diff --git a/README.md b/README.md index cbf9eb9..0e7e4ca 100644 --- a/README.md +++ b/README.md @@ -20,13 +20,13 @@
-This curated list contains 360 awesome open-source projects with a total of 190K stars grouped into 23 categories. All projects are ranked by a [project-quality score](https://github.com/best-of-lists/best-of-generator#project-quality-score), which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an [issue](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/issues/new/choose), submit a [pull request](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/pulls), or directly edit the [projects.yaml](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/edit/main/projects.yaml). +This curated list contains 420 awesome open-source projects with a total of 190K stars grouped into 23 categories. All projects are ranked by a [project-quality score](https://github.com/best-of-lists/best-of-generator#project-quality-score), which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an [issue](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/issues/new/choose), submit a [pull request](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/pulls), or directly edit the [projects.yaml](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/edit/main/projects.yaml). The current focus of this list is more on simulation data rather than experimental data, and more on materials rather than drug design. Nevertheless, contributions from other fields are warmly welcome! @@ -34,29 +34,29 @@ The current focus of this list is more on simulation data rather than experiment ## Contents -- [Active learning](#active-learning) _5 projects_ +- [Active learning](#active-learning) _6 projects_ - [Biomolecules](#biomolecules) _2 projects_ -- [Community resources](#community-resources) _21 projects_ -- [Datasets](#datasets) _35 projects_ +- [Community resources](#community-resources) _30 projects_ +- [Datasets](#datasets) _45 projects_ - [Data Structures](#data-structures) _4 projects_ -- [Density functional theory (ML-DFT)](#density-functional-theory-ml-dft) _26 projects_ -- [Educational Resources](#educational-resources) _24 projects_ +- [Density functional theory (ML-DFT)](#density-functional-theory-ml-dft) _32 projects_ +- [Educational Resources](#educational-resources) _28 projects_ - [Explainable Artificial intelligence (XAI)](#explainable-artificial-intelligence-xai) _4 projects_ -- [Electronic structure methods (ML-ESM)](#electronic-structure-methods-ml-esm) _3 projects_ +- [Electronic structure methods (ML-ESM)](#electronic-structure-methods-ml-esm) _5 projects_ - [General Tools](#general-tools) _22 projects_ -- [Generative Models](#generative-models) _11 projects_ -- [Interatomic Potentials (ML-IAP)](#interatomic-potentials-ml-iap) _63 projects_ -- [Language Models](#language-models) _17 projects_ -- [Materials Discovery](#materials-discovery) _9 projects_ +- [Generative Models](#generative-models) _14 projects_ +- [Interatomic Potentials (ML-IAP)](#interatomic-potentials-ml-iap) _69 projects_ +- [Language Models](#language-models) _20 projects_ +- [Materials Discovery](#materials-discovery) _12 projects_ - [Mathematical tools](#mathematical-tools) _11 projects_ - [Molecular Dynamics](#molecular-dynamics) _10 projects_ - [Reinforcement Learning](#reinforcement-learning) _2 projects_ -- [Representation Engineering](#representation-engineering) _23 projects_ -- [Representation Learning](#representation-learning) _54 projects_ -- [Universal Potentials](#universal-potentials) _2 projects_ +- [Representation Engineering](#representation-engineering) _25 projects_ +- [Representation Learning](#representation-learning) _58 projects_ +- [Universal Potentials](#universal-potentials) _9 projects_ - [Unsupervised Learning](#unsupervised-learning) _7 projects_ - [Visualization](#visualization) _3 projects_ -- [Wavefunction methods (ML-WFT)](#wavefunction-methods-ml-wft) _4 projects_ +- [Wavefunction methods (ML-WFT)](#wavefunction-methods-ml-wft) _5 projects_ - [Others](#others) _2 projects_ ## Explanation @@ -90,19 +90,19 @@ _Projects that focus on enabling active learning, iterative learning schemes for git clone https://github.com/mir-group/flare ``` -EPL-2.0
ML-IAP
MD
workflows
HTC
FAIR
EPL-2.0
ML-IAP
MD
workflows
HTC
FAIR
MIT
MIT
MIT
C++
ML-IAP
+- flare++ (🥈10 · ⭐ 35 · 💀) - A many-body extension of the FLARE code. MIT
C++
ML-IAP
+- ALEBREW (🥉3 · ⭐ 9 · 🐣) - Official repository for the paper Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic.. Custom
ML-IAP
MD
Apache-2
Apache-2
language-models
generative
pretrained
transformer
+🔗 GAP-ML.org community homepage ML-IAP
+
🔗 matsci.org - A community forum for the discussion of anything materials science, with a focus on computational materials science..
🔗 Matter Modeling Stack Exchange - Machine Learning - Forum StackExchange, site Matter Modeling, ML-tagged questions.
-CC-BY-4.0
general-ml
Python
CC-BY-4.0
general-ml
Python
MIT
datasets
benchmarking
model-repository
MIT
datasets
benchmarking
model-repository
BSD-3
datasets
MIT
generative
pretrained
drug-discovery
model-repository
GPL-3.0 license
MIT
datasets
benchmarking
model-repository
GPL-3.0 license
Apache-2
datasets
materials-discovery
Unlicensed
rep-learn
Apache-2
datasets
materials-discovery
Custom
Custom
Apache-2
MIT
datasets
Unlicensed
educational
rep-learn
Unlicensed
educational
rep-learn
Unlicensed
datasets
Unlicensed
rep-learn
MIT
active-learning
MIT
Unlicensed
datasets
MIT
datasets
- A Highly Opinionated List of Open-Source Materials Informatics Resources (🥉8 · ⭐ 120 · 💀) - A Highly Opinionated List of Open Source Materials Informatics Resources. MIT
+- Geometric-GNNs (🥉4 · ⭐ 85 · ➕) - List of Geometric GNNs for 3D atomic systems. Unlicensed
datasets
educational
rep-learn
+- GitHub topic materials-informatics (🥉1) - GitHub topic materials-informatics. Unlicensed
- MateriApps (🥉1) - A Portal Site of Materials Science Simulation. Unlicensed
-- GitHub topic materials-informatics - Unlicensed
model-repository
pretrained
language-models
+🔗 Graphs of Materials Project 20190401 - The dataset used to train the MEGNet interatomic potential. ML-IAP
+
+🔗 HME21 Dataset - High-temperature multi-element 2021 dataset for the PreFerred Potential (PFP).. UIP
+
🔗 JARVIS-Leaderboard ( ⭐ 55) - Explore State-of-the-Art Materials Design Methods: https://www.nature.com/articles/s41524-024-01259-w. model-repository
benchmarking
community-resource
educational
🔗 Materials Project - Charge Densities - Materials Project has started offering charge density information available for download via their public API.
+🔗 Materials Project Trajectory (MPtrj) Dataset - The dataset used to train the CHGNet universal potential. UIP
+
🔗 matterverse.ai - Database of yet-to-be-sythesized materials predicted using state-of-the-art machine learning algorithms.
+🔗 MPF.2021.2.8 - The dataset used to train the M3GNet universal potential. UIP
+
🔗 NRELMatDB - Computational materials database with the specific focus on materials for renewable energy applications including, but..
🔗 Quantum-Machine.org Datasets - Collection of datasets, including QM7, QM9, etc. MD, DFT. Small organic molecules, mostly.
