potentials.,12,True,,ICAMS/python-ace,https://github.com/ICAMS/python-ace,2021-11-19 11:39:54,2023-11-30 11:28:12.000,2023-11-18 19:44:01,136.0,14.0,14.0,3.0,23.0,8.0,30.0,51.0,2022-10-24 19:59:33,0.2.8,2.0,5.0,python-ace,,,,https://pypi.org/project/python-ace,7.0,7.0,,,,2.0,,,,,,,,,,,,,,,,,
+124,Grad DFT,,ml-dft,Apache-2.0,https://github.com/XanaduAI/GradDFT,Grad-DFT is a JAX-based library enabling the differentiable design and experimentation of exchange-correlation..,12,True,,XanaduAI/GradDFT,https://github.com/XanaduAI/GradDFT,2023-05-15 16:18:25,2023-12-03 19:01:38.000,2023-10-30 14:41:37,369.0,195.0,1.0,3.0,42.0,9.0,42.0,43.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,True,,,,,,,,,,
+125,So3krates (MLFF),,ml-iap,MIT,https://github.com/thorben-frank/mlff,Build neural networks for machine learning force fields with JAX.,12,True,,thorben-frank/mlff,https://github.com/thorben-frank/mlff,2022-09-30 07:40:17,2023-11-09 18:38:08.000,2023-11-09 18:38:08,114.0,13.0,7.0,6.0,11.0,3.0,4.0,40.0,2023-07-12 08:34:56,0.2.0,1.0,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+126,Rascaline,,rep-eng,BSD-3-Clause,https://github.com/Luthaf/rascaline,Computing representations for atomistic machine learning.,12,True,"['lang-rust', 'lang-cpp']",Luthaf/rascaline,https://github.com/Luthaf/rascaline,2020-09-24 14:28:34,2023-11-30 15:04:20.000,2023-11-30 15:04:19,493.0,41.0,11.0,6.0,215.0,23.0,23.0,34.0,,,,13.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+127,GlassPy,,rep-eng,GPL-3.0,https://github.com/drcassar/glasspy,Python module for scientists working with glass materials.,12,True,,drcassar/glasspy,https://github.com/drcassar/glasspy,2019-07-18 23:15:43,2023-10-05 19:51:40.000,2023-10-05 19:31:00,324.0,5.0,6.0,5.0,8.0,1.0,4.0,18.0,2023-10-05 19:32:01,0.4.5,7.0,,glasspy,,2.0,2.0,https://pypi.org/project/glasspy,79.0,79.0,,,,2.0,,,,,,,,,,,,,,,,,
+128,Compositionally-Restricted Attention-Based Network (CrabNet),,rep-learn,MIT,https://github.com/sparks-baird/CrabNet,Predict materials properties using only the composition information!.,12,True,,sparks-baird/CrabNet,https://github.com/sparks-baird/CrabNet,2021-09-17 07:58:15,2023-06-19 09:35:52.000,2023-06-19 09:35:52,427.0,,3.0,1.0,54.0,15.0,2.0,11.0,2023-06-07 01:07:33,2.0.8,5.0,5.0,crabnet,,11.0,11.0,https://pypi.org/project/crabnet,198.0,198.0,,,,2.0,,,,,,,,,,,,,,,,,
+129,CCS_fit,,ml-iap,GPL-3.0,https://github.com/Teoroo-CMC/CCS,Curvature Constrained Splines.,12,True,,Teoroo-CMC/CCS,https://github.com/Teoroo-CMC/CCS,2021-12-13 14:29:53,2023-11-20 17:26:52.000,2023-10-04 14:41:11,760.0,3.0,9.0,3.0,12.0,8.0,6.0,6.0,2023-10-04 14:41:14,0.22.4,100.0,8.0,ccs_fit,,,,https://pypi.org/project/ccs_fit,59.0,88.0,,,,2.0,,,,,,381.0,,,,,,,,,,,
+130,OpenChem,,general-tool,MIT,https://github.com/Mariewelt/OpenChem,OpenChem: Deep Learning toolkit for Computational Chemistry and Drug Design Research.,11,False,,Mariewelt/OpenChem,https://github.com/Mariewelt/OpenChem,2018-07-10 01:27:33,2023-11-26 05:03:36.000,2022-04-27 19:27:40,444.0,,106.0,37.0,12.0,15.0,2.0,626.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+131,Deep Learning for Molecules and Materials Book,,educational,https://github.com/whitead/dmol-book/blob/main/LICENSE,https://dmol.pub/,Deep learning for molecules and materials book.,11,True,,whitead/dmol-book,https://github.com/whitead/dmol-book,2020-08-19 19:24:32,2023-07-02 18:02:57.000,2023-07-02 18:02:56,558.0,,101.0,17.0,92.0,27.0,128.0,541.0,,,,19.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,
+132,ReLeaSE,,reinforcement-learning,MIT,https://github.com/isayev/ReLeaSE,Deep Reinforcement Learning for de-novo Drug Design.,11,False,['drug-discovery'],isayev/ReLeaSE,https://github.com/isayev/ReLeaSE,2018-04-26 14:50:34,2021-12-08 19:49:36.000,2021-12-08 19:49:36,160.0,,126.0,19.0,9.0,27.0,8.0,318.0,,,,5.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,
+133,DeepLearningLifeSciences,,educational,MIT,https://github.com/deepchem/DeepLearningLifeSciences,Example code from the book Deep Learning for the Life Sciences.,11,False,,deepchem/DeepLearningLifeSciences,https://github.com/deepchem/DeepLearningLifeSciences,2019-02-05 17:16:18,2021-09-17 05:10:37.000,2021-09-17 05:10:37,52.0,,140.0,23.0,15.0,9.0,10.0,307.0,2019-10-28 18:46:28,1.0,1.0,10.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,
+134,SISSO,,rep-eng,Apache-2.0,https://github.com/rouyang2017/SISSO,A data-driven method combining symbolic regression and compressed sensing for accurate & interpretable models.,11,True,['lang-fortran'],rouyang2017/SISSO,https://github.com/rouyang2017/SISSO,2017-10-16 11:31:57,2023-09-12 08:50:38.000,2023-09-12 08:50:38,166.0,2.0,65.0,6.0,2.0,2.0,51.0,193.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+135,jarvis-tools-notebooks,,educational,NIST,https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks,A Google-Colab Notebook Collection for Materials Design: https://jarvis.nist.gov/.,11,True,,JARVIS-Materials-Design/jarvis-tools-notebooks,https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks,2020-06-27 20:22:02,2023-10-16 02:44:55.000,2023-10-16 02:44:55,542.0,25.0,21.0,4.0,38.0,,,44.0,,,,5.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,
+136,SIMPLE-NN,,ml-iap,GPL-3.0,https://github.com/MDIL-SNU/SIMPLE-NN,SIMPLE-NN(SNU Interatomic Machine-learning PotentiaL packagE version Neural Network).,11,False,,MDIL-SNU/SIMPLE-NN,https://github.com/MDIL-SNU/SIMPLE-NN,2018-03-26 23:53:35,2022-01-27 05:04:05.000,2022-01-27 05:04:05,586.0,,18.0,12.0,91.0,4.0,26.0,44.0,2021-09-23 01:41:42,1.1.1,9.0,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+137,nlcc,,language-models,MIT,https://github.com/whitead/nlcc,Natural language computational chemistry command line interface.,11,True,['single-paper'],whitead/nlcc,https://github.com/whitead/nlcc,2021-08-19 18:23:52,2023-02-04 03:07:56.000,2023-02-04 03:06:33,144.0,,6.0,5.0,1.0,,9.0,43.0,2023-02-04 03:07:56,0.6.0,10.0,3.0,nlcc,,,,https://pypi.org/project/nlcc,30.0,30.0,,,,3.0,,,,,,,,,,,,,,,,,
+138,cmlkit,,rep-eng,MIT,https://github.com/sirmarcel/cmlkit,tools for machine learning in condensed matter physics and quantum chemistry.,11,False,['benchmarking'],sirmarcel/cmlkit,https://github.com/sirmarcel/cmlkit,2018-05-31 07:56:52,2022-04-01 00:39:14.000,2022-03-25 22:27:04,526.0,,6.0,3.0,1.0,6.0,2.0,32.0,,,,,cmlkit,,4.0,4.0,https://pypi.org/project/cmlkit,151.0,151.0,,,,2.0,,,,,,,,,,,,,,,,,
+139,synspace,,generative,MIT,https://github.com/whitead/synspace,Synthesis generative model.,11,True,,whitead/synspace,https://github.com/whitead/synspace,2022-12-28 00:59:14,2023-04-15 22:42:57.000,2023-04-15 18:04:16,27.0,,3.0,3.0,1.0,2.0,1.0,31.0,2023-04-15 22:42:57,0.3.0,3.0,2.0,synspace,,6.0,6.0,https://pypi.org/project/synspace,664.0,664.0,,,,2.0,,,,,,,,,,,,,,,,,
+140,PACE,,md,https://github.com/ICAMS/lammps-user-pace/blob/main/LICENSE,https://github.com/ICAMS/lammps-user-pace,"The LAMMPS ML-IAP `pair_style pace`, aka Atomic Cluster Expansion (ACE), aka ML-PACE,..",11,True,,ICAMS/lammps-user-pace,https://github.com/ICAMS/lammps-user-pace,2021-02-25 10:04:48,2023-11-27 21:29:13.000,2023-11-27 21:28:13,59.0,13.0,10.0,5.0,16.0,1.0,5.0,21.0,2023-11-25 21:58:41,.2023.11.25.fix,6.0,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+141,pretrained-gnns,,others,MIT,https://github.com/snap-stanford/pretrain-gnns,Strategies for Pre-training Graph Neural Networks.,10,True,['pre-trained'],snap-stanford/pretrain-gnns,https://github.com/snap-stanford/pretrain-gnns,2020-01-30 22:12:41,2023-07-29 06:21:39.000,2023-07-29 06:21:39,13.0,,153.0,17.0,8.0,30.0,29.0,869.0,,,,2.0,,,,,,,,,,,1.0,,,,,,,True,,,,,,,,,,
+142,EDM,,generative,MIT,https://github.com/ehoogeboom/e3_diffusion_for_molecules,E(3) Equivariant Diffusion Model for Molecule Generation in 3D.,10,False,,ehoogeboom/e3_diffusion_for_molecules,https://github.com/ehoogeboom/e3_diffusion_for_molecules,2022-04-15 14:34:35,2022-07-10 17:56:18.000,2022-07-10 17:56:12,6.0,,82.0,7.0,,1.0,32.0,319.0,,,,,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+143,Awesome Materials Informatics,,community,https://github.com/tilde-lab/awesome-materials-informatics#license,https://github.com/tilde-lab/awesome-materials-informatics,Curated list of known efforts in materials informatics = modern materials science.,10,True,,tilde-lab/awesome-materials-informatics,https://github.com/tilde-lab/awesome-materials-informatics,2018-02-15 15:14:16,2023-10-30 16:02:26.000,2023-10-30 16:02:26,134.0,4.0,74.0,15.0,54.0,,8.0,311.0,2023-03-02 19:56:59,2023.03.02,1.0,19.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+144,GDC,,rep-learn,MIT,https://github.com/gasteigerjo/gdc,"Graph Diffusion Convolution, as proposed in Diffusion Improves Graph Learning (NeurIPS 2019).",10,True,['generative'],gasteigerjo/gdc,https://github.com/gasteigerjo/gdc,2019-10-26 16:05:11,2023-04-26 14:22:40.000,2023-04-26 14:22:40,28.0,,38.0,3.0,1.0,,10.0,229.0,,,,3.0,,,1.0,1.0,,,,,,,2.0,,,,,,,,,,,,,,,,,
+145,Neural Force Field,,ml-iap,MIT,https://github.com/learningmatter-mit/NeuralForceField,Neural Network Force Field based on PyTorch.,10,True,['pre-trained'],learningmatter-mit/NeuralForceField,https://github.com/learningmatter-mit/NeuralForceField,2020-10-04 15:17:41,2023-07-25 15:37:02.000,2023-07-25 15:37:01,122.0,,42.0,7.0,4.0,,16.0,200.0,,,,10.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+146,PiNN,,ml-iap,BSD-3-Clause,https://github.com/Teoroo-CMC/PiNN,A Python library for building atomic neural networks.,10,True,,Teoroo-CMC/PiNN,https://github.com/Teoroo-CMC/PiNN,2019-10-04 08:13:18,2023-11-15 09:09:29.000,2023-09-28 09:19:27,130.0,4.0,27.0,7.0,6.0,1.0,5.0,98.0,2019-10-09 09:21:30,0.3.0,1.0,2.0,,,,,,,4.0,,,,2.0,teoroo/pinn,https://hub.docker.com/r/teoroo/pinn,2023-10-19 13:57:40.768924,,224.0,,,,,,,,,,,,
+147,MolSkill,,language-models,MIT,https://github.com/microsoft/molskill,Extracting medicinal chemistry intuition via preference machine learning.,10,True,"['drug-discovery', 'recommender']",microsoft/molskill,https://github.com/microsoft/molskill,2023-01-12 13:48:31,2023-10-31 17:03:36.000,2023-10-31 17:03:36,81.0,1.0,7.0,8.0,8.0,2.0,3.0,88.0,2023-08-04 12:22:15,1.2b,5.0,4.0,,msr-ai4science/molskill,,,,,14.0,https://anaconda.org/msr-ai4science/molskill,2023-06-18 17:27:43.196,140.0,3.0,,,,,,,,,,,,,,,,,
+148,flare++,,active-learning,MIT,https://github.com/mir-group/flare_pp,A many-body extension of the FLARE code.,10,False,"['lang-cpp', 'ml-iap']",mir-group/flare_pp,https://github.com/mir-group/flare_pp,2019-11-20 22:46:32,2022-02-27 21:05:09.000,2022-02-24 19:00:50,989.0,,6.0,6.0,28.0,8.0,17.0,35.0,,,,10.0,flare_pp,,,,https://pypi.org/project/flare_pp,38.0,38.0,,,,2.0,,,,,,,,,,,,,,,,,
+149,Finetuna,,active-learning,MIT,https://github.com/ulissigroup/finetuna,Active Learning for Machine Learning Potentials.,10,True,,ulissigroup/finetuna,https://github.com/ulissigroup/finetuna,2020-09-22 14:39:52,2023-10-31 18:51:45.000,2023-10-03 18:18:06,1198.0,2.0,10.0,3.0,39.0,4.0,15.0,34.0,,,,11.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+150,DSECOP,,educational,CCO-1.0,https://github.com/GDS-Education-Community-of-Practice/DSECOP,This repository contains data science educational materials developed by DSECOP Fellows.,10,True,,GDS-Education-Community-of-Practice/DSECOP,https://github.com/GDS-Education-Community-of-Practice/DSECOP,2022-03-07 17:47:33,2023-12-03 19:31:17.000,2023-08-29 21:40:29,487.0,,23.0,10.0,17.0,1.0,7.0,31.0,,,,13.0,,,,,,,,,,,2.0,,,,,,,True,,,,,,,,,,