@@ -318,23 +381,23 @@ _Datasets, databases and trained models for atomistic ML._
MIT
MIT
MIT
catalysis
MIT
catalysis
CC-BY-4.0
CC-BY-4.0
CC-BY-NC-SA 4.0
ML-DFT
CC-BY-NC-SA-4.0
ML-DFT
MIT
data-structures
Apache-2
LGPL-3.0
community-resource
model-repository
Unlicensed
community-resource
Custom
superconductors
materials-discovery
Unlicensed
MIT
biomolecules
benchmarking
- OpenKIM (🥈10 · ⭐ 31 · 💀) - The Open Knowledgebase of Interatomic Models (OpenKIM) aims to be an online resource for standardized testing, long-.. LGPL-2.1
model-repository
knowledge-base
pretrained
-- ANI-1 Dataset (🥉8 · ⭐ 95 · 💀) - A data set of 20 million calculated off-equilibrium conformations for organic molecules. MIT
+- ANI-1 Dataset (🥉8 · ⭐ 96 · 💀) - A data set of 20 million calculated off-equilibrium conformations for organic molecules. MIT
- MoleculeNet Leaderboard (🥉8 · ⭐ 87 · 💀) - MIT
benchmarking
- GEOM (🥉7 · ⭐ 190 · 💀) - GEOM: Energy-annotated molecular conformations. Unlicensed
drug-discovery
- ANI-1x Datasets (🥉6 · ⭐ 53 · 💀) - The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for organic molecules. MIT
- COMP6 Benchmark dataset (🥉6 · ⭐ 39 · 💀) - COMP6 Benchmark dataset for ML potentials. MIT
- OPTIMADE providers dashboard (🥉6 · ⭐ 1) - A dashboard of known providers. Unlicensed
-- Visual Graph Datasets (🥉5 · ⭐ 1) - Datasets for the training of graph neural networks (GNNs) and subsequent visualization of attributional explanations.. MIT
+- Visual Graph Datasets (🥉5 · ⭐ 1) - Datasets for the training of graph neural networks (GNNs) and subsequent visualization of attributional explanations.. MIT
XAI
rep-learn
- linear-regression-benchmarks (🥉5 · ⭐ 1 · 💀) - Data sets used for linear regression benchmarks. MIT
benchmarking
single-paper
- paper-data-redundancy (🥉4 · ⭐ 7) - Repo for the paper Exploiting redundancy in large materials datasets for efficient machine learning with less data. BSD-3
small-data
single-paper
- nep-data (🥉2 · ⭐ 12 · 💀) - Data related to the NEP machine-learned potential of GPUMD. Unlicensed
ML-IAP
MD
transport-phenomena
+- tmQM_wB97MV Dataset (🥉2 · ⭐ 5 · ➕) - Code for Applying Large Graph Neural Networks to Predict Transition Metal Complex Energies Using the tmQM_wB97MV.. Unlicensed
catalysis
rep-learn
LGPL-3.0
LGPL-3.0
BSD-3
Rust
C-lang
C++
Python
neural-operator
pinn
datasets
single-paper
+
Apache-2
BSD-3
GPL-3.0
rep-learn
GPL-3.0
rep-learn
LGPL-3.0
GPL-3.0
rep-learn
magnetism
C-lang
MIT
excited-states
general-tool
Apache-2
+- [GitHub](https://github.com/lcmd-epfl/Q-stack) (👨💻 7 · 🔀 5 · 📋 29 - 31% open · ⏱️ 19.07.2024):
+
+ ```
+ git clone https://github.com/lcmd-epfl/Q-stack
+ ```
+MIT
rep-learn
MIT
rep-learn
Apache-2
- NeuralXC (🥈11 · ⭐ 33 · 💀) - Implementation of a machine learned density functional. BSD-3
- ACEhamiltonians (🥈10 · ⭐ 12 · 💀) - Provides tools for constructing, fitting, and predicting self-consistent Hamiltonian and overlap matrices in solid-.. MIT
Julia
-- PROPhet (🥉9 · ⭐ 62 · 💀) - PROPhet is a code to integrate machine learning techniques with first-principles quantum chemistry approaches. GPL-3.0
ML-IAP
MD
single-paper
C++
+- PROPhet (🥈9 · ⭐ 62 · 💀) - PROPhet is a code to integrate machine learning techniques with first-principles quantum chemistry approaches. GPL-3.0
ML-IAP
MD
single-paper
C++
+- Mat2Spec (🥉7 · ⭐ 27 · 💀) - Density of States Prediction for Materials Discovery via Contrastive Learning from Probabilistic Embeddings. MIT
spectroscopy
- Libnxc (🥉7 · ⭐ 16 · 💀) - A library for using machine-learned exchange-correlation functionals for density-functional theory. MPL-2.0
C++
Fortran
+- rho_learn (🥉7 · ⭐ 3 · ➕) - A proof-of-concept framework for torch-based learning of the electron density and related scalar fields. MIT
- DeepH-E3 (🥉6 · ⭐ 60 · 💀) - General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian. MIT
magnetism
- DeepDFT (🥉6 · ⭐ 54 · 💀) - Official implementation of DeepDFT model. MIT
-- Mat2Spec (🥉6 · ⭐ 27 · 💀) - MIT
spectroscopy
- xDeepH (🥉5 · ⭐ 31 · 💀) - Extended DeepH (xDeepH) method for magnetic materials. LGPL-3.0
magnetism
Julia
- ML-DFT (🥉5 · ⭐ 23 · 💀) - A package for density functional approximation using machine learning. MIT
- charge-density-models (🥉4 · ⭐ 10 · 💤) - Tools to build charge density models using [fairchem](https://github.com/FAIR-Chem/fairchem). MIT
rep-learn
@@ -557,7 +692,7 @@ _Projects and models that focus on quantities of DFT, such as density functional
- APET (🥉3 · ⭐ 4 · 💤) - Atomic Positional Embedding-based Transformer. GPL-3.0
density-of-states
transformer
- CSNN (🥉3 · ⭐ 2 · 💀) - Primary codebase of CSNN - Concentric Spherical Neural Network for 3D Representation Learning. BSD-3
- MALADA (🥉3 · ⭐ 1 · 💀) - MALA Data Acquisition: Helpful tools to build data for MALA. BSD-3
-- A3MD (🥉2 · ⭐ 8 · 💀) - MPNN-like + Analytic Density Model = Accurate electron densities. Unlicensed
representation-learning
single-paper
+- A3MD (🥉2 · ⭐ 8 · 💀) - MPNN-like + Analytic Density Model = Accurate electron densities. Unlicensed
rep-learn
single-paper
- kdft (🥉1 · ⭐ 2 · 💀) - The Kernel Density Functional (KDF) code allows generating ML based DFT functionals. Unlicensed
- MLDensity ( ⭐ 2 · 💀) - Linear Jacobi-Legendre expansion of the charge density for machine learning-accelerated electronic structure.. Unlicensed
community-resource
rep-learn
🔗 AL4MS 2023 workshop tutorials active-learning
-NIST
NIST
MIT
chemistry
CCO-1.0
MIT
ML-IAP
rep-learn
MD
BSD-3
BSD-3
MIT
ML-IAP
rep-learn
MD
MIT
rep-learn
- Deep Learning for Molecules and Materials Book (🥇11 · ⭐ 600 · 💀) - Deep learning for molecules and materials book. Custom
@@ -637,15 +782,17 @@ _Tutorials, guides, cookbooks, recipes, etc._
- RDKit Tutorials (🥈8 · ⭐ 250 · 💀) - Tutorials to learn how to work with the RDKit. Custom
- MAChINE (🥉7 · ⭐ 1 · 💤) - Client-Server Web App to introduce usage of ML in materials science to beginners. MIT
- Applied AI for Materials (🥉6 · ⭐ 58 · 💀) - Course materials for Applied AI for Materials Science and Engineering. Unlicensed
+- ML for catalysis tutorials (🥉6 · ⭐ 8 · 💀) - A jupyter book repo for tutorial on how to use OCP ML models for catalysis. MIT
- AI4Science101 (🥉5 · ⭐ 83 · 💀) - AI for Science. Unlicensed
- Machine Learning for Materials Hard and Soft (🥉5 · ⭐ 34 · 💀) - ESI-DCAFM-TACO-VDSP Summer School on Machine Learning for Materials Hard and Soft. Unlicensed
- Data Handling, DoE and Statistical Analysis for Material Chemists (🥉5 · ⭐ 1 · 💀) - Notebooks for workshops of DoE course, hosted by the Computational Materials Chemistry group at Uppsala University. GPL-3.0
- ML-in-chemistry-101 (🥉4 · ⭐ 67 · 💀) - The course materials for Machine Learning in Chemistry 101. Unlicensed
- chemrev-gpr (🥉4 · ⭐ 6 · 💀) - Notebooks accompanying the paper on GPR in materials and molecules in Chemical Reviews 2020. Unlicensed
+- AI4ChemMat Hands-On Series (🥉4 · ⭐ 1 · ➕) - Hands-On Series organized by Chemistry and Materials working group at Argonne Nat Lab. MPL-2.0
+- PiNN Lab (🥉3 · ⭐ 2 · 💀) - Material for running a lab session on atomic neural networks. GPL-3.0
- MLDensity_tutorial (🥉2 · ⭐ 7 · 💀) - Tutorial files to work with ML for the charge density in molecules and solids. Unlicensed
- LAMMPS-style pair potentials with GAP (🥉2 · ⭐ 4 · 💀) - A tutorial on how to create LAMMPS-style pair potentials and use them in combination with GAP potentials to run MD.. Unlicensed
ML-IAP
MD
rep-eng
- MALA Tutorial (🥉2 · ⭐ 2 · 💤) - A full MALA hands-on tutorial. Unlicensed
-- PiNN Lab (🥉2 · ⭐ 2 · 💀) - GPL-3.0
MIT
-- halex (🥈4 · ⭐ 2) - Hamiltonian Learning for Excited States https://doi.org/10.48550/arXiv.2311.00844. Unlicensed
excited-states
+- QMLearn (🥈5 · ⭐ 11 · 💀) - Quantum Machine Learning by learning one-body reduced density matrices in the AO basis... MIT
+- q-pac (🥈5 · ⭐ 4 · 💀) - Kernel charge equilibration method. MIT
electrostatics
+- halex (🥉4 · ⭐ 2) - Hamiltonian Learning for Excited States https://doi.org/10.48550/arXiv.2311.00844. Unlicensed
excited-states
- e3psi (🥉3 · ⭐ 3 · 💤) - Equivariant machine learning library for learning from electronic structures. LGPL-3.0
MIT
BSD-3
C++
GPL-2.0
MD
ML-IAP
rep-eng
Fortran
GPL-3.0 license
rep-learn
generative
ML-IAP
MD
ML-DFT
ML-WFT
biomolecules
GPL-3.0 license
rep-learn
generative
ML-IAP
MD
ML-DFT
ML-WFT
biomolecules
MIT
-- Automatminer (🥉15 · ⭐ 130 · 💀) - An automatic engine for predicting materials properties. Custom
+- Automatminer (🥉15 · ⭐ 130 · 💀) - An automatic engine for predicting materials properties. Custom
autoML
- AMPtorch (🥉11 · ⭐ 58 · 💀) - AMPtorch: Atomistic Machine Learning Package (AMP) - PyTorch. GPL-3.0
- OpenChem (🥉10 · ⭐ 670 · 💀) - OpenChem: Deep Learning toolkit for Computational Chemistry and Drug Design Research. MIT
- JAXChem (🥉7 · ⭐ 76 · 💀) - JAXChem is a JAX-based deep learning library for complex and versatile chemical modeling. MIT
@@ -886,19 +1035,31 @@ _Projects that implement generative models for atomistic ML._
```
git clone https://github.com/GT4SD/gt4sd-core
```
-- [PyPi](https://pypi.org/project/gt4sd) (📥 620 / month):
+- [PyPi](https://pypi.org/project/gt4sd) (📥 660 / month):
```
pip install gt4sd
```
MIT
MIT
transfer-learning
pretrained
transformer
MIT
MIT
viz
Apache-2
drug-discovery
multimodal
pretrained
rep-learn
MIT
- EDM (🥈10 · ⭐ 420 · 💀) - E(3) Equivariant Diffusion Model for Molecule Generation in 3D. MIT
- G-SchNet (🥉8 · ⭐ 130 · 💀) - G-SchNet - a generative model for 3d molecular structures. MIT
-- cG-SchNet (🥉8 · ⭐ 49 · 💀) - cG-SchNet - a conditional generative neural network for 3d molecular structures. MIT
+- cG-SchNet (🥉8 · ⭐ 50 · 💀) - cG-SchNet - a conditional generative neural network for 3d molecular structures. MIT
- bVAE-IM (🥉8 · ⭐ 11 · 💀) - Implementation of Chemical Design with GPU-based Ising Machine. MIT
QML
single-paper
- rxngenerator (🥉7 · ⭐ 11 · 💀) - A generative model for molecular generation via multi-step chemical reactions. MIT
- MolSLEPA (🥉5 · ⭐ 5 · 💀) - Interpretable Fragment-based Molecule Design with Self-learning Entropic Population Annealing. MIT
XAI
+- Mapping out phase diagrams with generative classifiers (🥉4 · ⭐ 7 · 💀) - Repository for our ``Mapping out phase diagrams with generative models paper. MIT
phase-transition
LGPL-3.0
C++
MIT
MD
rep-learn
transformer
pretrained
MIT
MD
rep-learn
transformer
pretrained
MIT
GPL-3.0
MD
C++
electrostatics
GPL-3.0
MD
C++
electrostatics
Unlicensed
pretrained
rep-learn
catalysis
Unlicensed
pretrained
rep-learn
catalysis
MIT
MIT
MIT
MIT
MIT
Custom
Custom
MIT
rep-learn
transformer
MIT
rep-learn
transformer
MIT
Julia
Custom
Custom
active-learning
Custom
active-learning
MIT
Julia
MIT
GPL-3.0
Custom
Julia
BSD-3
multifidelity
- n2p2 (🥈13 · ⭐ 220 · 💀) - n2p2 - A Neural Network Potential Package. GPL-3.0
C++
@@ -1316,23 +1498,28 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc
- SchNet (🥉9 · ⭐ 210 · 💀) - SchNet - a deep learning architecture for quantum chemistry. MIT
- GemNet (🥉9 · ⭐ 180 · 💀) - GemNet model in PyTorch, as proposed in GemNet: Universal Directional Graph Neural Networks for Molecules (NeurIPS.. Custom
- ACE.jl (🥉9 · ⭐ 66 · 💀) - Parameterisation of Equivariant Properties of Particle Systems. Custom
Julia
+- calorine (🥉9 · ⭐ 12 · 💀) - A Python package for constructing and sampling neuroevolution potential models. https://doi.org/10.21105/joss.06264. Custom
- AIMNet (🥉8 · ⭐ 94 · 💀) - Atoms In Molecules Neural Network Potential. MIT
single-paper
- SNAP (🥉8 · ⭐ 36 · 💀) - Repository for spectral neighbor analysis potential (SNAP) model development. BSD-3
- Atomistic Adversarial Attacks (🥉8 · ⭐ 30 · 💀) - Code for performing adversarial attacks on atomistic systems using NN potentials. MIT
probabilistic
-- calorine (🥉8 · ⭐ 12 · 💀) - A Python package for constructing and sampling neuroevolution potential models. https://doi.org/10.21105/joss.06264. Custom
-- PhysNet (🥉7 · ⭐ 89 · 💀) - Code for training PhysNet models. MIT
electrostatics
-- SIMPLE-NN v2 (🥉7 · ⭐ 39 · 💤) - GPL-3.0
+- PhysNet (🥉7 · ⭐ 88 · 💀) - Code for training PhysNet models. MIT
electrostatics
- MLIP-3 (🥉6 · ⭐ 25 · 💀) - MLIP-3: Active learning on atomic environments with Moment Tensor Potentials (MTP). BSD-2
C++
- testing-framework (🥉6 · ⭐ 11 · 💀) - The purpose of this repository is to aid the testing of a large number of interatomic potentials for a variety of.. Unlicensed
benchmarking
- PANNA (🥉6 · ⭐ 9 · 💀) - A package to train and validate all-to-all connected network models for BP[1] and modified-BP[2] type local atomic.. MIT
benchmarking
+- GN-MM (🥉5 · ⭐ 10 · 💀) - The Gaussian Moment Neural Network (GM-NN) package developed for large-scale atomistic simulations employing atomistic.. MIT
active-learning
MD
rep-eng
magnetism
- Alchemical learning (🥉5 · ⭐ 2 · 💀) - Code for the Modeling high-entropy transition metal alloys with alchemical compression article. BSD-3
+- Allegro-Legato (🥉4 · ⭐ 19 · 💤) - An extension of Allegro with enhanced robustness and time-to-failure. MIT
MD
- glp (🥉4 · ⭐ 17) - tools for graph-based machine-learning potentials in jax. MIT
- TensorPotential (🥉4 · ⭐ 7 · 💀) - Tensorpotential is a TensorFlow based tool for development, fitting ML interatomic potentials from electronic.. Custom
- ACE Workflows (🥉4 · 💤) - Workflow Examples for ACE Models. Unlicensed
Julia
workflows
- PeriodicPotentials (🥉4 · 💀) - A Periodic table app that displays potentials based on the selected elements. MIT
community-resource
viz
JavaScript
+- MEGNetSparse (🥉3 · ⭐ 1 · 💤) - A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,.. MIT
material-defect
+- PyFLAME (🥉3 · 💀) - An automated approach for developing neural network interatomic potentials with FLAME.. Unlicensed
active-learning
structure-prediction
structure-optimization
rep-eng
Fortran
- SingleNN (🥉2 · ⭐ 8 · 💀) - An efficient package for training and executing neural-network interatomic potentials. Unlicensed
C++
-- MEGNetSparse (🥉2 · ⭐ 1 · 💤) - A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,.. MIT
material-defect
+- AisNet (🥉2 · ⭐ 3 · 💀) - A Universal Interatomic Potential Neural Network with Encoded Local Environment Features.. MIT
- RuNNer (🥉2) - The RuNNer Neural Network Energy Representation is a Fortran-based framework for the construction of Behler-.. GPL-3.0
Fortran
+- nnp-pre-training (🥉1 · ⭐ 6 · 💤) - Synthetic pre-training for neural-network interatomic potentials. Unlicensed
pretrained
MD
+- mag-ace (🥉1 · ⭐ 2 · 💤) - Magnetic ACE potential. FORTRAN interface for LAMMPS SPIN package. Unlicensed
magnetism
MD
Fortran
- mlp (🥉1 · ⭐ 1 · 💀) - Proper orthogonal descriptors for efficient and accurate interatomic potentials... Unlicensed
Julia
Apache-2
ai-agent
Apache-2
ai-agent
MIT
ai-agent
MIT
ai-agent
MIT
datasets
MIT
datasets
MIT
generative
MIT
BSD-3
materials-discovery
cheminformatics
generative
MD
multimodal
language-models
Python
general-tool
BSD-3
materials-discovery
cheminformatics
generative
MD
multimodal
language-models
Python
general-tool
Apache-2
generative
multimodal
pretrained
CC-BY-NC-4.0
materials-discovery
MIT
magnetism
generative
proprietary
+
MIT
Apache-2
UIP
datasets
rep-learn
proprietary
Apache-2
UIP
datasets
rep-learn
proprietary
Unlicensed
probabilistic
- AGOX (🥈7 · ⭐ 13 · 💀) - AGOX is a package for global optimization of atomic system using e.g. the energy calculated from density functional.. GPL-3.0
structure-optimization
-- Computational Autonomy for Materials Discovery (CAMD) (🥉6 · ⭐ 1 · 💀) - Agent-based sequential learning software for materials discovery. Apache-2
+- Computational Autonomy for Materials Discovery (CAMD) (🥈6 · ⭐ 1 · 💀) - Agent-based sequential learning software for materials discovery. Apache-2
+- MAGUS (🥉4 · ⭐ 56 · 💀) - Machine learning And Graph theory assisted Universal structure Searcher. Unlicensed
structure-prediction
active-learning
- SPINNER (🥉4 · ⭐ 12 · 💀) - SPINNER (Structure Prediction of Inorganic crystals using Neural Network potentials with Evolutionary and Random.. GPL-3.0
C++
structure-prediction