+151,SchNetPack G-SchNet,,generative,MIT,https://github.com/atomistic-machine-learning/schnetpack-gschnet,G-SchNet extension for SchNetPack.,10,True,,atomistic-machine-learning/schnetpack-gschnet,https://github.com/atomistic-machine-learning/schnetpack-gschnet,2022-04-21 12:34:13,2023-11-07 11:31:47.000,2023-11-07 11:31:47,117.0,1.0,6.0,4.0,,1.0,9.0,31.0,2023-04-25 14:09:07,1.0.0,2.0,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+152,NeuralXC,,ml-dft,BSD-3-Clause,https://github.com/semodi/neuralxc,Implementation of a machine learned density functional.,10,False,,semodi/neuralxc,https://github.com/semodi/neuralxc,2019-03-14 18:13:40,2022-11-30 11:39:22.000,2021-07-05 21:36:23,337.0,,9.0,5.0,9.0,5.0,5.0,30.0,,,3.0,,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+153,OpenKIM,,datasets,LGPL-2.1,https://openkim.org/,"The Open Knowledgebase of Interatomic Models (OpenKIM) aims to be an online resource for standardized testing, long-..",10,False,"['knowledge-base', 'pre-trained']",openkim/kim-api,https://github.com/openkim/kim-api,2014-07-28 21:21:08,2023-08-16 00:09:44.000,2022-03-17 23:01:36,2371.0,,19.0,11.0,55.0,17.0,18.0,29.0,,,,23.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+154,pair_nequip,,md,MIT,https://github.com/mir-group/pair_nequip,LAMMPS pair style for NequIP.,10,False,"['ml-iap', 'rep-learn']",mir-group/pair_nequip,https://github.com/mir-group/pair_nequip,2021-04-02 15:28:02,2023-09-25 06:11:31.000,2022-06-20 22:10:11,89.0,,12.0,8.0,7.0,8.0,13.0,29.0,2022-05-20 00:39:04,0.5.2,4.0,3.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+155,NNsforMD,,ml-iap,MIT,https://github.com/aimat-lab/NNsForMD,"Neural network class for molecular dynamics to predict potential energy, forces and non-adiabatic couplings.",10,False,,aimat-lab/NNsForMD,https://github.com/aimat-lab/NNsForMD,2020-08-31 11:14:18,2022-11-10 13:04:49.000,2022-11-10 13:04:45,265.0,,3.0,3.0,,,,10.0,2022-04-12 15:10:32,2.0.0,5.0,2.0,pyNNsMD,,,,https://pypi.org/project/pyNNsMD,39.0,39.0,,,,2.0,,,,,,,,,,,,,,,,,
+156,ACEfit,,ml-iap,MIT,https://github.com/ACEsuit/ACEfit.jl,,10,True,['lang-julia'],ACEsuit/ACEfit.jl,https://github.com/ACEsuit/ACEfit.jl,2022-01-01 00:09:17,2023-11-03 18:46:32.000,2023-08-18 16:46:11,210.0,,3.0,4.0,18.0,22.0,32.0,5.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+157,SE(3)-Transformers,,rep-learn,MIT,https://github.com/FabianFuchsML/se3-transformer-public,code for the SE3 Transformers paper: https://arxiv.org/abs/2006.10503.,9,False,"['single-paper', 'transformer']",FabianFuchsML/se3-transformer-public,https://github.com/FabianFuchsML/se3-transformer-public,2020-08-31 10:36:57,2023-07-10 05:13:25.000,2021-11-18 09:11:56,63.0,,66.0,16.0,5.0,9.0,17.0,427.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+158,molecularGNN_smiles,,rep-learn,Apache-2.0,https://github.com/masashitsubaki/molecularGNN_smiles,"The code of a graph neural network (GNN) for molecules, which is based on learning representations of r-radius..",9,False,,masashitsubaki/molecularGNN_smiles,https://github.com/masashitsubaki/molecularGNN_smiles,2018-11-06 00:25:26,2020-11-28 02:04:45.000,2020-11-28 02:04:45,79.0,,70.0,6.0,,6.0,1.0,255.0,,,,,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+159,DimeNet,,ml-iap,https://github.com/gasteigerjo/dimenet/blob/master/LICENSE.md,https://github.com/gasteigerjo/dimenet,"DimeNet and DimeNet++ models, as proposed in Directional Message Passing for Molecular Graphs (ICLR 2020) and Fast and..",9,True,,gasteigerjo/dimenet,https://github.com/gasteigerjo/dimenet,2020-02-14 12:40:15,2023-10-03 09:57:19.000,2023-10-03 09:57:19,103.0,1.0,56.0,5.0,,1.0,29.0,253.0,,,,2.0,,,1.0,1.0,,,,,,,3.0,,,,,,,,,,,,,,,,,
+160,Allegro,,ml-iap,MIT,https://github.com/mir-group/allegro,Allegro is an open-source code for building highly scalable and accurate equivariant deep learning interatomic..,9,True,,mir-group/allegro,https://github.com/mir-group/allegro,2022-02-06 23:50:40,2023-05-08 21:16:45.000,2023-05-08 21:16:45,38.0,,36.0,18.0,2.0,8.0,13.0,247.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+161,SchNet,,ml-iap,MIT,https://github.com/atomistic-machine-learning/SchNet,SchNet - a deep learning architecture for quantum chemistry.,9,False,,atomistic-machine-learning/SchNet,https://github.com/atomistic-machine-learning/SchNet,2017-10-03 11:52:20,2018-09-04 08:42:35.000,2018-09-04 08:42:34,53.0,,58.0,16.0,,1.0,2.0,189.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+162,QDF for molecule,,ml-esm,MIT,https://github.com/masashitsubaki/QuantumDeepField_molecule,"Quantum deep field: data-driven wave function, electron density generation, and energy prediction and extrapolation..",9,False,,masashitsubaki/QuantumDeepField_molecule,https://github.com/masashitsubaki/QuantumDeepField_molecule,2020-11-11 01:06:09,2021-02-20 03:46:18.000,2021-02-20 03:46:09,20.0,,37.0,4.0,,,3.0,176.0,,,,,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,
+163,GemNet,,ml-iap,https://github.com/TUM-DAML/gemnet_pytorch/blob/master/LICENSE,https://github.com/TUM-DAML/gemnet_pytorch,"GemNet model in PyTorch, as proposed in GemNet: Universal Directional Graph Neural Networks for Molecules (NeurIPS..",9,True,,TUM-DAML/gemnet_pytorch,https://github.com/TUM-DAML/gemnet_pytorch,2021-10-11 07:30:36,2023-04-26 14:20:12.000,2023-04-26 14:20:12,36.0,,25.0,4.0,1.0,,14.0,159.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+164,DeePKS-kit,,ml-dft,LGPL-3.0,https://github.com/deepmodeling/deepks-kit,a package for developing machine learning-based chemically accurate energy and density functional models.,9,True,,deepmodeling/deepks-kit,https://github.com/deepmodeling/deepks-kit,2020-07-29 03:27:50,2023-08-24 00:29:24.000,2023-04-01 01:14:46,380.0,,31.0,13.0,39.0,2.0,9.0,95.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+165,tinker-hp,,ml-iap,https://github.com/TinkerTools/tinker-hp/blob/master/license-Tinker.pdf,https://github.com/TinkerTools/tinker-hp,Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs & GPUs.,9,True,,TinkerTools/tinker-hp,https://github.com/TinkerTools/tinker-hp,2018-06-12 12:15:51,2023-10-19 11:57:35.000,2023-10-19 11:55:48,528.0,7.0,17.0,13.0,2.0,3.0,15.0,69.0,2019-11-24 16:21:50,published-version-V1,1.0,10.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+166,ACE.jl,,ml-iap,https://github.com/ACEsuit/ACE.jl/blob/main/license/mit.md,https://github.com/ACEsuit/ACE.jl,Parameterisation of Equivariant Properties of Particle Systems.,9,True,['lang-julia'],ACEsuit/ACE.jl,https://github.com/ACEsuit/ACE.jl,2019-11-30 16:22:51,2023-06-09 21:31:30.000,2023-06-09 21:29:10,912.0,,15.0,8.0,65.0,24.0,58.0,62.0,,,,12.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+167,GATGNN: Global Attention Graph Neural Network,,rep-learn,MIT,https://github.com/superlouis/GATGNN,Pytorch Repository for our work: Graph convolutional neural networks with global attention for improved materials..,9,False,,superlouis/GATGNN,https://github.com/superlouis/GATGNN,2020-06-21 03:27:36,2022-10-03 21:57:33.000,2022-10-03 21:57:33,99.0,,18.0,8.0,,3.0,3.0,61.0,2021-04-05 06:49:29,0.2,2.0,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+168,PROPhet,,ml-dft,GPL-3.0,https://github.com/biklooost/PROPhet,PROPhet is a code to integrate machine learning techniques with first-principles quantum chemistry approaches.,9,False,"['ml-iap', 'md', 'single-paper', 'lang-cpp']",biklooost/PROPhet,https://github.com/biklooost/PROPhet,2016-09-16 16:21:06,2018-04-19 02:09:46.000,2018-04-19 02:00:46,120.0,,26.0,14.0,6.0,8.0,7.0,61.0,2018-04-15 16:55:15,1.2,3.0,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+169,hippynn,,rep-learn,https://github.com/lanl/hippynn/blob/main/LICENSE.txt,https://github.com/lanl/hippynn,python library for atomistic machine learning.,9,True,['workflows'],lanl/hippynn,https://github.com/lanl/hippynn,2021-11-17 00:45:13,2023-11-22 21:14:51.000,2023-11-15 23:40:55,109.0,8.0,19.0,7.0,42.0,2.0,4.0,48.0,,,2.0,11.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+170,DeepErwin,,ml-wft,https://github.com/mdsunivie/deeperwin/blob/master/LICENSE,https://github.com/mdsunivie/deeperwin,DeepErwin is a python 3.8+ package that implements and optimizes JAX 2.x wave function models for numerical solutions..,9,True,,mdsunivie/deeperwin,https://github.com/mdsunivie/deeperwin,2021-06-14 15:18:32,2023-10-16 07:46:05.000,2023-10-16 07:46:05,57.0,2.0,5.0,3.0,3.0,,11.0,36.0,2022-07-18 10:18:25,arxiv_2105.08351v2,2.0,6.0,deeperwin,,,,https://pypi.org/project/deeperwin,49.0,49.0,,,,3.0,,,,,,,,,,,,,,,,,
+171,iam-notebooks,,educational,Apache-2.0,https://github.com/ceriottm/iam-notebooks,Jupyter notebooks for the lectures of the Introduction to Atomistic Modeling.,9,True,,ceriottm/iam-notebooks,https://github.com/ceriottm/iam-notebooks,2020-11-23 21:27:41,2023-08-07 23:02:34.000,2023-08-07 23:02:34,228.0,,4.0,4.0,7.0,3.0,,22.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+172,lie-nn,,math,MIT,https://github.com/lie-nn/lie-nn,Tools for building equivariant polynomials on reductive Lie groups.,9,True,['rep-learn'],lie-nn/lie-nn,https://github.com/lie-nn/lie-nn,2022-04-01 18:02:49,2023-06-29 19:38:34.000,2023-06-20 22:30:53,249.0,,1.0,8.0,3.0,,,22.0,2023-06-20 22:31:12,0.0.0,1.0,3.0,,,,,,,,,,,2.0,,,,,,,True,,,,,,,,,,
+173,ACE1.jl,,ml-iap,https://github.com/ACEsuit/ACE1.jl/blob/main/ASL.md,https://acesuit.github.io/,Atomic Cluster Expansion for Modelling Invariant Atomic Properties.,9,True,['lang-julia'],ACEsuit/ACE1.jl,https://github.com/ACEsuit/ACE1.jl,2022-01-14 19:52:49,2023-11-13 19:43:52.000,2023-11-13 19:43:52,551.0,5.0,4.0,5.0,28.0,22.0,24.0,19.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+174,wfl,,ml-iap,,https://github.com/libAtoms/workflow,Workflow is a Python toolkit for building interatomic potential creation and atomistic simulation workflows.,9,True,"['workflows', 'htc']",libAtoms/workflow,https://github.com/libAtoms/workflow,2021-11-04 17:03:34,2023-12-01 16:27:05.000,2023-10-30 13:46:29,939.0,20.0,14.0,9.0,142.0,62.0,68.0,18.0,,,,14.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+175,BenchML,,rep-eng,Apache-2.0,https://github.com/capoe/benchml,ML benchmarking and pipeling framework.,9,True,['benchmarking'],capoe/benchml,https://github.com/capoe/benchml,2020-04-28 13:26:29,2023-05-24 15:13:06.000,2023-05-24 15:04:57,341.0,,3.0,5.0,7.0,3.0,10.0,14.0,,,,9.0,benchml,,,,https://pypi.org/project/benchml,50.0,50.0,,,,3.0,,,,,,,,,,,,,,,,,
+176,TurboGAP,,ml-iap,https://github.com/mcaroba/turbogap/blob/master/LICENSE.md,https://github.com/mcaroba/turbogap,The TurboGAP code.,9,True,['lang-fortran'],mcaroba/turbogap,https://github.com/mcaroba/turbogap,2021-05-02 09:19:05,2023-12-01 14:54:42.000,2023-11-18 06:59:52,234.0,18.0,8.0,7.0,6.0,4.0,3.0,14.0,,,,8.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+177,RDKit Tutorials,,educational,https://github.com/rdkit/rdkit-tutorials/blob/master/LICENSE,https://github.com/rdkit/rdkit-tutorials,Tutorials to learn how to work with the RDKit.,8,True,,rdkit/rdkit-tutorials,https://github.com/rdkit/rdkit-tutorials,2016-10-07 03:34:01,2023-03-19 13:36:55.000,2023-03-19 13:36:55,68.0,,67.0,16.0,7.0,3.0,1.0,215.0,,,,5.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+178,MoLFormers UI,,community,Apache-2.0,https://molformer.res.ibm.com/,Repository for MolFormer.,8,True,"['transformer', 'language-models', 'pre-trained', 'drug-discovery']",IBM/molformer,https://github.com/IBM/molformer,2022-11-07 18:48:17,2023-10-16 16:34:25.000,2023-10-16 16:33:13,7.0,1.0,29.0,9.0,3.0,6.0,9.0,145.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+179,MoLFormer,,language-models,Apache-2.0,https://github.com/IBM/molformer,Repository for MolFormer.,8,True,"['transformer', 'pre-trained', 'drug-discovery']",IBM/molformer,https://github.com/IBM/molformer,2022-11-07 18:48:17,2023-10-16 16:34:25.000,2023-10-16 16:33:13,7.0,1.0,29.0,9.0,3.0,6.0,9.0,145.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+180,G-SchNet,,generative,MIT,https://github.com/atomistic-machine-learning/G-SchNet,G-SchNet - a generative model for 3d molecular structures.,8,True,,atomistic-machine-learning/G-SchNet,https://github.com/atomistic-machine-learning/G-SchNet,2019-10-21 13:48:59,2023-03-24 12:05:41.000,2023-03-24 12:05:41,64.0,,23.0,6.0,,,10.0,121.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+181,ANI-1 Dataset,,datasets,MIT,https://github.com/isayev/ANI1_dataset,A data set of 20 million calculated off-equilibrium conformations for organic molecules.,8,False,,isayev/ANI1_dataset,https://github.com/isayev/ANI1_dataset,2017-08-07 20:08:46,2022-08-08 15:56:17.000,2022-08-08 15:56:17,25.0,,19.0,12.0,2.0,6.0,3.0,91.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+182,MoleculeNet Leaderboard,,datasets,MIT,https://github.com/deepchem/moleculenet,,8,False,['benchmarking'],deepchem/moleculenet,https://github.com/deepchem/moleculenet,2020-02-24 18:14:05,2021-04-29 19:51:06.000,2021-04-29 19:51:06,78.0,,19.0,5.0,15.0,23.0,5.0,77.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+183,cG-SchNet,,generative,MIT,https://github.com/atomistic-machine-learning/cG-SchNet,cG-SchNet - a conditional generative neural network for 3d molecular structures.,8,True,,atomistic-machine-learning/cG-SchNet,https://github.com/atomistic-machine-learning/cG-SchNet,2021-12-02 15:35:18,2023-03-24 12:09:56.000,2023-03-24 12:09:56,28.0,,14.0,4.0,,,3.0,43.0,2022-02-21 13:36:41,1.0,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+184,Sketchmap,,unsupervised,GPL-3.0,https://github.com/lab-cosmo/sketchmap,Suite of programs to perform non-linear dimensionality reduction -- sketch-map in particular.,8,True,['lang-cpp'],lab-cosmo/sketchmap,https://github.com/lab-cosmo/sketchmap,2014-05-20 09:33:32,2023-05-24 22:56:06.000,2023-05-24 22:47:50,64.0,,10.0,29.0,1.0,3.0,5.0,40.0,,,,8.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+185,DeeperGATGNN,,rep-learn,MIT,https://github.com/usccolumbia/deeperGATGNN,Scalable graph neural networks for materials property prediction.,8,True,,usccolumbia/deeperGATGNN,https://github.com/usccolumbia/deeperGATGNN,2021-09-29 17:31:02,2023-04-19 18:59:51.000,2023-04-19 18:59:31,24.0,,7.0,3.0,1.0,,7.0,35.0,2022-03-08 02:14:28,1.0,1.0,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+186,GAP,,ml-iap,https://github.com/libAtoms/GAP/blob/main/LICENSE.md,https://libatoms.github.io/,Gaussian Approximation Potential (GAP).,8,True,,libAtoms/GAP,https://github.com/libAtoms/GAP,2021-03-22 14:48:56,2023-10-15 17:47:46.000,2023-10-15 17:42:33,200.0,1.0,19.0,10.0,63.0,,,34.0,,,,12.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+187,SNAP,,ml-iap,BSD-3-Clause,https://github.com/materialsvirtuallab/snap,Repository for spectral neighbor analysis potential (SNAP) model development.,8,False,,materialsvirtuallab/snap,https://github.com/materialsvirtuallab/snap,2017-06-26 21:56:00,2020-06-30 05:20:37.000,2020-06-30 05:20:37,38.0,,16.0,10.0,1.0,1.0,3.0,32.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+188,SIMPLE-NN v2,,ml-iap,GPL-3.0,https://github.com/MDIL-SNU/SIMPLE-NN_v2,,8,False,,MDIL-SNU/SIMPLE-NN_v2,https://github.com/MDIL-SNU/SIMPLE-NN_v2,2021-03-02 09:36:49,2023-10-11 05:12:51.000,2023-10-11 05:12:51,502.0,4.0,16.0,5.0,87.0,3.0,7.0,31.0,,,,12.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+189,pair_allegro,,md,MIT,https://github.com/mir-group/pair_allegro,LAMMPS pair style for Allegro deep learning interatomic potentials with parallelization support.,8,True,"['ml-iap', 'rep-learn']",mir-group/pair_allegro,https://github.com/mir-group/pair_allegro,2021-08-09 17:26:51,2023-10-27 17:27:05.000,2023-06-27 14:16:21,52.0,,6.0,10.0,2.0,4.0,16.0,26.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+190,Atomistic Adversarial Attacks,,ml-iap,MIT,https://github.com/learningmatter-mit/Atomistic-Adversarial-Attacks,Code for performing adversarial attacks on atomistic systems using NN potentials.,8,False,['probabilistic'],learningmatter-mit/Atomistic-Adversarial-Attacks,https://github.com/learningmatter-mit/Atomistic-Adversarial-Attacks,2021-03-28 17:39:52,2022-10-03 16:19:31.000,2022-10-03 16:19:29,33.0,,6.0,5.0,1.0,,1.0,25.0,2021-07-19 18:09:36,1.0.1,1.0,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+191,CGAT,,rep-learn,MIT,https://github.com/hyllios/CGAT,Crystal graph attention neural networks for materials prediction.,8,True,,hyllios/CGAT,https://github.com/hyllios/CGAT,2021-03-28 09:51:15,2023-07-18 12:04:35.000,2023-01-10 22:31:07,153.0,,7.0,3.0,1.0,,1.0,17.0,2023-07-18 12:04:35,0.1,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+192,GElib,,math,MPL-2.0,https://github.com/risi-kondor/GElib,C++/CUDA library for SO(3) equivariant operations.,8,True,['lang-cpp'],risi-kondor/GElib,https://github.com/risi-kondor/GElib,2021-08-24 20:56:40,2023-11-20 05:48:53.000,2023-10-25 18:07:13,597.0,17.0,2.0,2.0,2.0,2.0,3.0,16.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+193,SALTED,,ml-dft,GPL-3.0,https://github.com/andreagrisafi/SALTED,Symmetry-Adapted Learning of Three-dimensional Electron Densities.,8,True,,andreagrisafi/SALTED,https://github.com/andreagrisafi/SALTED,2020-01-22 10:24:29,2023-11-30 15:42:02.000,2023-11-30 15:42:02,242.0,74.0,2.0,1.0,10.0,,2.0,14.0,2023-04-10 16:25:44,2.0.0,1.0,13.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+194,UVVisML,,rep-learn,MIT,https://github.com/learningmatter-mit/uvvisml,Predict optical properties of molecules with machine learning.,8,True,"['optical-properties', 'single-paper', 'probabilistic']",learningmatter-mit/uvvisml,https://github.com/learningmatter-mit/uvvisml,2021-10-13 05:58:48,2023-05-26 22:35:14.000,2023-05-26 22:35:14,17.0,,5.0,4.0,1.0,,,14.0,2022-02-06 18:14:14,0.0.2,2.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+195,chemlift,,language-models,MIT,https://github.com/lamalab-org/chemlift,Language-interfaced fine-tuning for chemistry.,8,True,,lamalab-org/chemlift,https://github.com/lamalab-org/chemlift,2023-07-10 06:54:07,2023-11-30 10:47:50.000,2023-10-14 16:50:14,36.0,36.0,1.0,1.0,1.0,10.0,7.0,10.0,2023-11-30 19:42:07,0.0.1,1.0,,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+196,T-e3nn,,rep-learn,MIT,https://github.com/Hongyu-yu/T-e3nn,Time-reversal Euclidean neural networks based on e3nn.,8,True,['magnetism'],Hongyu-yu/T-e3nn,https://github.com/Hongyu-yu/T-e3nn,2022-11-21 14:49:45,2023-02-21 16:36:26.000,2023-02-21 16:36:25,2145.0,,,2.0,,,,6.0,,,,26.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+197,Equisolve,,general-tool,BSD-3-Clause,https://github.com/lab-cosmo/equisolve,A ML toolkit package utilizing the metatensor data format to build models for the prediction of equivariant properties..,8,False,['ml-iap'],lab-cosmo/equisolve,https://github.com/lab-cosmo/equisolve,2022-10-04 15:29:19,2023-10-27 10:03:59.000,2023-10-27 09:55:17,55.0,18.0,2.0,14.0,43.0,19.0,4.0,4.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+198,MAChINE,,educational,MIT,https://github.com/aimat-lab/MAChINE,Client-Server Web App to introduce usage of ML in materials science to beginners.,8,False,,aimat-lab/MAChINE,https://github.com/aimat-lab/MAChINE,2023-04-17 14:29:06,2023-09-29 14:20:12.000,2023-09-29 10:20:31,1026.0,20.0,,,7.0,9.0,23.0,1.0,,,,7.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+199,Awesome Neural Geometry,,community,,https://github.com/neurreps/awesome-neural-geometry,"A curated collection of resources and research related to the geometry of representations in the brain, deep networks,..",7,True,"['educational', 'rep-learn']",neurreps/awesome-neural-geometry,https://github.com/neurreps/awesome-neural-geometry,2022-07-31 01:19:57,2023-09-21 00:09:30.000,2023-09-21 00:09:30,118.0,2.0,46.0,26.0,11.0,,1.0,776.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+200,Equiformer,,rep-learn,MIT,https://github.com/atomicarchitects/equiformer,[ICLR23 Spotlight] Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs.,7,True,['transformer'],atomicarchitects/equiformer,https://github.com/atomicarchitects/equiformer,2023-02-28 00:21:30,2023-06-21 08:04:30.000,2023-06-21 08:03:53,3.0,,29.0,5.0,1.0,5.0,7.0,143.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+201,BestPractices,,educational,MIT,https://github.com/anthony-wang/BestPractices,Things that you should (and should not) do in your Materials Informatics research.,7,True,,anthony-wang/BestPractices,https://github.com/anthony-wang/BestPractices,2020-05-05 19:41:25,2023-11-17 02:58:25.000,2023-11-17 02:58:25,17.0,2.0,66.0,7.0,8.0,5.0,2.0,141.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+202,A Highly Opinionated List of Open-Source Materials Informatics Resources,,community,MIT,https://github.com/ncfrey/resources,A Highly Opinionated List of Open Source Materials Informatics Resources.,7,False,,ncfrey/resources,https://github.com/ncfrey/resources,2020-11-17 23:47:07,2022-02-18 13:37:51.000,2022-02-18 13:37:51,8.0,,19.0,9.0,,,,96.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+203,PhysNet,,ml-iap,MIT,https://github.com/MMunibas/PhysNet,Code for training PhysNet models.,7,False,['electrostatics'],MMunibas/PhysNet,https://github.com/MMunibas/PhysNet,2019-03-28 09:05:22,2022-10-16 17:45:42.000,2020-12-07 11:09:20,4.0,,26.0,9.0,1.0,5.0,,85.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+204,AIMNet,,ml-iap,MIT,https://github.com/aiqm/aimnet,Atoms In Molecules Neural Network Potential.,7,False,['single-paper'],aiqm/aimnet,https://github.com/aiqm/aimnet,2018-09-26 17:28:37,2019-11-21 23:49:01.000,2019-11-21 23:49:00,7.0,,20.0,10.0,2.0,4.0,,79.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+205,DTNN,,rep-learn,MIT,https://github.com/atomistic-machine-learning/dtnn,Deep Tensor Neural Network.,7,False,,atomistic-machine-learning/dtnn,https://github.com/atomistic-machine-learning/dtnn,2017-03-10 14:40:05,2017-07-11 08:26:15.000,2017-07-11 08:25:39,9.0,,30.0,15.0,,,3.0,76.