+- ML-atomate (🥉4 · ⭐ 3 · 💤) - Machine learning-assisted Atomate code for autonomous computational materials screening. GPL-3.0
active-learning
workflows
- closed-loop-acceleration-benchmarks (🥉4 · 💀) - Data and scripts in support of the publication By how much can closed-loop frameworks accelerate computational.. MIT
materials-discovery
active-learning
single-paper
- sl_discovery (🥉3 · ⭐ 5 · 💀) - Data processing and models related to Quantifying the performance of machine learning models in materials discovery. Apache-2
materials-discovery
single-paper
Apache-2
MIT
probabilistic
active-learning
MIT
probabilistic
active-learning
MIT
MIT
Julia
Unlicensed
C++
MIT
rep-learn
-- cnine (🥉6 · ⭐ 4 · 📈) - Cnine tensor library. Unlicensed
C++
-- EquivariantOperators.jl (🥉5 · ⭐ 18 · 💤) - MIT
Julia
+- cnine (🥉6 · ⭐ 4) - Cnine tensor library. Unlicensed
C++
- torch_spex (🥉3 · ⭐ 3) - Spherical expansions in PyTorch. Unlicensed
- Wigner Kernels (🥉2 · ⭐ 2 · 💀) - Collection of programs to benchmark Wigner kernels. Unlicensed
benchmarking
MIT
enhanced-sampling
MIT
enhanced-sampling
Custom
ML-IAP
C++
GPL-2.0
GPL-2.0
Custom
ML-IAP
C++
MIT
ML-IAP
MIT
ML-IAP
Apache-2
Apache-2
MIT
pretrained
small-data
transfer-learning
MIT
pretrained
small-data
transfer-learning
GPL-3.0
Apache-2
Fortran
GPL-3.0
BSD-3
Rust
C++
LGPL-3.0
C-lang
LGPL-3.0
C-lang
GPL-3.0
surface-science
+- CatLearn (🥇17 · ⭐ 99 · 💀) - GPL-3.0
surface-science
- cmlkit (🥈10 · ⭐ 34 · 💀) - tools for machine learning in condensed matter physics and quantum chemistry. MIT
benchmarking
-- CBFV (🥉9 · ⭐ 23 · 💀) - Tool to quickly create a composition-based feature vector. Unlicensed
-- BenchML (🥉9 · ⭐ 15 · 💀) - ML benchmarking and pipeling framework. Apache-2
benchmarking
-- SkipAtom (🥉7 · ⭐ 23 · 💀) - Distributed representations of atoms, inspired by the Skip-gram model. MIT
+- CBFV (🥈9 · ⭐ 23 · 💀) - Tool to quickly create a composition-based feature vector. Unlicensed
+- BenchML (🥈9 · ⭐ 15 · 💀) - ML benchmarking and pipeling framework. Apache-2
benchmarking
+- SkipAtom (🥉8 · ⭐ 23 · 💀) - Distributed representations of atoms, inspired by the Skip-gram model. MIT
- milad (🥉6 · ⭐ 29 · 💀) - Moment Invariants Local Atomic Descriptor. GPL-3.0
generative
- fplib (🥉6 · ⭐ 7 · 💀) - a fingerprint library. MIT
C-lang
single-paper
- SOAPxx (🥉6 · ⭐ 7 · 💀) - A SOAP implementation. GPL-2.0
C++
- soap_turbo (🥉6 · ⭐ 4 · 💀) - soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP. Custom
Fortran
- pyLODE (🥉6 · ⭐ 3 · 💀) - Pythonic implementation of LOng Distance Equivariants. Apache-2
electrostatics
+- MXenes4HER (🥉5 · ⭐ 5 · 💀) - Predicting hydrogen evolution (HER) activity over 4500 MXene materials https://doi.org/10.1039/D3TA00344B. GPL-3.0
materials-discovery
catalysis
scikit-learn
single-paper
- SISSO++ (🥉5 · ⭐ 3 · 💀) - C++ Implementation of SISSO with python bindings. Apache-2
C++
+- automl-materials (🥉4 · ⭐ 5 · 💀) - AutoML for Regression Tasks on Small Tabular Data in Materials Design. MIT
autoML
benchmarking
single-paper
- magnetism-prediction (🥉4 · ⭐ 1 · 💀) - DFT-aided Machine Learning Search for Magnetism in Fe-based Bimetallic Chalcogenides. Apache-2
magnetism
single-paper
- ML-for-CurieTemp-Predictions (🥉3 · ⭐ 1 · 💀) - Machine Learning Predictions of High-Curie-Temperature Materials. MIT
single-paper
magnetism
- AMP (🥉2) - Amp is an open-source package designed to easily bring machine-learning to atomistic calculations. Unlicensed
@@ -1821,7 +2049,7 @@ _General models that learn a representations aka embeddings of atomistic systems
Apache-2
MIT
general-ml
MIT
BSD-3
multifidelity
Custom
MIT
pretrained
Apache-2
Apache-2
MIT
pretrained
MIT
MIT
workflows
benchmarking
MIT
transformer
pretrained
Custom
BSD-3
Custom
workflows
MIT
transformer
MIT
transformer
Apache-2
pretrained
material-defect
MIT
Apache-2
pretrained
material-defect
MIT
MIT
MIT
Apache-2
- benchmarking-gnns (🥈14 · ⭐ 2.5K · 💀) - Repository for benchmarking graph neural networks. MIT
single-paper
benchmarking
- Crystal Graph Convolutional Neural Networks (CGCNN) (🥈12 · ⭐ 620 · 💀) - Crystal graph convolutional neural networks for predicting material properties. MIT
- Neural fingerprint (nfp) (🥈12 · ⭐ 57 · 💀) - Keras layers for end-to-end learning with rdkit and pymatgen. Custom
- Compositionally-Restricted Attention-Based Network (CrabNet) (🥈12 · ⭐ 12 · 💀) - Predict materials properties using only the composition information!. MIT
+- pretrained-gnns (🥈10 · ⭐ 950 · 💀) - Strategies for Pre-training Graph Neural Networks. MIT
pretrained
- GDC (🥈10 · ⭐ 260 · 💀) - Graph Diffusion Convolution, as proposed in Diffusion Improves Graph Learning (NeurIPS 2019). MIT
generative
-- SE(3)-Transformers (🥈9 · ⭐ 480 · 💀) - code for the SE3 Transformers paper: https://arxiv.org/abs/2006.10503. MIT
single-paper
transformer
-- molecularGNN_smiles (🥈9 · ⭐ 290 · 💀) - The code of a graph neural network (GNN) for molecules, which is based on learning representations of r-radius.. Apache-2
-- GATGNN: Global Attention Graph Neural Network (🥈9 · ⭐ 67 · 💀) - Pytorch Repository for our work: Graph convolutional neural networks with global attention for improved materials.. MIT
-- UVVisML (🥈9 · ⭐ 21 · 💀) - Predict optical properties of molecules with machine learning. MIT
optical-properties
single-paper
probabilistic
+- SE(3)-Transformers (🥉9 · ⭐ 480 · 💀) - code for the SE3 Transformers paper: https://arxiv.org/abs/2006.10503. MIT
single-paper
transformer
+- molecularGNN_smiles (🥉9 · ⭐ 290 · 💀) - The code of a graph neural network (GNN) for molecules, which is based on learning representations of r-radius.. Apache-2
+- GATGNN: Global Attention Graph Neural Network (🥉9 · ⭐ 67 · 💀) - Pytorch Repository for our work: Graph convolutional neural networks with global attention for improved materials.. MIT
+- UVVisML (🥉9 · ⭐ 21 · 💀) - Predict optical properties of molecules with machine learning. MIT
optical-properties
single-paper
probabilistic
- CGAT (🥉8 · ⭐ 25 · 💀) - Crystal graph attention neural networks for materials prediction. MIT
-- FAENet (🥉8 · ⭐ 25 · 💤) - MIT
- T-e3nn (🥉8 · ⭐ 8 · 💀) - Time-reversal Euclidean neural networks based on e3nn. MIT
magnetism
+- tensorfieldnetworks (🥉7 · ⭐ 150 · 💀) - Rotation- and translation-equivariant neural networks for 3D point clouds. MIT
- DTNN (🥉7 · ⭐ 76 · 💀) - Deep Tensor Neural Network. MIT
- Cormorant (🥉7 · ⭐ 59 · 💀) - Codebase for Cormorant Neural Networks. Custom
- AdsorbML (🥉7 · ⭐ 35 · 💀) - MIT
surface-science
single-paper
- escnn_jax (🥉7 · ⭐ 26 · 💀) - Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/. Custom
- ML4pXRDs (🥉7 · 💀) - Contains code to train neural networks based on simulated powder XRDs from synthetic crystals. MIT
XRD
single-paper
-- tensorfieldnetworks (🥉6 · ⭐ 150 · 💀) - MIT
- MACE-Layer (🥉6 · ⭐ 33 · 💀) - Higher order equivariant graph neural networks for 3D point clouds. MIT
- charge_transfer_nnp (🥉6 · ⭐ 28 · 💀) - Graph neural network potential with charge transfer. MIT
electrostatics
- GLAMOUR (🥉6 · ⭐ 20 · 💀) - Graph Learning over Macromolecule Representations. MIT
single-paper
- Autobahn (🥉5 · ⭐ 30 · 💀) - Repository for Autobahn: Automorphism Based Graph Neural Networks. MIT
+- FieldSchNet (🥉5 · ⭐ 16 · 💀) - Deep neural network for molecules in external fields. MIT
- SCFNN (🥉5 · ⭐ 15 · 💀) - Self-consistent determination of long-range electrostatics in neural network potentials. MIT
C++
electrostatics
single-paper
- CraTENet (🥉5 · ⭐ 13 · 💀) - An attention-based deep neural network for thermoelectric transport properties. MIT
transport-phenomena
+- EGraFFBench (🥉5 · ⭐ 8 · 💤) - Unlicensed
single-paper
benchmarking
ML-IAP
- Per-Site CGCNN (🥉5 · ⭐ 1 · 💀) - Crystal graph convolutional neural networks for predicting material properties. MIT
pretrained
single-paper
- Per-site PAiNN (🥉5 · ⭐ 1 · 💀) - Fork of PaiNN for PerovskiteOrderingGCNNs. MIT
probabilistic
pretrained
single-paper
-- Atom2Vec (🥉4 · ⭐ 31) - Atom2Vec: a simple way to describe atoms for machine learning. Unlicensed
-- FieldSchNet (🥉4 · ⭐ 16 · 💀) - MIT