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+206,JAXChem,,general-tool,MIT,https://github.com/deepchem/jaxchem,JAXChem is a JAX-based deep learning library for complex and versatile chemical modeling.,7,False,,deepchem/jaxchem,https://github.com/deepchem/jaxchem,2020-05-11 18:54:41,2020-07-15 05:02:21.000,2020-07-15 04:55:41,96.0,,9.0,7.0,13.0,1.0,1.0,74.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+207,Cormorant,,rep-learn,https://github.com/risilab/cormorant/blob/master/LICENSE,https://github.com/risilab/cormorant,Codebase for Cormorant Neural Networks.,7,False,,risilab/cormorant,https://github.com/risilab/cormorant,2019-10-27 18:22:07,2022-05-11 12:49:05.000,2020-03-11 15:25:51,160.0,,10.0,6.0,1.0,3.0,,55.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+208,uncertainty_benchmarking,,general-tool,,https://github.com/ulissigroup/uncertainty_benchmarking,Various code/notebooks to benchmark different ways we could estimate uncertainty in ML predictions.,7,False,"['benchmarking', 'probabilistic']",ulissigroup/uncertainty_benchmarking,https://github.com/ulissigroup/uncertainty_benchmarking,2019-08-28 19:39:28,2021-06-07 23:29:39.000,2021-06-07 23:27:19,265.0,,6.0,6.0,1.0,,,35.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+209,torchchem,,general-tool,MIT,https://github.com/deepchem/torchchem,An experimental repo for experimenting with PyTorch models.,7,False,,deepchem/torchchem,https://github.com/deepchem/torchchem,2020-03-07 17:06:44,2023-03-24 23:13:19.000,2020-05-01 20:12:23,49.0,,14.0,8.0,27.0,2.0,1.0,34.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+210,graphite,,rep-learn,MIT,https://github.com/LLNL/graphite,A repository for implementing graph network models based on atomic structures.,7,True,,llnl/graphite,https://github.com/LLNL/graphite,2022-06-27 19:15:27,2023-10-04 21:51:25.000,2023-10-04 21:51:05,23.0,1.0,6.0,5.0,4.0,2.0,1.0,29.0,,,,2.0,,,7.0,7.0,,,,,,,3.0,,,,,,,,,,,,,,,,,
+211,AdsorbML,,rep-learn,MIT,https://github.com/Open-Catalyst-Project/AdsorbML,,7,True,"['surface-science', 'single-paper']",Open-Catalyst-Project/AdsorbML,https://github.com/Open-Catalyst-Project/AdsorbML,2022-11-30 01:38:20,2023-07-31 16:28:14.000,2023-07-31 16:28:09,56.0,,5.0,6.0,10.0,,1.0,25.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+212,SkipAtom,,rep-eng,MIT,https://github.com/lantunes/skipatom,"Distributed representations of atoms, inspired by the Skip-gram model.",7,False,,lantunes/skipatom,https://github.com/lantunes/skipatom,2021-06-19 13:09:13,2023-07-16 19:28:39.000,2022-05-04 13:18:30,46.0,,3.0,2.0,7.0,3.0,1.0,22.0,,,1.0,,skipatom,conda-forge/skipatom,,,https://pypi.org/project/skipatom,28.0,98.0,https://anaconda.org/conda-forge/skipatom,2023-06-18 08:42:05.505,1194.0,3.0,,,,,,,,,,,,,,,,,
+213,escnn_jax,,rep-learn,https://github.com/emilemathieu/escnn_jax/blob/master/LICENSE,https://github.com/emilemathieu/escnn_jax,Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/.,7,True,,emilemathieu/escnn_jax,https://github.com/emilemathieu/escnn_jax,2023-06-15 09:45:45,2023-06-28 14:40:32.000,2023-06-28 14:39:56,203.0,,2.0,,,,,21.0,,,,8.0,escnn_jax,,,,https://pypi.org/project/escnn_jax,,,,,,3.0,,,,,,,,,,,,,,,,,
+214,BOSS,,materials-discovery,,https://gitlab.com/cest-group/boss,Bayesian Optimization Structure Search (BOSS).,7,False,['probabilistic'],,,2020-02-12 08:48:33,2020-02-12 08:48:33.000,,,,10.0,,,2.0,24.0,18.0,,,14.0,,aalto-boss,,,,https://pypi.org/project/aalto-boss,233.0,233.0,,,,2.0,,,,,,,,,,,,,,cest-group/boss,https://gitlab.com/cest-group/boss,,
+215,CBFV,,rep-eng,,https://github.com/Kaaiian/CBFV,Tool to quickly create a composition-based feature vector.,7,False,,kaaiian/CBFV,https://github.com/Kaaiian/CBFV,2019-09-05 23:07:46,2022-03-30 05:47:53.000,2021-10-24 17:10:17,49.0,,6.0,4.0,7.0,5.0,5.0,15.0,,,,3.0,CBFV,,4.0,4.0,https://pypi.org/project/CBFV,129.0,129.0,,,,3.0,,,,,,,,,,,,,,,,,
+216,Libnxc,,ml-dft,MPL-2.0,https://github.com/semodi/libnxc,A library for using machine-learned exchange-correlation functionals for density-functional theory.,7,False,"['lang-cpp', 'lang-fortran']",semodi/libnxc/,https://github.com/semodi/libnxc,2020-07-01 18:21:50,2021-09-18 14:53:52.000,2021-08-14 16:26:32,100.0,,4.0,2.0,3.0,13.0,3.0,15.0,,,2.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+217,ACEhamiltonians,,ml-dft,MIT,https://github.com/ACEsuit/ACEhamiltonians.jl,"Provides tools for constructing, fitting, and predicting self-consistent Hamiltonian and overlap matrices in solid-..",7,True,['lang-julia'],ACEsuit/ACEhamiltonians.jl,https://github.com/ACEsuit/ACEhamiltonians.jl,2022-01-17 20:54:22,2023-04-12 15:11:09.000,2023-04-12 15:04:14,33.0,,3.0,4.0,41.0,1.0,3.0,9.0,2022-05-20 17:07:42,arXiv.2111.13736,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+218,bVAE-IM,,generative,MIT,https://github.com/tsudalab/bVAE-IM,Implementation of Chemical Design with GPU-based Ising Machine.,7,True,"['qml', 'single-paper']",tsudalab/bVAE-IM,https://github.com/tsudalab/bVAE-IM,2023-03-01 08:26:56,2023-07-11 04:39:24.000,2023-07-11 04:39:24,39.0,,2.0,8.0,,,,9.0,2023-03-01 14:26:13,1.0.0,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+219,COSMO Software Cookbook,,educational,BSD-3-Clause,https://github.com/lab-cosmo/software-cookbook,The COSMO cookbook contains recipes for atomic-scale modelling for materials and molecules.,7,False,,lab-cosmo/software-cookbook,https://github.com/lab-cosmo/software-cookbook,2023-05-23 10:33:47,2023-10-27 06:42:00.000,2023-10-27 06:30:34,35.0,12.0,1.0,13.0,27.0,2.0,1.0,3.0,,,,5.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+220,MEGAN: Multi Explanation Graph Attention Student,,xai,MIT,https://github.com/aimat-lab/graph_attention_student,Minimal implementation of graph attention student model architecture.,7,False,,aimat-lab/graph_attention_student,https://github.com/aimat-lab/graph_attention_student,2022-07-28 06:22:50,2023-11-20 09:38:47.000,2023-11-20 09:38:42,34.0,11.0,1.0,3.0,1.0,,,3.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+221,MEGAN,,xai,MIT,https://github.com/aimat-lab/graph_attention_student,Minimal implementation of graph attention student model architecture.,7,False,"['xai', 'rep-learn']",aimat-lab/graph_attention_student,https://github.com/aimat-lab/graph_attention_student,2022-07-28 06:22:50,2023-11-20 09:38:47.000,2023-11-20 09:38:42,34.0,11.0,1.0,3.0,1.0,,,3.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+222,2DMD dataset,,datasets,Apache-2.0,https://github.com/HSE-LAMBDA/ai4material_design/blob/main/docs/DATA.md,"Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of..",7,False,['material-defect'],HSE-LAMBDA/ai4material_design,https://github.com/HSE-LAMBDA/ai4material_design,2021-03-25 10:06:20,2023-11-21 11:30:42.000,2023-11-21 11:30:33,1118.0,2.0,1.0,7.0,28.0,,12.0,2.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+223,ai4material_design,,rep-learn,Apache-2.0,https://github.com/HSE-LAMBDA/ai4material_design,"Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of..",7,False,"['pre-trained', 'material-defect']",HSE-LAMBDA/ai4material_design,https://github.com/HSE-LAMBDA/ai4material_design,2021-03-25 10:06:20,2023-11-21 11:30:42.000,2023-11-21 11:30:33,1118.0,2.0,1.0,7.0,28.0,,12.0,2.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+224,ML4pXRDs,,rep-learn,MIT,https://github.com/aimat-lab/ML4pXRDs,Contains code to train neural networks based on simulated powder XRDs from synthetic crystals.,7,True,"['xrd', 'single-paper']",aimat-lab/ML4pXRDs,https://github.com/aimat-lab/ML4pXRDs,2022-12-01 16:24:29,2023-07-14 08:17:06.000,2023-07-14 08:17:04,1320.0,,,3.0,,,,,2023-03-22 11:04:31,1.0,1.0,,,,,,,,0.0,,,,3.0,,,,,,2.0,,,,,,,,,,,
+225,The Collection of Database and Dataset Resources in Materials Science,,community,,https://github.com/sedaoturak/data-resources-for-materials-science,"A list of databases, datasets and books/handbooks where you can find materials properties for machine learning..",6,True,['datasets'],sedaoturak/data-resources-for-materials-science,https://github.com/sedaoturak/data-resources-for-materials-science,2021-02-20 06:38:45,2023-11-03 12:16:07.000,2023-11-03 12:16:07,28.0,2.0,28.0,10.0,1.0,,1.0,187.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+226,GEOM,,datasets,,https://github.com/learningmatter-mit/geom,GEOM: Energy-annotated molecular conformations.,6,False,['drug-discovery'],learningmatter-mit/geom,https://github.com/learningmatter-mit/geom,2020-06-03 17:58:37,2022-04-24 18:57:39.000,2022-04-24 18:57:39,95.0,,18.0,9.0,,1.0,10.0,154.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+227,EquiformerV2,,rep-learn,MIT,https://github.com/atomicarchitects/equiformer_v2,[arXiv23] EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations.,6,True,,atomicarchitects/equiformer_v2,https://github.com/atomicarchitects/equiformer_v2,2023-06-21 07:09:58,2023-12-02 16:53:28.000,2023-12-02 16:53:11,9.0,1.0,14.0,4.0,,7.0,,90.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+228,COATI,,generative,Apache 2.0,https://github.com/terraytherapeutics/COATI,COATI: multi-modal contrastive pre-training for representing and traversing chemical space.,6,True,"['drug-discovery', 'pre-trained', 'rep-learn']",terraytherapeutics/COATI,https://github.com/terraytherapeutics/COATI,2023-08-11 14:56:39,2023-10-27 16:55:39.000,2023-10-27 16:55:39,13.0,3.0,5.0,2.0,3.0,,,59.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+229,Applied AI for Materials,,educational,,https://github.com/WardLT/applied-ai-for-materials,Course materials for Applied AI for Materials Science and Engineering.,6,False,,WardLT/applied-ai-for-materials,https://github.com/WardLT/applied-ai-for-materials,2020-10-12 19:39:06,2022-03-12 02:26:58.000,2022-03-12 02:26:41,107.0,,29.0,4.0,13.0,5.0,,50.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+230,ANI-1x Datasets,,datasets,MIT,https://github.com/aiqm/ANI1x_datasets,"The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for organic molecules.",6,False,,aiqm/ANI1x_datasets,https://github.com/aiqm/ANI1x_datasets,2019-09-17 18:19:28,2022-04-11 17:25:55.000,2022-04-11 17:25:55,12.0,,5.0,6.0,,2.0,3.0,47.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+231,DeepDFT,,ml-dft,MIT,https://github.com/peterbjorgensen/DeepDFT,Official implementation of DeepDFT model.,6,True,,peterbjorgensen/DeepDFT,https://github.com/peterbjorgensen/DeepDFT,2020-11-03 11:51:15,2023-02-28 15:37:49.000,2023-02-28 15:37:37,128.0,,7.0,1.0,,,3.0,42.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+232,MACE-Jax,,ml-iap,MIT,https://github.com/ACEsuit/mace-jax,Equivariant machine learning interatomic potentials in JAX.,6,True,,ACEsuit/mace-jax,https://github.com/ACEsuit/mace-jax,2023-02-06 12:10:16,2023-10-04 08:07:35.000,2023-10-04 08:07:35,207.0,1.0,1.0,10.0,1.0,2.0,1.0,37.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+233,COMP6 Benchmark dataset,,datasets,MIT,https://github.com/isayev/COMP6,COMP6 Benchmark dataset for ML potentials.,6,False,,isayev/COMP6,https://github.com/isayev/COMP6,2017-12-29 16:58:35,2018-07-09 23:56:35.000,2018-07-09 23:56:34,27.0,,4.0,5.0,,2.0,1.0,36.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+234,DeepH-E3,,ml-dft,MIT,https://github.com/Xiaoxun-Gong/DeepH-E3,General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian.,6,True,['magnetism'],Xiaoxun-Gong/DeepH-E3,https://github.com/Xiaoxun-Gong/DeepH-E3,2023-03-16 11:25:58,2023-04-04 13:27:01.000,2023-04-04 13:26:27,16.0,,9.0,5.0,,3.0,6.0,36.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+235,milad,,rep-eng,GPL-3.0,https://github.com/muhrin/milad,Moment Invariants Local Atomic Descriptor.,6,True,['generative'],muhrin/milad,https://github.com/muhrin/milad,2020-04-23 09:14:24,2022-12-03 10:40:05.000,2022-12-03 10:39:59,110.0,,1.0,4.0,,,,27.0,,,,,,,1.0,1.0,,,,,,,3.0,,,,,,,,,,,,,,,,,
+236,MACE-Layer,,rep-learn,MIT,https://github.com/ACEsuit/mace-layer,Higher order equivariant graph neural networks for 3D point clouds.,6,True,,ACEsuit/mace-layer,https://github.com/ACEsuit/mace-layer,2022-11-09 17:03:41,2023-06-27 15:32:49.000,2023-06-06 10:09:58,19.0,,4.0,5.0,2.0,1.0,,26.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+237,charge_transfer_nnp,,rep-learn,MIT,https://github.com/pfnet-research/charge_transfer_nnp,Graph neural network potential with charge transfer.,6,False,['electrostatics'],pfnet-research/charge_transfer_nnp,https://github.com/pfnet-research/charge_transfer_nnp,2022-04-06 01:48:18,2022-04-06 01:53:35.000,2022-04-06 01:53:22,1.0,,6.0,13.0,,,,24.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+238,Mat2Spec,,ml-dft,MIT,https://github.com/gomes-lab/Mat2Spec,,6,False,['spectroscopy'],gomes-lab/Mat2Spec,https://github.com/gomes-lab/Mat2Spec,2022-01-17 11:45:57,2022-04-17 17:12:29.000,2022-04-17 17:12:29,8.0,,9.0,,,,,24.0,,,,,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+239,ALF,,ml-iap,https://github.com/lanl/ALF/blob/main/LICENSE,https://github.com/lanl/ALF,A framework for performing active learning for training machine-learned interatomic potentials.,6,True,['active-learning'],lanl/alf,https://github.com/lanl/ALF,2023-01-04 23:13:24,2023-09-26 19:47:46.000,2023-08-04 15:53:59,139.0,,9.0,7.0,25.0,,,20.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+240,GLAMOUR,,rep-learn,MIT,https://github.com/learningmatter-mit/GLAMOUR,Graph Learning over Macromolecule Representations.,6,True,['single-paper'],learningmatter-mit/GLAMOUR,https://github.com/learningmatter-mit/GLAMOUR,2021-08-20 18:16:40,2022-12-31 17:56:21.000,2022-12-31 17:56:21,14.0,,6.0,3.0,,,8.0,18.0,2021-08-23 18:58:52,0.1,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+241,SA-GPR,,rep-eng,LGPL-3.0,https://github.com/dilkins/TENSOAP,Public repository for symmetry-adapted Gaussian Process Regression (SA-GPR).,6,False,['lang-c'],dilkins/TENSOAP,https://github.com/dilkins/TENSOAP,2020-05-04 14:19:01,2023-04-07 09:58:08.000,2022-09-29 09:30:45,25.0,,9.0,3.0,10.0,2.0,5.0,14.0,2020-12-17 16:51:47,2020.0,1.0,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+242,NICE,,rep-eng,MIT,https://github.com/lab-cosmo/nice,NICE (N-body Iteratively Contracted Equivariants) is a set of tools designed for the calculation of invariant and..,6,True,,lab-cosmo/nice,https://github.com/lab-cosmo/nice,2020-07-03 08:47:41,2023-05-01 09:22:21.000,2023-05-01 09:21:56,231.0,,2.0,6.0,7.0,2.0,1.0,12.0,,,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+243,testing-framework,,ml-iap,,https://github.com/libAtoms/testing-framework,The purpose of this repository is to aid the testing of a large number of interatomic potentials for a variety of..,6,False,['benchmarking'],libAtoms/testing-framework,https://github.com/libAtoms/testing-framework,2020-03-04 11:43:15,2022-02-10 17:23:46.000,2022-02-10 17:23:46,225.0,,6.0,16.0,10.0,5.0,3.0,11.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+244,CatGym,,reinforcement-learning,GPL,https://github.com/ulissigroup/catgym,Surface segregation using Deep Reinforcement Learning.,6,False,,ulissigroup/catgym,https://github.com/ulissigroup/catgym,2019-08-06 19:25:27,2021-08-30 17:05:36.000,2021-08-30 17:05:32,162.0,,2.0,4.0,,1.0,,10.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+245,AGOX,,materials-discovery,GPL-3.0,https://gitlab.com/agox/agox,AGOX is a package for global optimization of atomic system using e.g. the energy calculated from density functional..,6,False,['structure-optimization'],,,2022-03-08 09:08:13,2022-03-08 09:08:13.000,,,,4.0,,,10.0,7.0,10.0,,,2.0,,agox,,,,https://pypi.org/project/agox,49.0,49.0,,,,2.0,,,,,,,,,,,,,,agox/agox,https://gitlab.com/agox/agox,,
+246,ACEHAL,,active-learning,,https://github.com/ACEsuit/ACEHAL,Hyperactive Learning (HAL) Python interface for building Atomic Cluster Expansion potentials.,6,True,['lang-julia'],ACEsuit/ACEHAL,https://github.com/ACEsuit/ACEHAL,2023-02-24 17:33:47,2023-10-01 12:19:41.000,2023-09-21 21:50:43,121.0,14.0,2.0,5.0,15.0,4.0,6.0,9.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+247,PANNA,,ml-iap,MIT,https://gitlab.com/PANNAdevs/panna,A package to train and validate all-to-all connected network models for BP[1] and modified-BP[2] type local atomic..,6,False,['benchmarking'],,,2018-11-09 10:47:48,2018-11-09 10:47:48.000,,,,10.0,,,,,7.0,,,2.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,PANNAdevs/panna,https://gitlab.com/PANNAdevs/panna,,
+248,fplib,,rep-eng,MIT,https://github.com/zhuligs/fplib,a fingerprint library.,6,False,"['lang-c', 'single-paper']",zhuligs/fplib,https://github.com/zhuligs/fplib,2015-09-07 08:18:27,2022-02-09 05:31:21.000,2022-02-09 05:31:12,37.0,,2.0,3.0,,,3.0,7.0,2021-02-03 21:40:23,pub,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+249,SOAPxx,,rep-eng,GPL-2.0,https://github.com/capoe/soapxx,A SOAP implementation.,6,False,['lang-cpp'],capoe/soapxx,https://github.com/capoe/soapxx,2016-03-29 10:00:00,2020-03-27 13:47:44.000,2020-03-27 13:47:36,289.0,,3.0,3.0,1.0,,2.0,7.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+250,SciGlass,,datasets,MIT,https://github.com/drcassar/SciGlass,The database contains a vast set of data on the properties of glass materials.,6,True,,drcassar/SciGlass,https://github.com/drcassar/SciGlass,2019-06-19 19:36:32,2023-08-27 13:46:44.000,2023-08-27 13:46:44,28.0,,3.0,1.0,,,,6.0,2023-08-27 13:48:09,2.0.1,1.0,2.0,,,,,,,0.0,,,,3.0,,,,,,3.0,,,,,,,,,,,
+251,COSMO Toolbox,,math,,https://github.com/lab-cosmo/toolbox,Assorted libraries and utilities for atomistic simulation analysis.,6,True,['lang-cpp'],lab-cosmo/toolbox,https://github.com/lab-cosmo/toolbox,2014-05-20 11:23:13,2023-06-23 15:07:59.000,2023-06-23 15:07:29,106.0,,5.0,26.0,1.0,,,6.0,,,,9.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+252,pyLODE,,rep-eng,Apache-2.0,https://github.com/ceriottm/lode,Pythonic implementation of LOng Distance Equivariants.,6,False,['electrostatics'],ceriottm/lode,https://github.com/ceriottm/lode,2022-01-19 17:01:38,2023-07-05 09:57:29.000,2023-07-05 09:57:14,241.0,,1.0,3.0,,1.0,,2.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+253,Visual Graph Datasets,,datasets,MIT,https://github.com/aimat-lab/visual_graph_datasets,Datasets for the training of graph neural networks (GNNs) and subsequent visualization of attributional explanations..,6,False,,aimat-lab/visual_graph_datasets,https://github.com/aimat-lab/visual_graph_datasets,2023-06-01 11:33:18,2023-11-15 13:38:38.000,2023-11-15 13:38:25,32.0,28.0,1.0,3.0,,,,1.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+254,Computational Autonomy for Materials Discovery (CAMD),,materials-discovery,Apache-2.0,https://github.com/ulissigroup/CAMD,Agent-based sequential learning software for materials discovery.,6,False,,ulissigroup/CAMD,https://github.com/ulissigroup/CAMD,2023-01-10 19:42:57,2023-01-10 19:49:35.000,2023-01-10 19:49:13,1336.0,,,1.0,,,,1.0,,,,17.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,
+255,"Data Handling, DoE and Statistical Analysis for Material Chemists",,educational,GPL-3.0,https://github.com/Teoroo-CMC/DoE_Course_Material,"Notebooks for workshops of DoE course, hosted by the Computational Materials Chemistry group at Uppsala University.",6,True,,Teoroo-CMC/DoE_Course_Material,https://github.com/Teoroo-CMC/DoE_Course_Material,2023-05-22 08:11:41,2023-06-26 12:48:17.000,2023-06-26 12:48:15,157.0,,13.0,2.0,1.0,,,,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+256,Per-site PAiNN,,rep-learn,MIT,https://github.com/learningmatter-mit/per-site_painn,Fork of PaiNN for PerovskiteOrderingGCNNs.,6,True,"['probabilistic', 'pre-trained', 'single-paper']",learningmatter-mit/per-site_painn,https://github.com/learningmatter-mit/per-site_painn,2023-06-04 14:23:49,2023-06-05 17:35:19.000,2023-06-05 17:30:34,123.0,,,,,,,,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+257,tensorfieldnetworks,,rep-learn,MIT,https://github.com/tensorfieldnetworks/tensorfieldnetworks,,5,False,,tensorfieldnetworks/tensorfieldnetworks,https://github.com/tensorfieldnetworks/tensorfieldnetworks,2018-02-09 23:18:13,2020-01-07 17:22:16.000,2020-01-07 17:22:15,10.0,,28.0,9.0,2.0,,2.0,144.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+258,AI4Science101,,educational,,https://github.com/deepmodeling/AI4Science101,AI for Science.,5,False,,deepmodeling/AI4Science101,https://github.com/deepmodeling/AI4Science101,2022-06-19 02:26:48,2022-09-04 02:06:18.000,2022-09-04 02:06:18,139.0,,12.0,10.0,28.0,,1.0,72.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+259,SchNOrb,,ml-wft,MIT,https://github.com/atomistic-machine-learning/SchNOrb,Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions.,5,False,,atomistic-machine-learning/SchNOrb,https://github.com/atomistic-machine-learning/SchNOrb,2019-09-17 12:41:48,2019-09-17 14:31:47.000,2019-09-17 14:31:19,2.0,,17.0,5.0,,1.0,,55.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+260,Machine Learning for Materials Hard and Soft,,educational,,https://github.com/CompPhysVienna/MLSummerSchoolVienna2022,ESI-DCAFM-TACO-VDSP Summer School on Machine Learning for Materials Hard and Soft.,5,False,,CompPhysVienna/MLSummerSchoolVienna2022,https://github.com/CompPhysVienna/MLSummerSchoolVienna2022,2022-07-01 08:42:41,2022-07-22 08:10:24.000,2022-07-22 08:10:24,49.0,,17.0,1.0,14.0,,,33.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+261,Autobahn,,rep-learn,MIT,https://github.com/risilab/Autobahn,Repository for Autobahn: Automorphism Based Graph Neural Networks.,5,False,,risilab/Autobahn,https://github.com/risilab/Autobahn,2021-03-02 01:14:40,2022-03-01 21:04:09.000,2022-03-01 21:04:04,11.0,,2.0,5.0,,,,28.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+262,MLIP-3,,ml-iap,BSD-2-Clause,https://gitlab.com/ashapeev/mlip-3,MLIP-3: Active learning on atomic environments with Moment Tensor Potentials (MTP).,5,True,['lang-cpp'],,,2023-04-24 14:05:53,2023-04-24 14:05:53.000,,,,3.0,,,15.0,5.0,18.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,ashapeev/mlip-3,https://gitlab.com/ashapeev/mlip-3,,