+- Atom2Vec (🥉4 · ⭐ 32) - Atom2Vec: a simple way to describe atoms for machine learning. Unlicensed
- Graph Transport Network (🥉4 · ⭐ 16 · 💀) - Graph transport network (GTN), as proposed in Scalable Optimal Transport in High Dimensions for Graph Distances,.. Custom
transport-phenomena
- gkx: Green-Kubo Method in JAX (🥉4 · ⭐ 3) - Green-Kubo + JAX + MLPs = Anharmonic Thermal Conductivities Done Fast. MIT
transport-phenomena
- atom_by_atom (🥉3 · ⭐ 6 · 💤) - Atom-by-atom design of metal oxide catalysts for the oxygen evolution reaction with Machine Learning. Unlicensed
surface-science
single-paper
@@ -2061,9 +2318,23 @@ _General models that learn a representations aka embeddings of atomistic systems
_Machine-learned interatomic potentials (ML-IAP) that have been trained on large, chemically and structural diverse datasets. For materials, this means e.g. datasets that include a majority of the periodic table._
-Custom
ML-IAP
MD
pretrained
electrostatics
magnetism
structure-relaxation
ML-IAP
+
+🔗 PreFerred Potential (PFP) - Universal neural network potential for material discovery https://doi.org/10.1038/s41467-022-30687-9. ML-IAP
proprietary
+
+🔗 MatterSim - A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures https://doi.org/10.48550/arXiv.2405.04967. ML-IAP
active-learning
proprietary
+
+LGPL-3.0
ML-IAP
pretrained
workflows
datasets
Custom
ML-IAP
MD
pretrained
electrostatics
magnetism
structure-relaxation
GPL-3.0
ML-IAP
MD
pretrained
MIT
ML-IAP
pretrained
rep-learn
MD
CC-BY-NC-4.0
pretrained
ML-IAP
general-tool
BSD-3
ML-IAP
pretrained
+- M3GNet (🥈17 · ⭐ 220 · 💀) - Materials graph network with 3-body interactions featuring a DFT surrogate crystal relaxer and a state-of-the-art.. BSD-3
ML-IAP
pretrained
GPL-3.0
C++
-- Coarse-Graining-Auto-encoders (🥉4 · ⭐ 21 · 💀) - Unlicensed
single-paper
-- paper-ml-robustness-material-property (🥉4 · ⭐ 4 · 💀) - BSD-3
datasets
single-paper
+- Coarse-Graining-Auto-encoders (🥉5 · ⭐ 21 · 💀) - Implementation of coarse-graining Autoencoders. Unlicensed
single-paper
+- paper-ml-robustness-material-property (🥉5 · ⭐ 4 · 💀) - A critical examination of robustness and generalizability of machine learning prediction of materials properties. BSD-3
datasets
single-paper
- KmdPlus (🥉2 · ⭐ 3 · 💤) - This module contains a class for treating kernel mean descriptor (KMD), and a function for generating descriptors with.. Unlicensed
- Descriptor Embedding and Clustering for Atomisitic-environment Framework (DECAF) ( ⭐ 2) - Provides a workflow to obtain clustering of local environments in dataset of structures. Unlicensed
MIT
general-tool
probabilistic
MIT
general-tool
probabilistic
BSD-3
JavaScript
EPL-2.0
MD
generative
JavaScript
EPL-2.0
MD
generative
JavaScript
MIT
Custom
MIT
rep-eng
Julia
- SchNOrb (🥉5 · ⭐ 58 · 💀) - Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions. MIT
MIT
pretrained
+- KSR-DFT (🥇6 · ⭐ 4 · 💀) - Kohn-Sham regularizer for machine-learned DFT functionals. Apache-2
Apache-2
ai-agent
+- DScribe (🥇23 · ⭐ 390 · 📈) - DScribe is a python package for creating machine learning descriptors for atomistic systems. Apache-2
+- pymatviz (🥇21 · ⭐ 150 · 📈) - A toolkit for visualizations in materials informatics. MIT
general-tool
probabilistic
+- e3nn-jax (🥈20 · ⭐ 170 · 📈) - jax library for E3 Equivariant Neural Networks. Apache-2
+
+## 📉 Trending Down
+
+_Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity._
+
+- dpdata (🥇23 · ⭐ 200 · 📉) - Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc. LGPL-3.0
+- Best-of Machine Learning with Python (🥇21 · ⭐ 16K · 📉) - A ranked list of awesome machine learning Python libraries. Updated weekly. CC-BY-4.0
general-ml
Python
+- Open Databases Integration for Materials Design (OPTIMADE) (🥈17 · ⭐ 76 · 📉) - Specification of a common REST API for access to materials databases. CC-BY-4.0
+- openmm-torch (🥈16 · ⭐ 180 · 📉) - OpenMM plugin to define forces with neural networks. Custom
ML-IAP
C++
+- MatBench Discovery (🥈16 · ⭐ 82 · 📉) - An evaluation framework for machine learning models simulating high-throughput materials discovery. MIT
datasets
benchmarking
model-repository
+
+## ➕ Added Projects
+
+_Projects that were recently added to this best-of list._
+
+- DPA-2 (🥇26 · ⭐ 1.4K · ➕) - Towards a universal large atomic model for molecular and material simulation https://doi.org/10.48550/arXiv.2312.15492. LGPL-3.0
ML-IAP
pretrained
workflows
datasets
+- Graphormer (🥈16 · ⭐ 2K · ➕) - Graphormer is a general-purpose deep learning backbone for molecular modeling. MIT
transformer
pretrained
+- OpenML (🥈16 · ⭐ 660 · 💤) - Open Machine Learning. BSD-3
datasets
+- PMTransformer (🥇16 · ⭐ 82 · ➕) - Universal Transfer Learning in Porous Materials, including MOFs. MIT
transfer-learning
pretrained
transformer
+- SevenNet (🥉14 · ⭐ 86 · ➕) - SevenNet (Scalable EquiVariance Enabled Neural Network) is a graph neural network interatomic potential package that.. GPL-3.0
ML-IAP
MD
pretrained
+- HydraGNN (🥈14 · ⭐ 56 · ➕) - Distributed PyTorch implementation of multi-headed graph convolutional neural networks. BSD-3
+- ChatMOF (🥈13 · ⭐ 53 · ➕) - Predict and Inverse design for metal-organic framework with large-language models (llms). MIT
generative
+- MACE-MP (🥉12 · ⭐ 33 · ➕) - Pretrained foundation models for materials chemistry. MIT
ML-IAP
pretrained
rep-learn
MD
+- Neural-Network-Models-for-Chemistry (🥈11 · ⭐ 59 · ➕) - A collection of Nerual Network Models for chemistry. Unlicensed
rep-learn
+- load-atoms (🥈11 · ⭐ 37 · ➕) - download and manipulate atomistic datasets. MIT
data-structures
+- AI4Chemistry course (🥈10 · ⭐ 130 · ➕) - EPFL AI for chemistry course, Spring 2023. https://schwallergroup.github.io/ai4chem_course. MIT
chemistry
+- HamGNN (🥈9 · ⭐ 49 · ➕) - An E(3) equivariant Graph Neural Network for predicting electronic Hamiltonian matrix. GPL-3.0
rep-learn
magnetism
C-lang
+- AI for Science paper collection (🥉9 · ⭐ 43 · 🐣) - List the AI for Science papers accepted by top conferences. Apache-2
+- Q-stack (🥈9 · ⭐ 14 · ➕) - Stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML). MIT
excited-states
general-tool
+- MADICES Awesome Interoperability (🥉9 · ⭐ 1 · ➕) - Linked data interoperability resources of the Machine-actionable data interoperability for the chemical sciences.. MIT
datasets
+- Awesome-Graph-Generation (🥉8 · ⭐ 260 · ➕) - A curated list of up-to-date graph generation papers and resources. Unlicensed
rep-learn
+- Awesome Neural SBI (🥉8 · ⭐ 80 · ➕) - Community-sourced list of papers and resources on neural simulation-based inference. MIT
active-learning
+- SiMGen (🥉8 · ⭐ 11 · ➕) - Zero Shot Molecular Generation via Similarity Kernels. MIT
viz
+- Awesome-Crystal-GNNs (🥉7 · ⭐ 54 · ➕) - This repository contains a collection of resources and papers on GNN Models on Crystal Solid State Materials. MIT
+- AIS Square (🥉7 · ⭐ 10 · 💤) - A collaborative and open-source platform for sharing AI for Science datasets, models, and workflows. Home of the.. LGPL-3.0
community-resource
model-repository
+- rho_learn (🥉7 · ⭐ 3 · ➕) - A proof-of-concept framework for torch-based learning of the electron density and related scalar fields. MIT
+- ChargE3Net (🥉6 · ⭐ 28 · ➕) - Higher-order equivariant neural networks for charge density prediction in materials. MIT
rep-learn
+- ML for catalysis tutorials (🥉6 · ⭐ 8 · 💀) - A jupyter book repo for tutorial on how to use OCP ML models for catalysis. MIT
+- Cephalo (🥉6 · ⭐ 5 · 🐣) - Multimodal Vision-Language Models for Bio-Inspired Materials Analysis and Design. Apache-2
generative
multimodal
pretrained
+- KSR-DFT (🥇6 · ⭐ 4 · 💀) - Kohn-Sham regularizer for machine-learned DFT functionals. Apache-2
+- ACEpsi.jl (🥉6 · ⭐ 2 · 💤) - ACE wave function parameterizations. MIT
rep-eng
Julia
+- crystal-text-llm (🥉5 · ⭐ 63 · 🐣) - Large language models to generate stable crystals. CC-BY-NC-4.0
materials-discovery
+- The Perovskite Database Project (🥉5 · ⭐ 58 · ➕) - Perovskite Database Project aims at making all perovskite device data, both past and future, available in a form.. Unlicensed