+263,EquivariantOperators.jl,,math,MIT,https://github.com/aced-differentiate/EquivariantOperators.jl,,5,False,['lang-julia'],aced-differentiate/EquivariantOperators.jl,https://github.com/aced-differentiate/EquivariantOperators.jl,2021-11-29 03:36:21,2023-09-27 18:34:44.000,2023-09-27 18:34:44,62.0,4.0,,4.0,,,,17.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+264,SCFNN,,rep-learn,MIT,https://github.com/andy90/SCFNN,Self-consistent determination of long-range electrostatics in neural network potentials.,5,False,"['lang-cpp', 'electrostatics', 'single-paper']",andy90/SCFNN,https://github.com/andy90/SCFNN,2021-09-22 12:02:00,2022-01-30 02:29:03.000,2022-01-24 09:40:40,10.0,,8.0,2.0,,,,15.0,2022-01-30 02:29:04,1.0.0,1.0,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+265,rxngenerator,,generative,MIT,https://github.com/tsudalab/rxngenerator,A generative model for molecular generation via multi-step chemical reactions.,5,False,,tsudalab/rxngenerator,https://github.com/tsudalab/rxngenerator,2021-06-18 07:44:53,2022-08-09 07:21:44.000,2022-08-09 07:21:05,16.0,,2.0,9.0,2.0,1.0,,12.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+266,FieldSchNet,,rep-learn,MIT,https://github.com/atomistic-machine-learning/field_schnet,,5,False,,atomistic-machine-learning/field_schnet,https://github.com/atomistic-machine-learning/field_schnet,2020-11-18 10:26:59,2022-05-19 09:28:38.000,2022-05-19 09:28:38,26.0,,4.0,3.0,1.0,1.0,,11.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+267,NequIP-JAX,,ml-iap,,https://github.com/mariogeiger/nequip-jax,JAX implementation of the NequIP interatomic potential.,5,True,,mariogeiger/nequip-jax,https://github.com/mariogeiger/nequip-jax,2023-03-08 04:18:28,2023-11-01 20:35:48.000,2023-11-01 20:35:44,39.0,1.0,1.0,1.0,2.0,,,10.0,2023-06-22 22:36:36,1.1.0,3.0,3.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+268,charge-density-models,,ml-dft,MIT,https://github.com/ulissigroup/charge-density-models,Tools to build charge density models using ocpmodels.,5,True,,ulissigroup/charge-density-models,https://github.com/ulissigroup/charge-density-models,2022-06-22 13:47:53,2023-11-29 15:07:42.000,2023-11-29 15:07:42,96.0,1.0,3.0,2.0,16.0,,2.0,8.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+269,CraTENet,,rep-learn,MIT,https://github.com/lantunes/CraTENet,An attention-based deep neural network for thermoelectric transport properties.,5,True,['transport-phenomena'],lantunes/CraTENet,https://github.com/lantunes/CraTENet,2022-06-30 10:40:06,2023-04-05 01:13:22.000,2023-04-05 01:13:11,24.0,,1.0,1.0,,,,8.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+270,MolSLEPA,,generative,MIT,https://github.com/tsudalab/MolSLEPA,Interpretable Fragment-based Molecule Design with Self-learning Entropic Population Annealing.,5,True,['xai'],tsudalab/MolSLEPA,https://github.com/tsudalab/MolSLEPA,2023-04-10 15:04:55,2023-04-13 12:48:49.000,2023-04-13 12:48:49,11.0,,1.0,8.0,2.0,,,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+271,MAPI_LLM,,language-models,MIT,https://github.com/maykcaldas/MAPI_LLM,A LLM application developed during the LLM March MADNESS Hackathon https://doi.org/10.1039/D3DD00113J.,5,False,['dataset'],maykcaldas/MAPI_LLM,https://github.com/maykcaldas/MAPI_LLM,2023-03-30 04:24:54,2023-06-29 18:48:44.000,2023-06-08 18:46:04,21.0,,1.0,1.0,,,,4.0,2023-06-29 18:48:44,0.0.1,1.0,2.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+272,soap_turbo,,rep-eng,https://github.com/libAtoms/soap_turbo/blob/master/LICENSE.md,https://github.com/libAtoms/soap_turbo,soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP.,5,False,['lang-fortran'],libAtoms/soap_turbo,https://github.com/libAtoms/soap_turbo,2021-03-19 15:20:25,2023-05-24 09:42:07.000,2023-05-24 09:42:00,36.0,,5.0,7.0,,5.0,3.0,4.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+273,MACE-tutorials,,educational,MIT,https://github.com/ilyes319/mace-tutorials,Another set of tutorials for the MACE interatomic potential by one of the authors.,5,False,"['ml-iap', 'rep-learn', 'md']",ilyes319/mace-tutorials,https://github.com/ilyes319/mace-tutorials,2023-09-11 18:09:18,2023-10-10 11:09:34.000,2023-10-10 11:09:34,5.0,5.0,3.0,1.0,,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+274,COSMO tools,,others,,https://github.com/lab-cosmo/cosmo-tools,"Scripts, jupyter nbs, and general helpful stuff from COSMO by COSMO.",5,False,,lab-cosmo/cosmo-tools,https://github.com/lab-cosmo/cosmo-tools,2018-11-06 09:40:00,2023-11-13 06:28:17.000,2023-11-13 06:28:17,60.0,1.0,3.0,22.0,,,,2.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,True,
+275,Alchemical learning,,ml-iap,BSD-3-Clause,https://github.com/Luthaf/alchemical-learning,Code for the Modeling high-entropy transition metal alloys with alchemical compression article.,5,False,,Luthaf/alchemical-learning,https://github.com/Luthaf/alchemical-learning,2021-12-02 17:02:00,2023-04-24 18:35:45.000,2023-04-07 10:19:10,120.0,,1.0,6.0,1.0,,4.0,2.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+276,linear-regression-benchmarks,,datasets,MIT,https://github.com/BingqingCheng/linear-regression-benchmarks,Data sets used for linear regression benchmarks.,5,False,"['benchmarking', 'single-paper']",BingqingCheng/linear-regression-benchmarks,https://github.com/BingqingCheng/linear-regression-benchmarks,2020-04-16 20:48:28,2022-01-26 08:29:46.000,2022-01-26 08:29:46,24.0,,,3.0,2.0,,,1.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+277,Per-Site CGCNN,,rep-learn,MIT,https://github.com/learningmatter-mit/per-site_cgcnn,Crystal graph convolutional neural networks for predicting material properties.,5,False,"['pre-trained', 'single-paper']",learningmatter-mit/per-site_cgcnn,https://github.com/learningmatter-mit/per-site_cgcnn,2023-05-30 18:59:03,2023-06-05 17:38:46.000,2023-06-05 17:38:41,28.0,,,,,,,1.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+278,ACE1Pack.jl,,ml-iap,MIT,https://github.com/ACEsuit/ACE1pack.jl,"Provides convenience functionality for the usage of ACE1.jl, ACEfit.jl, JuLIP.jl for fitting interatomic potentials..",5,True,['lang-julia'],ACEsuit/ACE1pack.jl,https://github.com/ACEsuit/ACE1pack.jl,2023-08-21 16:25:00,2023-08-21 16:30:19.000,2023-08-21 15:48:54,547.0,,,1.0,,,,,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,https://acesuit.github.io/ACE1pack.jl
+279,ACE Workflows,,ml-iap,,https://github.com/ACEsuit/ACEworkflows,Workflow Examples for ACE Models.,5,True,"['lang-julia', 'workflows']",ACEsuit/ACEworkflows,https://github.com/ACEsuit/ACEworkflows,2023-04-04 16:57:36,2023-10-12 18:01:00.000,2023-10-12 18:00:39,45.0,9.0,1.0,3.0,7.0,1.0,,,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+280,Point Edge Transformer (PET),,ml-iap,,https://github.com/serfg/pet,Point Edge Transformer.,5,True,"['rep-learn', 'transformer']",serfg/pet,https://github.com/serfg/pet,2023-02-08 18:36:10,2023-12-02 02:27:42.000,2023-12-02 02:27:29,79.0,4.0,,3.0,,,,,,,,3.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+281,ML-in-chemistry-101,,educational,,https://github.com/BingqingCheng/ML-in-chemistry-101,The course materials for Machine Learning in Chemistry 101.,4,False,,BingqingCheng/ML-in-chemistry-101,https://github.com/BingqingCheng/ML-in-chemistry-101,2020-02-09 17:47:07,2020-10-19 08:10:31.000,2020-10-19 08:10:30,13.0,,15.0,2.0,,,,57.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+282,Atom2Vec,,rep-learn,,https://github.com/idocx/Atom2Vec,Atom2Vec: a simple way to describe atoms for machine learning.,4,False,,idocx/Atom2Vec,https://github.com/idocx/Atom2Vec,2020-01-18 23:31:47,2022-10-16 05:43:31.000,2021-06-21 16:31:09,3.0,,8.0,1.0,1.0,1.0,1.0,26.0,,,,,atom2vec,,1.0,1.0,https://pypi.org/project/atom2vec,33.0,33.0,,,,3.0,,,,,,,,,,,,,,,,,
+283,Graph Transport Network,,rep-learn,https://github.com/gasteigerjo/gtn/blob/main/LICENSE.md,https://github.com/gasteigerjo/gtn,"Graph transport network (GTN), as proposed in Scalable Optimal Transport in High Dimensions for Graph Distances,..",4,False,['transport-phenomena'],gasteigerjo/gtn,https://github.com/gasteigerjo/gtn,2021-07-11 23:36:22,2023-04-26 14:22:00.000,2023-04-26 14:22:00,9.0,,3.0,2.0,,,,15.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+284,glp,,ml-iap,MIT,https://github.com/sirmarcel/glp,tools for graph-based machine-learning potentials in jax.,4,False,,sirmarcel/glp,https://github.com/sirmarcel/glp,2023-03-27 15:19:40,2023-08-07 14:41:10.000,2023-08-07 14:41:05,10.0,,,1.0,2.0,,,13.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+285,3DSC Database,,datasets,https://github.com/aimat-lab/3DSC/blob/main/LICENSE.md,https://github.com/aimat-lab/3DSC,Repo for the paper publishing the superconductor database with 3D crystal structures.,4,False,"['superconductors', 'materials-discovery']",aimat-lab/3DSC,https://github.com/aimat-lab/3DSC,2021-11-02 09:07:57,2023-07-21 09:28:43.000,2023-07-21 09:26:12,52.0,,2.0,2.0,,,,9.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+286,ChemDataWriter,,language-models,MIT,https://github.com/ShuHuang/chemdatawriter,ChemDataWriter is a transformer-based library for automatically generating research books in the chemistry area.,4,False,['literature-data'],ShuHuang/chemdatawriter,https://github.com/ShuHuang/chemdatawriter,2023-09-22 10:05:25,2023-10-07 04:23:47.000,2023-10-07 04:07:59,9.0,9.0,1.0,2.0,,1.0,,8.0,,,,,chemdatawriter,,,,https://pypi.org/project/chemdatawriter,,,,,,3.0,,,,,,,True,,,,,,,,,,
+287,chemrev-gpr,,educational,,https://github.com/gabor1/chemrev-gpr,Notebooks accompanying the paper on GPR in materials and molecules in Chemical Reviews 2020.,4,False,,gabor1/chemrev-gpr,https://github.com/gabor1/chemrev-gpr,2020-12-18 23:48:06,2021-05-04 19:21:34.000,2021-05-04 19:21:30,10.0,,6.0,4.0,,,,6.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+288,TensorPotential,,ml-iap,https://github.com/ICAMS/TensorPotential/blob/main/LICENSE.md,https://cortner.github.io/ACEweb/software/,"Tensorpotential is a TensorFlow based tool for development, fitting ML interatomic potentials from electronic..",4,False,,ICAMS/TensorPotential,https://github.com/ICAMS/TensorPotential,2021-12-08 12:10:04,2023-07-10 16:37:18.000,2023-07-10 16:37:18,18.0,,4.0,2.0,2.0,,,5.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+289,interface-lammps-mlip-3,,md,GPL-2.0,https://gitlab.com/ivannovikov/interface-lammps-mlip-3,An interface between LAMMPS and MLIP (version 3).,4,False,,,,2023-04-24 12:48:51,2023-04-24 12:48:51.000,,,,3.0,,,4.0,,5.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,ivannovikov/interface-lammps-mlip-3,https://gitlab.com/ivannovikov/interface-lammps-mlip-3,,
+290,ACEatoms,,general-tool,https://github.com/ACEsuit/ACEatoms.jl/blob/main/ASL.md,https://github.com/ACEsuit/ACEatoms.jl,Generic code for modelling atomic properties using ACE.,4,False,['lang-julia'],ACEsuit/ACEatoms.jl,https://github.com/ACEsuit/ACEatoms.jl,2021-03-23 23:50:03,2023-01-13 21:35:06.000,2023-01-13 21:28:08,134.0,,1.0,3.0,14.0,4.0,3.0,2.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+291,atom_by_atom,,rep-learn,,https://github.com/learningmatter-mit/atom_by_atom,Atom-by-atom design of metal oxide catalysts for the oxygen evolution reaction with Machine Learning.,4,False,"['surface-science', 'single-paper']",learningmatter-mit/atom_by_atom,https://github.com/learningmatter-mit/atom_by_atom,2023-05-30 20:18:00,2023-10-19 15:59:08.000,2023-10-19 15:35:49,74.0,10.0,,2.0,,,,2.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+292,SISSO++,,rep-eng,Apache-2.0,https://gitlab.com/sissopp_developers/sissopp,C++ Implementation of SISSO with python bindings.,4,False,['lang-cpp'],,,2021-04-30 14:20:59,2021-04-30 14:20:59.000,,,,3.0,,,,12.0,2.0,,,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,sissopp_developers/sissopp,https://gitlab.com/sissopp_developers/sissopp,,
+293,cnine,,math,,https://github.com/risi-kondor/cnine,Cnine tensor library.,4,False,['lang-cpp'],risi-kondor/cnine,https://github.com/risi-kondor/cnine,2022-10-07 20:54:54,2023-12-01 09:48:24.000,2023-12-01 09:48:18,257.0,67.0,1.0,1.0,1.0,,1.0,2.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,https://risi-kondor.github.io/cnine/
+294,magnetism-prediction,,rep-eng,Apache-2.0,https://github.com/dppant/magnetism-prediction,DFT-aided Machine Learning Search for Magnetism in Fe-based Bimetallic Chalcogenides.,4,False,"['magnetism', 'single-paper']",dppant/magnetism-prediction,https://github.com/dppant/magnetism-prediction,2022-09-13 03:58:10,2023-07-19 13:25:49.000,2023-07-19 13:25:49,46.0,,,3.0,,,,1.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+295,MLatom,,general-tool,https://creativecommons.org/licenses/by-nc-nd/4.0/,http://mlatom.com/,Machine learning for atomistic simulations.,4,False,,,,,,,,,,,,,,,,,,,MLatom,,,,https://pypi.org/project/MLatom,280.0,280.0,,,,3.0,,,,,,,,,,,,,,,,,http://mlatom.com/manual/
+296,gprep,,ml-dft,MIT,https://gitlab.com/jmargraf/gprep,Fitting DFTB repulsive potentials with GPR.,4,False,['single-paper'],,,2019-09-30 09:15:04,2019-09-30 09:15:04.000,,,,0.0,,,,,,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,jmargraf/gprep,https://gitlab.com/jmargraf/gprep,,
+297,closed-loop-acceleration-benchmarks,,materials-discovery,MIT,https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks,Data and scripts in support of the publication By how much can closed-loop frameworks accelerate computational..,4,False,"['materials-discovery', 'active-learning', 'single-paper']",aced-differentiate/closed-loop-acceleration-benchmarks,https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks,2022-11-10 20:22:30,2023-07-25 21:25:42.000,2023-05-02 17:07:48,17.0,,1.0,4.0,3.0,,,,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+298,ML-for-CurieTemp-Predictions,,rep-eng,MIT,https://github.com/msg-byu/ML-for-CurieTemp-Predictions,Machine Learning Predictions of High-Curie-Temperature Materials.,4,False,"['single-paper', 'magnetism']",msg-byu/ML-for-CurieTemp-Predictions,https://github.com/msg-byu/ML-for-CurieTemp-Predictions,2023-06-05 22:46:47,2023-06-14 19:05:50.000,2023-06-14 19:05:47,25.0,,,1.0,,,,,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+299,torch_spex,,math,,https://github.com/lab-cosmo/torch_spex,Spherical expansions in PyTorch.,4,False,,lab-cosmo/torch_spex,https://github.com/lab-cosmo/torch_spex,2023-03-28 09:48:36,2023-11-02 06:19:26.000,2023-11-02 06:19:26,61.0,4.0,2.0,4.0,30.0,7.0,,,,,,2.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+300,PeriodicPotentials,,ml-iap,MIT,https://github.com/AaltoRSE/PeriodicPotentials,A Periodic table app that displays potentials based on the selected elements.,4,False,"['community', 'visualization', 'lang-js']",AaltoRSE/PeriodicPotentials,https://github.com/AaltoRSE/PeriodicPotentials,2022-10-14 09:03:59,2022-10-18 17:10:22.000,2022-10-18 17:10:22,17.0,,1.0,3.0,3.0,,,,,,,2.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+301,xDeepH,,ml-dft,LGPL-3.0,https://github.com/mzjb/xDeepH,Extended DeepH (xDeepH) method for magnetic materials.,3,False,"['magnetism', 'lang-julia']",mzjb/xDeepH,https://github.com/mzjb/xDeepH,2023-02-23 12:56:49,2023-06-14 11:44:53.000,2023-06-14 11:44:46,4.0,,1.0,2.0,,,,23.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+302,Coarse-Graining-Auto-encoders,,unsupervised,,https://github.com/learningmatter-mit/Coarse-Graining-Auto-encoders,,3,False,['single-paper'],learningmatter-mit/Coarse-Graining-Auto-encoders,https://github.com/learningmatter-mit/Coarse-Graining-Auto-encoders,2019-09-16 15:27:57,2019-08-16 21:39:34.000,2019-08-16 21:39:33,14.0,,7.0,6.0,,,,20.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+303,ML-DFT,,ml-dft,MIT,https://github.com/MihailBogojeski/ml-dft,A package for density functional approximation using machine learning.,3,False,,MihailBogojeski/ml-dft,https://github.com/MihailBogojeski/ml-dft,2020-09-14 22:15:56,2020-09-18 16:36:30.000,2020-09-18 16:36:30,9.0,,6.0,2.0,,1.0,1.0,19.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+304,SciBot,,language-models,,https://github.com/CFN-softbio/SciBot,SciBot is a simple demo of building a domain-specific chatbot for science.,3,False,,CFN-softbio/SciBot,https://github.com/CFN-softbio/SciBot,2023-06-12 12:41:44,2023-10-27 13:45:22.000,2023-10-27 13:44:54,11.0,1.0,1.0,6.0,,,,14.0,,,,,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+305,CatBERTa,,language-models,,https://github.com/hoon-ock/CatBERTa,Large Language Model for Catalyst Property Prediction.,3,False,"['transformer', 'catalysis']",hoon-ock/CatBERTa,https://github.com/hoon-ock/CatBERTa,2023-05-19 18:23:17,2023-09-13 20:25:40.000,2023-09-13 20:25:40,91.0,3.0,1.0,1.0,,,,13.0,,,,,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+306,SPINNER,,materials-discovery,GPL-3.0,https://github.com/MDIL-SNU/SPINNER,SPINNER (Structure Prediction of Inorganic crystals using Neural Network potentials with Evolutionary and Random..,3,False,"['lang-cpp', 'structure-prediction']",MDIL-SNU/SPINNER,https://github.com/MDIL-SNU/SPINNER,2021-07-15 02:10:58,2021-11-25 07:58:15.000,2021-11-25 07:58:15,102.0,,2.0,1.0,,1.0,,9.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+307,sl_discovery,,materials-discovery,Apache-2.0,https://github.com/CitrineInformatics-ERD-public/sl_discovery,Data processing and models related to Quantifying the performance of machine learning models in materials discovery.,3,False,"['materials-discovery', 'single-paper']",CitrineInformatics-ERD-public/sl_discovery,https://github.com/CitrineInformatics-ERD-public/sl_discovery,2022-10-24 18:10:14,2022-12-20 23:46:05.000,2022-12-20 23:45:57,5.0,,2.0,2.0,,,,5.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+308,Element encoder,,rep-learn,GPL-3.0,https://github.com/jeherr/element-encoder,Autoencoder neural network to compress properties of atomic species into a vector representation.,3,False,['single-paper'],jeherr/element-encoder,https://github.com/jeherr/element-encoder,2019-03-27 17:11:30,2020-01-09 15:54:27.000,2020-01-09 15:54:26,8.0,,1.0,4.0,,,1.0,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+309,KmdPlus,,unsupervised,,https://github.com/Minoru938/KmdPlus,"This module contains a class for treating kernel mean descriptor (KMD), and a function for generating descriptors with..",3,False,,Minoru938/KmdPlus,https://github.com/Minoru938/KmdPlus,2023-03-26 10:06:34,2023-10-17 08:28:01.000,2023-10-17 08:28:01,7.0,3.0,,1.0,,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+310,DeepCDP,,ml-dft,,https://github.com/siddarthachar/deepcdp,DeepCDP: Deep learning Charge Density Prediction.,3,False,,siddarthachar/deepcdp,https://github.com/siddarthachar/deepcdp,2021-12-18 14:26:56,2023-06-16 20:38:23.000,2023-06-16 20:38:23,96.0,,,2.0,27.0,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+311,BERT-PSIE-TC,,language-models,MIT,https://github.com/StefanoSanvitoGroup/BERT-PSIE-TC,A dataset of Curie temperatures automatically extracted from scientific literature with the use of the BERT-PSIE..,3,False,['magnetism'],StefanoSanvitoGroup/BERT-PSIE-TC,https://github.com/StefanoSanvitoGroup/BERT-PSIE-TC,2023-01-25 10:27:26,2023-08-18 11:47:45.000,2023-08-18 12:48:31,36.0,,2.0,1.0,,,,2.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+312,Linear vs blackbox,,xai,MIT,https://github.com/CitrineInformatics-ERD-public/linear-vs-blackbox,Code and data related to the publication: Interpretable models for extrapolation in scientific machine learning.,3,False,"['xai', 'single-paper', 'rep-eng']",CitrineInformatics-ERD-public/linear-vs-blackbox,https://github.com/CitrineInformatics-ERD-public/linear-vs-blackbox,2022-12-02 20:32:53,2022-12-16 18:48:12.000,2022-12-16 18:48:12,4.0,,,1.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+313,CSNN,,ml-dft,BSD-3-Clause,https://github.com/foxjas/CSNN,Primary codebase of CSNN - Concentric Spherical Neural Network for 3D Representation Learning.,3,False,,foxjas/CSNN,https://github.com/foxjas/CSNN,2022-05-19 15:40:49,2022-10-11 04:27:40.000,2022-10-11 04:27:40,6.0,,,1.0,,,,1.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+314,Magpie,,general-tool,MIT,https://bitbucket.org/wolverton/magpie/,Materials Agnostic Platform for Informatics and Exploration (Magpie).,3,False,['lang-java'],,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+315,MALADA,,ml-dft,BSD-3-Clause,https://github.com/mala-project/malada,MALA Data Acquisition: Helpful tools to build data for MALA.,3,False,,mala-project/malada,https://github.com/mala-project/malada,2021-07-26 05:46:08,2023-05-24 09:18:24.000,2023-05-24 09:18:24,111.0,,1.0,2.0,4.0,17.0,2.0,,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+316,CSPML (crystal structure prediction with machine learning-based element substitution),,materials-discovery,,https://github.com/Minoru938/CSPML,Original implementation of CSPML.,2,False,['structure-prediction'],minoru938/cspml,https://github.com/Minoru938/CSPML,2022-01-15 10:59:27,2022-06-02 23:26:26.000,2022-06-02 23:26:26,7.0,,8.0,2.0,,2.0,1.0,14.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+317,SingleNN,,ml-iap,,https://github.com/lmj1029123/SingleNN,An efficient package for training and executing neural-network interatomic potentials.,2,False,['lang-cpp'],lmj1029123/SingleNN,https://github.com/lmj1029123/SingleNN,2020-03-11 18:36:16,2021-11-09 00:40:18.000,2021-11-09 00:40:10,17.0,,1.0,1.0,,1.0,,7.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+318,MLDensity_tutorial,,educational,,https://github.com/bfocassio/MLDensity_tutorial,Tutorial files to work with ML for the charge density in molecules and solids.,2,False,,bfocassio/MLDensity_tutorial,https://github.com/bfocassio/MLDensity_tutorial,2023-01-31 10:33:23,2023-02-22 19:20:32.000,2023-02-22 19:20:32,8.0,,1.0,1.0,,,,6.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+319,A3MD,,ml-dft,,https://github.com/brunocuevas/a3md,MPNN-like + Analytic Density Model = Accurate electron densities.,2,False,"['representation-learning', 'single-paper']",brunocuevas/a3md,https://github.com/brunocuevas/a3md,2021-06-02 07:23:17,2021-12-02 17:10:39.000,2021-12-02 17:10:34,4.0,,1.0,2.0,,,,5.0,,,,,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+320,LAMMPS-style pair potentials with GAP,,educational,,https://github.com/victorprincipe/pair_potentials,A tutorial on how to create LAMMPS-style pair potentials and use them in combination with GAP potentials to run MD..,2,False,"['ml-iap', 'md', 'rep-eng']",victorprincipe/pair_potentials,https://github.com/victorprincipe/pair_potentials,2022-09-21 09:45:03,2022-10-03 08:06:22.000,2022-10-03 08:05:53,36.0,,,1.0,1.0,,,3.