community-resource
+- Joint Multidomain Pre-Training (JMP) (🥉5 · ⭐ 32 · 🐣) - Code for From Molecules to Materials Pre-training Large Generalizable Models for Atomic Property Prediction. CC-BY-NC-4.0
pretrained
ML-IAP
general-tool
+- QMLearn (🥈5 · ⭐ 11 · 💀) - Quantum Machine Learning by learning one-body reduced density matrices in the AO basis... MIT
+- InfGCN for Electron Density Estimation (🥉5 · ⭐ 10 · 💤) - Official implementation of the NeurIPS 23 spotlight paper of InfGCN. MIT
rep-learn
+- GN-MM (🥉5 · ⭐ 10 · 💀) - The Gaussian Moment Neural Network (GM-NN) package developed for large-scale atomistic simulations employing atomistic.. MIT
active-learning
MD
rep-eng
magnetism
+- EGraFFBench (🥉5 · ⭐ 8 · 💤) - Unlicensed
single-paper
benchmarking
ML-IAP
+- GDB-9-Ex9 and ORNL_AISD-Ex (🥉5 · ⭐ 6 · 💤) - Distributed computing workflow for generation and analysis of large scale molecular datasets obtained running multi-.. Unlicensed
+- MXenes4HER (🥉5 · ⭐ 5 · 💀) - Predicting hydrogen evolution (HER) activity over 4500 MXene materials https://doi.org/10.1039/D3TA00344B. GPL-3.0
materials-discovery
catalysis
scikit-learn
single-paper
+- Geometric-GNNs (🥉4 · ⭐ 85 · ➕) - List of Geometric GNNs for 3D atomic systems. Unlicensed
datasets
educational
rep-learn
+- MAGUS (🥉4 · ⭐ 56 · 💀) - Machine learning And Graph theory assisted Universal structure Searcher. Unlicensed
structure-prediction
active-learning
+- Allegro-Legato (🥉4 · ⭐ 19 · 💤) - An extension of Allegro with enhanced robustness and time-to-failure. MIT
MD
+- Mapping out phase diagrams with generative classifiers (🥉4 · ⭐ 7 · 💀) - Repository for our ``Mapping out phase diagrams with generative models paper. MIT
phase-transition
+- automl-materials (🥉4 · ⭐ 5 · 💀) - AutoML for Regression Tasks on Small Tabular Data in Materials Design. MIT
autoML
benchmarking
single-paper
+- ML-atomate (🥉4 · ⭐ 3 · 💤) - Machine learning-assisted Atomate code for autonomous computational materials screening. GPL-3.0
active-learning
workflows
+- AI4ChemMat Hands-On Series (🥉4 · ⭐ 1 · ➕) - Hands-On Series organized by Chemistry and Materials working group at Argonne Nat Lab. MPL-2.0
+- ALEBREW (🥉3 · ⭐ 9 · 🐣) - Official repository for the paper Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic.. Custom
ML-IAP
MD
+- PyFLAME (🥉3 · 💀) - An automated approach for developing neural network interatomic potentials with FLAME.. Unlicensed
active-learning
structure-prediction
structure-optimization
rep-eng
Fortran
+- tmQM_wB97MV Dataset (🥉2 · ⭐ 5 · ➕) - Code for Applying Large Graph Neural Networks to Predict Transition Metal Complex Energies Using the tmQM_wB97MV.. Unlicensed
catalysis
rep-learn
+- AisNet (🥉2 · ⭐ 3 · 💀) - A Universal Interatomic Potential Neural Network with Encoded Local Environment Features.. MIT
+- nnp-pre-training (🥉1 · ⭐ 6 · 💤) - Synthetic pre-training for neural-network interatomic potentials. Unlicensed
pretrained
MD
+- mag-ace (🥉1 · ⭐ 2 · 💤) - Magnetic ACE potential. FORTRAN interface for LAMMPS SPIN package. Unlicensed
magnetism
MD
Fortran
+
diff --git a/history/2024-08-15_projects.csv b/history/2024-08-15_projects.csv
new file mode 100644
index 0000000..8e68f5e
--- /dev/null
+++ b/history/2024-08-15_projects.csv
@@ -0,0 +1,426 @@
+,name,resource,category,license,homepage,description,projectrank,show,labels,github_id,github_url,created_at,updated_at,last_commit_pushed_at,commit_count,recent_commit_count,fork_count,watchers_count,pr_count,open_issue_count,closed_issue_count,star_count,latest_stable_release_published_at,latest_stable_release_number,release_count,contributor_count,pypi_id,conda_id,dependent_project_count,github_dependent_project_count,pypi_url,pypi_monthly_downloads,monthly_downloads,conda_url,conda_latest_release_published_at,conda_total_downloads,projectrank_placing,dockerhub_id,dockerhub_url,dockerhub_latest_release_published_at,dockerhub_stars,dockerhub_pulls,github_release_downloads,updated_github_id,trending,new_addition,maven_id,maven_url,npm_id,npm_url,npm_monthly_downloads,gitlab_id,gitlab_url,docs_url,ignore
+0,AI for Science Map,True,community,GPL-3.0 license,https://www.air4.science/map,"Interactive mindmap of the AI4Science research field, including atomistic machine learning, including papers,..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+1,Atomic Cluster Expansion,True,community,,https://cortner.github.io/ACEweb/,Atomic Cluster Expansion (ACE) community homepage.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+2,CrystaLLM,True,community,https://materialis.ai/terms.html,https://crystallm.com,Generate a crystal structure from a composition.,0,True,"['language-models', 'generative', 'pretrained', 'transformer']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+3,GAP-ML.org community homepage,True,community,,https://gap-ml.org/,,0,True,['ml-iap'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+4,matsci.org,True,community,,https://matsci.org/,"A community forum for the discussion of anything materials science, with a focus on computational materials science..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+5,Matter Modeling Stack Exchange - Machine Learning,True,community,,https://mattermodeling.stackexchange.com/questions/tagged/machine-learning,"Forum StackExchange, site Matter Modeling, ML-tagged questions.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+6,Alexandria Materials Database,True,datasets,CC-BY-4.0,https://alexandria.icams.rub.de/,"A database of millions of theoretical crystal structures (3D, 2D and 1D) discovered by machine learning accelerated..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+7,Catalysis Hub,True,datasets,,https://www.catalysis-hub.org/,A web-platform for sharing data and software for computational catalysis research!.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+8,Citrination Datasets,True,datasets,MIT,https://citrination.com/,AI-Powered Materials Data Platform. Open Citrination has been decommissioned.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+9,crystals.ai,True,datasets,,https://crystals.ai/,Curated datasets for reproducible AI in materials science.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+10,DeepChem Models,True,datasets,,https://huggingface.co/DeepChem,DeepChem models on HuggingFace.,0,True,"['model-repository', 'pretrained', 'language-models']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+11,Graphs of Materials Project 20190401,True,datasets,MIT,https://figshare.com/articles/dataset/Graphs_of_Materials_Project_20190401/8097992,The dataset used to train the MEGNet interatomic potential.,0,True,['ml-iap'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+12,HME21 Dataset,True,datasets,,https://doi.org/10.6084/m9.figshare.19658538,High-temperature multi-element 2021 dataset for the PreFerred Potential (PFP)..,0,True,['uip'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+13,JARVIS-Leaderboard,True,datasets,https://github.com/usnistgov/jarvis_leaderboard/blob/main/LICENSE.rst,https://pages.nist.gov/jarvis_leaderboard/,Explore State-of-the-Art Materials Design Methods: https://www.nature.com/articles/s41524-024-01259-w.,0,True,"['model-repository', 'benchmarking', 'community', 'educational']",usnistgov/jarvis_leaderboard,https://github.com/usnistgov/jarvis_leaderboard,2022-07-15 16:48:33,2024-08-14 17:30:42,2024-08-14 04:18:28,823.0,11.0,42.0,5.0,320.0,6.0,2.0,55.0,2024-05-16 16:20:41,2024.4.26,28.0,33.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+14,Materials Project - Charge Densities,True,datasets,,https://materialsproject.org/ml/charge_densities,Materials Project has started offering charge density information available for download via their public API.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+15,Materials Project Trajectory (MPtrj) Dataset,True,datasets,MIT,https://figshare.com/articles/dataset/Materials_Project_Trjectory_MPtrj_Dataset/23713842,The dataset used to train the CHGNet universal potential.,0,True,['uip'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+16,matterverse.ai,True,datasets,,https://matterverse.ai/,Database of yet-to-be-sythesized materials predicted using state-of-the-art machine learning algorithms.