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+321,MALA Tutorial,,educational,,https://github.com/mala-project/mala_tutorial,A full MALA hands-on tutorial.,2,False,,mala-project/mala_tutorial,https://github.com/mala-project/mala_tutorial,2023-03-09 14:01:54,2023-11-28 11:20:39.000,2023-11-28 11:17:01,24.0,1.0,,2.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+322,PiNN Lab,,educational,GPL-3.0,https://github.com/Teoroo-CMC/PiNN_lab,,2,False,,Teoroo-CMC/PiNN_lab,https://github.com/Teoroo-CMC/PiNN_lab,2019-03-17 22:09:30,2023-05-01 15:59:56.000,2023-05-01 15:59:22,9.0,,1.0,3.0,1.0,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+323,gkx: Green-Kubo Method in JAX,,rep-learn,MIT,https://github.com/sirmarcel/gkx,Green-Kubo + JAX + MLPs = Anharmonic Thermal Conductivities Done Fast.,2,False,['transport-phenomena'],sirmarcel/gkx,https://github.com/sirmarcel/gkx,2023-04-30 12:25:16,2023-04-30 14:14:57.000,2023-04-30 14:14:46,2.0,,,1.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+324,e3psi,,ml-esm,LGPL-3.0,https://github.com/muhrin/e3psi,Equivariant machine learning library for learning from electronic structures.,2,False,,muhrin/e3psi,https://github.com/muhrin/e3psi,2022-08-08 10:48:30,2023-08-09 17:04:49.000,2023-04-10 17:04:33,14.0,,,2.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+325,Wigner Kernels,,math,,https://github.com/lab-cosmo/wigner_kernels,Collection of programs to benchmark Wigner kernels.,2,False,['benchmarking'],lab-cosmo/wigner_kernels,https://github.com/lab-cosmo/wigner_kernels,2022-12-08 12:28:26,2023-07-08 15:48:41.000,2023-07-08 15:48:37,109.0,,,1.0,,,,1.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+326,quantum-structure-ml,,general-tool,,https://github.com/hgheiberger/quantum-structure-ml,Multi-class classification model for predicting the magnetic order of magnetic structures and a binary classification..,2,False,"['magnetism', 'benchmarking']",hgheiberger/quantum-structure-ml,https://github.com/hgheiberger/quantum-structure-ml,2020-10-05 01:11:01,2022-12-22 21:45:40.000,2022-12-22 21:45:40,19.0,,,2.0,,,,1.0,2022-08-18 05:25:24,1.0.0,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+327,MEGNetSparse,,ml-iap,MIT,https://github.com/HSE-LAMBDA/MEGNetSparse,"A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,..",2,False,['material-defect'],HSE-LAMBDA/MEGNetSparse,https://github.com/HSE-LAMBDA/MEGNetSparse,2023-07-19 08:17:42,2023-08-21 17:11:34.000,2023-08-21 17:11:25,19.0,,,2.0,,,,1.0,,,,2.0,MEGNetSparse,,,,https://pypi.org/project/MEGNetSparse,40.0,40.0,,,,3.0,,,,,,,True,,,,,,,,,,
+328,AMP,,rep-eng,,https://bitbucket.org/andrewpeterson/amp/,Amp is an open-source package designed to easily bring machine-learning to atomistic calculations.,2,False,,,,,,,,,,,,,,,,,,,amp-atomistics,,,,https://pypi.org/project/amp-atomistics,87.0,87.0,,,,3.0,,,,,,,,,,,,,,,,,https://amp.readthedocs.io/
+329,q-pac,,ml-esm,MIT,,,2,False,['electrostatics'],,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,jmargraf/kqeq,,,
+330,RuNNer,,ml-iap,GPL-3.0,https://www.uni-goettingen.de/de/560580.html,The RuNNer Neural Network Energy Representation is a Fortran-based framework for the construction of Behler-..,2,False,['lang-fortran'],,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,https://theochemgoettingen.gitlab.io/RuNNer/
+331,Point Edge Transformer,,rep-learn,CC-BY-4.0,https://zenodo.org/record/7967079,"Smooth, exact rotational symmetrization for deep learning on point clouds.",2,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+332,Allegro-JAX,,ml-iap,,https://github.com/mariogeiger/allegro-jax,JAX implementation of the Allegro interatomic potential.,1,False,,mariogeiger/allegro-jax,https://github.com/mariogeiger/allegro-jax,2023-07-02 19:00:00,2023-07-02 21:45:07.000,2023-07-02 21:45:04,4.0,,,2.0,,1.0,,11.0,,,,,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+333,SphericalNet,,rep-learn,,https://github.com/risilab/SphericalNet,Implementation of Clebsch-Gordan Networks (CGnet: https://arxiv.org/pdf/1806.09231.pdf) by GElib & cnine libraries in..,1,False,,risilab/SphericalNet,https://github.com/risilab/SphericalNet,2022-05-31 14:39:05,2022-06-07 03:57:10.000,2022-06-07 03:53:49,1.0,,,2.0,,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,
+334,kdft,,ml-dft,,https://gitlab.com/jmargraf/kdf,The Kernel Density Functional (KDF) code allows generating ML based DFT functionals.,1,False,,,,2020-11-07 21:50:22,2020-11-07 21:50:22.000,,,,0.0,,,,,2.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,jmargraf/kdf,https://gitlab.com/jmargraf/kdf,,
+335,APET,,ml-dft,GPL-3.0,https://github.com/emotionor/APET,Atomic Positional Embedding-based Transformer.,1,False,"['density-of-states', 'transformer']",emotionor/APET,https://github.com/emotionor/APET,2023-03-06 01:53:16,2023-09-28 03:16:11.000,2023-09-28 03:16:11,11.0,1.0,,2.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+336,mlp,,ml-iap,,https://github.com/cesmix-mit/MLP,Proper orthogonal descriptors for efficient and accurate interatomic potentials...,1,False,['lang-julia'],cesmix-mit/mlp,https://github.com/cesmix-mit/MLP,2022-02-25 23:03:09,2022-10-22 19:01:45.000,2022-10-22 19:01:42,12.0,,1.0,2.0,,,,1.0,,,,,,,,,,,,,,,3.0,,,,,,,True,,,,,,,,,,
+337,Descriptor Embedding and Clustering for Atomisitic-environment Framework (DECAF),,unsupervised,,https://gitlab.mpcdf.mpg.de/klai/decaf,Provides a workflow to obtain clustering of local environments in dataset of structures.,0,False,,,,,,,41.0,,,,,,,2.0,,,,2.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+338,GitHub topic materials-informatics,,community,,https://github.com/topics/materials-informatics,,0,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+339,MateriApps,,community,,https://ma.issp.u-tokyo.ac.jp/en/,,0,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+340,MLDensity,,ml-dft,,{},Linear Jacobi-Legendre expansion of the charge density for machine learning-accelerated electronic structure..,0,False,,StefanoSanvitoGroup/MLdensity,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
diff --git a/latest-changes.md b/latest-changes.md
index f4397e2..f8491ac 100644
--- a/latest-changes.md
+++ b/latest-changes.md
@@ -1 +1,47 @@
-Nothing changed from last update.
\ No newline at end of file
+## ➕ Added Projects
+
+_Projects that were recently added to this best-of list._
+
+- JAX-DFT (🥇25 · ⭐ 32K · ➕) - Google Research. Apache-2
+- DIG: Dive into Graphs (🥈21 · ⭐ 1.7K · ➕) - A library for graph deep learning research. GPL-3.0
+- ATOM3D (🥇18 · ⭐ 280 · 💤) - ATOM3D: tasks on molecules in three dimensions. MIT
biomolecules
benchmarking
+- ChemCrow (🥇17 · ⭐ 320 · 🐣) - Chemcrow. MIT
+- ChemDataExtractor (🥈16 · ⭐ 270 · 💀) - Automatically extract chemical information from scientific documents. MIT
literature-data
+- ChemNLP project (🥈16 · ⭐ 110 · ➕) - ChemNLP project. MIT
datasets
+- GT4SD - Generative Toolkit for Scientific Discovery (🥈15 · ⭐ 280 · ➕) - Gradio apps of generative models in GT4SD. MIT
generative
pre-trained
drug-discovery
+- dlpack (🥉14 · ⭐ 800 · 💤) - common in-memory tensor structure. Apache-2
C++
+- Geometric GNN Dojo (🥇12 · ⭐ 350 · ➕) - New to geometric GNNs: try our practical notebook, prepared for MPhil students at the University of Cambridge. MIT
rep-learn
+- QH9: A Quantum Hamiltonian Prediction Benchmark (🥈12 · ⭐ 280 · ➕) - Artificial Intelligence for Science (AIRS). CC-BY-NC-SA 4.0
ML-DFT
+- QHNet (🥈12 · ⭐ 280 · ➕) - Artificial Intelligence for Science (AIRS). GPL-3.0
rep-learn
+- Grad DFT (🥈12 · ⭐ 43 · ➕) - Grad-DFT is a JAX-based library enabling the differentiable design and experimentation of exchange-correlation.. Apache-2
+- pretrained-gnns (🥇10 · ⭐ 870 · ➕) - Strategies for Pre-training Graph Neural Networks. MIT
pre-trained
+- DSECOP (🥈10 · ⭐ 31 · ➕) - This repository contains data science educational materials developed by DSECOP Fellows. CCO-1.0
+- pair_nequip (🥉10 · ⭐ 29 · 💀) - LAMMPS pair style for NequIP. MIT
ML-IAP
rep-learn
+- tinker-hp (🥉9 · ⭐ 69 · ➕) - Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs & GPUs. Custom
+- lie-nn (🥈9 · ⭐ 22 · ➕) - Tools for building equivariant polynomials on reductive Lie groups. MIT
rep-learn
+- TurboGAP (🥉9 · ⭐ 14 · ➕) - The TurboGAP code. Custom
Fortran
+- MoLFormers UI (🥉8 · ⭐ 140 · ➕) - Repository for MolFormer. Apache-2
transformer
Language models
pre-trained
drug-discovery
+- MoLFormer (🥉8 · ⭐ 140 · ➕) - Repository for MolFormer. Apache-2
transformer
pre-trained
drug-discovery
+- pair_allegro (🥉8 · ⭐ 26 · ➕) - LAMMPS pair style for Allegro deep learning interatomic potentials with parallelization support. MIT
ML-IAP
rep-learn
+- chemlift (🥉8 · ⭐ 10 · 🐣) - Language-interfaced fine-tuning for chemistry. MIT
+- T-e3nn (🥉8 · ⭐ 6 · 💤) - Time-reversal Euclidean neural networks based on e3nn. MIT
magnetism
+- Awesome Neural Geometry (🥉7 · ⭐ 780 · ➕) - A curated collection of resources and research related to the geometry of representations in the brain, deep networks,.. Unlicensed
educational
rep-learn
+- COATI (🥉6 · ⭐ 59 · 🐣) - COATI: multi-modal contrastive pre-training for representing and traversing chemical space. Apache-2
drug-discovery
pre-trained
rep-learn
+- Mat2Spec (🥉6 · ⭐ 24 · 💀) - MIT
spectroscopy
+- NequIP-JAX (🥉5 · ⭐ 10 · ➕) - JAX implementation of the NequIP interatomic potential. Unlicensed
+- MAPI_LLM (🥉5 · ⭐ 4 · ➕) - A LLM application developed during the LLM March MADNESS Hackathon https://doi.org/10.1039/D3DD00113J. MIT
dataset
+- soap_turbo (🥉5 · ⭐ 4 · 💤) - soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP. Custom
Fortran
+- MACE-tutorials (🥉5 · ⭐ 3 · 🐣) - Another set of tutorials for the MACE interatomic potential by one of the authors. MIT
ML-IAP
rep-learn
MD
+- Point Edge Transformer (PET) (🥉5 · ➕) - Point Edge Transformer. Unlicensed
rep-learn
transformer
+- ChemDataWriter (🥉4 · ⭐ 8 · 🐣) - ChemDataWriter is a transformer-based library for automatically generating research books in the chemistry area. MIT
literature-data
+- torch_spex (🥉4 · ➕) - Spherical expansions in PyTorch. Unlicensed
+- PeriodicPotentials (🥉4 · 💀) - A Periodic table app that displays potentials based on the selected elements. MIT
community-resource
viz
JavaScript
+- SciBot (🥉3 · ⭐ 14 · 🐣) - SciBot is a simple demo of building a domain-specific chatbot for science. Unlicensed
+- CatBERTa (🥉3 · ⭐ 13 · ➕) - Large Language Model for Catalyst Property Prediction. Unlicensed
transformer
catalysis
+- A3MD (🥉2 · ⭐ 5 · 💀) - MPNN-like + Analytic Density Model = Accurate electron densities. Unlicensed
representation-learning
single-paper
+- LAMMPS-style pair potentials with GAP (🥉2 · ⭐ 3 · 💀) - A tutorial on how to create LAMMPS-style pair potentials and use them in combination with GAP potentials to run MD.. Unlicensed
ML-IAP
MD
rep-eng
+- MEGNetSparse (🥉2 · ⭐ 1 · 🐣) - A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,.. MIT
material-defect
+- Allegro-JAX (🥉1 · ⭐ 11 · 🐣) - JAX implementation of the Allegro interatomic potential. Unlicensed
+- APET (🥉1 · ⭐ 2 · ➕) - Atomic Positional Embedding-based Transformer. GPL-3.0
density-of-states
transformer
+- mlp (🥉1 · ⭐ 1 · 💀) - Proper orthogonal descriptors for efficient and accurate interatomic potentials... Unlicensed
Julia
+