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+17,MPF.2021.2.8,True,datasets,,https://figshare.com/articles/dataset/MPF_2021_2_8/19470599,The dataset used to train the M3GNet universal potential.,0,True,['uip'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+18,NRELMatDB,True,datasets,,https://materials.nrel.gov/,"Computational materials database with the specific focus on materials for renewable energy applications including, but..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+19,Quantum-Machine.org Datasets,True,datasets,,http://quantum-machine.org/datasets/,"Collection of datasets, including QM7, QM9, etc. MD, DFT. Small organic molecules, mostly.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+20,sGDML Datasets,True,datasets,,http://sgdml.org/#datasets,"MD17, MD22, DFT datasets.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+21,MoleculeNet,True,datasets,,https://moleculenet.org/,A Benchmark for Molecular Machine Learning.,0,True,['benchmarking'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+22,ZINC15,True,datasets,,https://zinc15.docking.org/,A free database of commercially-available compounds for virtual screening. ZINC contains over 230 million purchasable..,0,True,"['graph', 'biomolecules']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+23,ZINC20,True,datasets,,https://zinc.docking.org/,A free database of commercially-available compounds for virtual screening. ZINC contains over 230 million purchasable..,0,True,"['graph', 'biomolecules']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+24,AI for Science 101,True,educational,,https://ai4science101.github.io/,,0,True,"['community', 'rep-learn']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+25,AL4MS 2023 workshop tutorials,True,educational,,https://sites.utu.fi/al4ms2023/media-and-tutorials/,,0,True,['active-learning'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+26,Quantum Chemistry in the Age of Machine Learning,True,educational,,https://www.elsevier.com/books-and-journals/book-companion/9780323900492,"Book, 2022.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+27,MatterGen,True,materials-discovery,,https://www.microsoft.com/en-us/research/blog/mattergen-property-guided-materials-design/,A generative model for inorganic materials design https://doi.org/10.48550/arXiv.2312.03687.,0,True,"['generative', 'proprietary']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+28,IKS-PIML,True,ml-dft,,https://rodare.hzdr.de/record/2720,Code and generated data for the paper Inverting the Kohn-Sham equations with physics-informed machine learning..,0,True,"['neural-operator', 'pinn', 'datasets', 'single-paper']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+29,TeaNet,True,uip,,https://doi.org/10.24433/CO.0749085.v1,Universal neural network interatomic potential inspired by iterative electronic relaxations..,0,True,['ml-iap'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+30,PreFerred Potential (PFP),True,uip,,https://www.nature.com/articles/s41467-022-30687-9#code-availability,Universal neural network potential for material discovery https://doi.org/10.1038/s41467-022-30687-9.,0,True,"['ml-iap', 'proprietary']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+31,MatterSim,True,uip,,https://www.microsoft.com/en-us/research/blog/mattersim-a-deep-learning-model-for-materials-under-real-world-conditions/,"A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures https://doi.org/10.48550/arXiv.2405.04967.",0,True,"['ml-iap', 'active-learning', 'proprietary']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+32,Deep Graph Library (DGL),,rep-learn,Apache-2.0,https://github.com/dmlc/dgl,"Python package built to ease deep learning on graph, on top of existing DL frameworks.",39,True,,dmlc/dgl,https://github.com/dmlc/dgl,2018-04-20 14:49:09,2024-08-15 08:19:13,2024-08-15 08:19:13,4328.0,221.0,2920.0,172.0,4948.0,402.0,2340.0,13294.0,2024-06-28 00:16:49,2.3.0,106.0,295.0,dgl,dglteam/dgl,282.0,282.0,https://pypi.org/project/dgl,124311.0,129676.0,https://anaconda.org/dglteam/dgl,2024-06-28 00:12:10.120,364859.0,1.0,,,,,,,,,,,,,,,,,,
+33,DeepChem,,general-tool,MIT,https://github.com/deepchem/deepchem,"Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, Materials Science and Biology.",36,True,,deepchem/deepchem,https://github.com/deepchem/deepchem,2015-09-24 23:20:28,2024-08-15 01:10:20,2024-08-12 17:31:56,10519.0,53.0,1596.0,145.0,2404.0,460.0,1236.0,5346.0,2024-04-03 16:21:23,2.8.0,20.0,247.0,deepchem,conda-forge/deepchem,415.0,415.0,https://pypi.org/project/deepchem,44420.0,46660.0,https://anaconda.org/conda-forge/deepchem,2024-04-05 16:46:45.105,108565.0,1.0,deepchemio/deepchem,https://hub.docker.com/r/deepchemio/deepchem,2024-08-12 21:19:09.208650,5.0,7413.0,,,,,,,,,,,,,
+34,PyG Models,,rep-learn,MIT,https://github.com/pyg-team/pytorch_geometric/tree/master/torch_geometric/nn/models,Representation learning models implemented in PyTorch Geometric.,35,True,['general-ml'],pyg-team/pytorch_geometric,https://github.com/pyg-team/pytorch_geometric,2017-10-06 16:03:03,2024-08-15 09:07:02,2024-08-14 13:04:40,7594.0,74.0,3511.0,252.0,3085.0,850.0,2644.0,20787.0,2024-04-19 11:37:44,2.5.3,40.0,513.0,,,6260.0,6260.0,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+35,RDKit,,general-tool,BSD-3-Clause,https://github.com/rdkit/rdkit,,32,True,['lang-cpp'],rdkit/rdkit,https://github.com/rdkit/rdkit,2013-05-12 06:19:15,2024-08-15 04:49:59,2024-08-13 13:39:06,7813.0,77.0,831.0,82.0,3189.0,923.0,2290.0,2565.0,2024-07-19 09:34:37,Release_2024_03_5,100.0,228.0,rdkit,rdkit/rdkit,3.0,3.0,https://pypi.org/project/rdkit,949635.0,970706.0,https://anaconda.org/rdkit/rdkit,2023-06-16 12:54:07.547,2569473.0,1.0,,,,,,1247.0,,,,,,,,,,,,
+36,e3nn,,rep-learn,MIT,https://github.com/e3nn/e3nn,A modular framework for neural networks with Euclidean symmetry.,28,True,,e3nn/e3nn,https://github.com/e3nn/e3nn,2020-01-31 13:06:42,2024-08-15 07:18:36,2024-07-26 23:00:39,2173.0,12.0,132.0,19.0,222.0,19.0,133.0,923.0,2024-07-27 03:01:58,0.5.2,29.0,31.0,e3nn,conda-forge/e3nn,281.0,281.0,https://pypi.org/project/e3nn,316367.0,317108.0,https://anaconda.org/conda-forge/e3nn,2023-06-18 08:41:30.723,20014.0,1.0,,,,,,,,,,,,,,,,,,
+37,paper-qa,,language-models,Apache-2.0,https://github.com/Future-House/paper-qa,LLM Chain for answering questions from documents with citations.,27,True,['ai-agent'],whitead/paper-qa,https://github.com/Future-House/paper-qa,2023-02-05 01:07:25,2024-08-14 21:02:09,2024-08-14 21:02:03,249.0,17.0,354.0,40.0,149.0,67.0,74.0,3824.0,2024-06-28 07:40:54,4.9.0,100.0,18.0,paper-qa,,65.0,65.0,https://pypi.org/project/paper-qa,8283.0,8283.0,,,,1.0,,,,,,,Future-House/paper-qa,1.0,,,,,,,,,,
+38,DeePMD-kit,,ml-iap,LGPL-3.0,https://github.com/deepmodeling/deepmd-kit,A deep learning package for many-body potential energy representation and molecular dynamics.,27,True,['lang-cpp'],deepmodeling/deepmd-kit,https://github.com/deepmodeling/deepmd-kit,2017-12-12 15:23:44,2024-08-14 02:32:59,2024-07-06 15:29:41,2533.0,32.0,476.0,47.0,1984.0,79.0,667.0,1429.0,2024-07-03 19:22:15,2.2.11,49.0,69.0,deepmd-kit,deepmodeling/deepmd-kit,16.0,16.0,https://pypi.org/project/deepmd-kit,1372.0,2095.0,https://anaconda.org/deepmodeling/deepmd-kit,2024-04-06 21:22:08.456,1208.0,1.0,deepmodeling/deepmd-kit,https://hub.docker.com/r/deepmodeling/deepmd-kit,2024-07-27 08:24:51.741318,1.0,2714.0,38192.0,,,,,,,,,,,,
+39,Matminer,,general-tool,https://github.com/hackingmaterials/matminer/blob/main/LICENSE,https://github.com/hackingmaterials/matminer,Data mining for materials science.,27,True,,hackingmaterials/matminer,https://github.com/hackingmaterials/matminer,2015-09-24 20:37:00,2024-08-12 08:05:29,2024-07-30 12:11:47,4157.0,2.0,184.0,29.0,721.0,23.0,197.0,457.0,2024-03-27 14:45:47,0.9.2,68.0,54.0,matminer,conda-forge/matminer,305.0,305.0,https://pypi.org/project/matminer,11837.0,13289.0,https://anaconda.org/conda-forge/matminer,2024-03-28 11:24:38.014,66804.0,1.0,,,,,,,,,,,,,,,,,,
+40,DPA-2,,uip,LGPL-3.0,https://github.com/deepmodeling/deepmd-kit,Towards a universal large atomic model for molecular and material simulation https://doi.org/10.48550/arXiv.2312.15492.,26,True,"['ml-iap', 'pretrained', 'workflows', 'datasets']",deepmodeling/deepmd-kit,https://github.com/deepmodeling/deepmd-kit,2017-12-12 15:23:44,2024-08-14 02:32:59,2024-07-06 15:29:41,2533.0,32.0,476.0,47.0,1984.0,79.0,667.0,1428.0,2024-07-03 19:22:15,2.2.11,49.0,69.0,,,16.0,16.0,,,670.0,,,,1.0,,,,,,38192.0,,,True,,,,,,,,,
+41,SchNetPack,,rep-learn,MIT,https://github.com/atomistic-machine-learning/schnetpack,SchNetPack - Deep Neural Networks for Atomistic Systems.,26,True,,atomistic-machine-learning/schnetpack,https://github.com/atomistic-machine-learning/schnetpack,2018-09-03 15:44:35,2024-08-15 09:45:25,2024-08-15 09:45:22,1677.0,21.0,205.0,32.0,409.0,2.0,241.0,758.0,2023-09-29 14:31:19,2.0.4,8.0,35.0,schnetpack,,84.0,84.0,https://pypi.org/project/schnetpack,830.0,830.0,,,,1.0,,,,,,,,,,,,,,,,,,
+42,OPTIMADE Python tools,,datasets,MIT,https://github.com/Materials-Consortia/optimade-python-tools,Tools for implementing and consuming OPTIMADE APIs in Python.,26,True,,Materials-Consortia/optimade-python-tools,https://github.com/Materials-Consortia/optimade-python-tools,2018-06-05 21:00:07,2024-08-14 16:22:48,2024-08-12 10:25:07,1647.0,40.0,41.0,7.0,1692.0,88.0,348.0,64.0,2024-07-20 12:06:05,1.1.1,86.0,28.0,optimade,conda-forge/optimade,48.0,48.0,https://pypi.org/project/optimade,6388.0,8250.0,https://anaconda.org/conda-forge/optimade,2024-07-20 16:43:01.881,83813.0,1.0,,,,,,,,,,,,,,,,,,
+43,JAX-DFT,,ml-dft,Apache-2.0,https://github.com/google-research/google-research/tree/master/jax_dft,This library provides basic building blocks that can construct DFT calculations as a differentiable program.,25,True,,google-research/google-research,https://github.com/google-research/google-research,2018-10-04 18:42:48,2024-08-14 16:02:31,2024-08-14 16:02:23,4620.0,108.0,7712.0,748.0,860.0,902.0,324.0,33616.0,,,,796.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+44,JAX-MD,,md,Apache-2.0,https://github.com/jax-md/jax-md,"Differentiable, Hardware Accelerated, Molecular Dynamics.",25,True,,jax-md/jax-md,https://github.com/jax-md/jax-md,2019-05-13 21:03:37,2024-08-02 20:06:09,2024-08-02 20:06:09,920.0,30.0,182.0,48.0,169.0,69.0,79.0,1146.0,2022-11-27 12:42:00,jax-md-v0.2.24,7.0,33.0,jax-md,,53.0,53.0,https://pypi.org/project/jax-md,3223.0,3223.0,,,,1.0,,,,,,,,,,,,,,,,,,
+45,QUIP,,general-tool,GPL-2.0,https://github.com/libAtoms/QUIP,libAtoms/QUIP molecular dynamics framework: https://libatoms.github.io.,25,True,"['md', 'ml-iap', 'rep-eng', 'lang-fortran']",libAtoms/QUIP,https://github.com/libAtoms/QUIP,2013-07-02 15:21:59,2024-08-15 08:19:16,2024-08-15 08:10:51,10864.0,25.0,124.0,26.0,176.0,103.0,358.0,350.0,2023-06-15 19:11:24,0.9.14,15.0,85.0,quippy-ase,,41.0,41.0,https://pypi.org/project/quippy-ase,4383.0,4465.0,,,,2.0,libatomsquip/quip,https://hub.docker.com/r/libatomsquip/quip,2023-04-24 21:25:17.345957,4.0,9905.0,532.0,,,,,,,,,,,,
+46,MAML,,general-tool,BSD-3-Clause,https://github.com/materialsvirtuallab/maml,"Python for Materials Machine Learning, Materials Descriptors, Machine Learning Force Fields, Deep Learning, etc.",25,True,,materialsvirtuallab/maml,https://github.com/materialsvirtuallab/maml,2020-01-25 15:04:21,2024-08-12 13:32:30,2024-07-03 18:08:37,1747.0,48.0,74.0,21.0,580.0,7.0,61.0,345.0,2024-06-13 15:24:45,2024.6.13,14.0,32.0,maml,,10.0,10.0,https://pypi.org/project/maml,175.0,175.0,,,,2.0,,,,,,,,,,,,,,,,,,
+47,NequIP,,ml-iap,MIT,https://github.com/mir-group/nequip,NequIP is a code for building E(3)-equivariant interatomic potentials.,24,True,,mir-group/nequip,https://github.com/mir-group/nequip,2021-03-15 23:44:39,2024-07-25 22:18:07,2024-07-09 15:58:45,1873.0,32.0,127.0,23.0,161.0,22.0,66.0,579.0,2024-07-09 16:05:06,0.6.1,16.0,11.0,nequip,conda-forge/nequip,23.0,23.0,https://pypi.org/project/nequip,3045.0,3240.0,https://anaconda.org/conda-forge/nequip,2024-07-10 05:13:00.157,5276.0,1.0,,,,,,,,,,,,,,,,,,
+48,cdk,,rep-eng,LGPL-2.1,https://github.com/cdk/cdk,The Chemistry Development Kit.,24,True,"['cheminformatics', 'lang-java']",cdk/cdk,https://github.com/cdk/cdk,2010-05-11 08:30:07,2024-08-09 05:46:33,2024-08-07 15:06:18,17638.0,51.0,154.0,40.0,813.0,31.0,255.0,485.0,2023-08-21 19:50:47,cdk-2.9,20.0,165.0,,,,,,,178.0,,,,1.0,,,,,,21228.0,,,,org.openscience.cdk:cdk-bundle,https://search.maven.org/artifact/org.openscience.cdk/cdk-bundle,,,,,,,
+49,AlphaFold,,biomolecules,Apache-2.0,https://github.com/google-deepmind/alphafold,Open source code for AlphaFold.,23,True,,google-deepmind/alphafold,https://github.com/google-deepmind/alphafold,2021-06-17 14:06:06,2024-06-27 04:19:33,2024-05-08 14:04:54,143.0,,2089.0,223.0,104.0,245.0,601.0,12204.0,2023-04-05 09:45:53,2.3.2,13.0,20.0,,,14.0,14.0,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+50,dgl-lifesci,,rep-learn,Apache-2.0,https://github.com/awslabs/dgl-lifesci,Python package for graph neural networks in chemistry and biology.,23,False,,awslabs/dgl-lifesci,https://github.com/awslabs/dgl-lifesci,2020-04-23 07:14:21,2023-11-01 19:32:07,2023-04-16 03:55:52,236.0,,141.0,17.0,141.0,26.0,57.0,703.0,2023-02-13 08:45:17,0.3.2,8.0,22.0,dgllife,,225.0,225.0,https://pypi.org/project/dgllife,34603.0,34603.0,,,,1.0,,,,,,,,,,,,,,,,,,
+51,DScribe,,rep-eng,Apache-2.0,https://github.com/SINGROUP/dscribe,DScribe is a python package for creating machine learning descriptors for atomistic systems.,23,True,,SINGROUP/dscribe,https://github.com/SINGROUP/dscribe,2017-05-08 08:29:51,2024-08-13 20:50:00,2024-05-28 18:24:28,1288.0,1.0,86.0,20.0,27.0,6.0,92.0,388.0,,,15.0,18.0,dscribe,conda-forge/dscribe,193.0,193.0,https://pypi.org/project/dscribe,194120.0,196546.0,https://anaconda.org/conda-forge/dscribe,2024-05-28 23:16:49.298,118919.0,1.0,,,,,,,,1.0,,,,,,,,,,
+52,TorchMD-NET,,ml-iap,MIT,https://github.com/torchmd/torchmd-net,Training neural network potentials.,23,True,"['md', 'rep-learn', 'transformer', 'pretrained']",torchmd/torchmd-net,https://github.com/torchmd/torchmd-net,2021-04-09 16:16:32,2024-08-12 11:10:08,2024-07-29 09:38:50,1269.0,55.0,69.0,11.0,229.0,20.0,84.0,308.0,2024-07-09 09:20:46,2.3.0,25.0,16.0,,conda-forge/torchmd-net,,,,,10387.0,https://anaconda.org/conda-forge/torchmd-net,2024-07-09 18:53:56.674,103877.0,1.0,,,,,,,,,,,,,,,,,,
+53,JARVIS-Tools,,general-tool,https://github.com/usnistgov/jarvis/blob/master/LICENSE.rst,https://github.com/usnistgov/jarvis,JARVIS-Tools: an open-source software package for data-driven atomistic materials design. Publications:..,23,True,,usnistgov/jarvis,https://github.com/usnistgov/jarvis,2017-06-22 19:34:02,2024-08-04 13:38:34,2024-06-28 03:35:23,2106.0,1.0,120.0,26.0,235.0,44.0,45.0,292.0,2024-06-28 03:36:55,2024.5.10,75.0,15.0,jarvis-tools,conda-forge/jarvis-tools,92.0,92.0,https://pypi.org/project/jarvis-tools,24147.0,25738.0,https://anaconda.org/conda-forge/jarvis-tools,2024-06-28 03:50:37.135,73186.0,2.0,,,,,,,,,,,,,,,,,,
+54,MatGL (Materials Graph Library),,rep-learn,BSD-3-Clause,https://github.com/materialsvirtuallab/matgl,Graph deep learning library for materials.,23,True,['multifidelity'],materialsvirtuallab/matgl,https://github.com/materialsvirtuallab/matgl,2022-08-29 18:36:05,2024-08-15 05:01:44,2024-08-15 05:01:44,1027.0,66.0,58.0,12.0,216.0,2.0,85.0,249.0,2024-08-07 12:24:58,1.1.3,31.0,17.0,m3gnet,,44.0,44.0,https://pypi.org/project/m3gnet,667.0,667.0,,,,1.0,,,,,,,,,,,,,,,,,,
+55,dpdata,,data-structures,LGPL-3.0,https://github.com/deepmodeling/dpdata,"Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc.",23,True,,deepmodeling/dpdata,https://github.com/deepmodeling/dpdata,2019-04-12 13:24:23,2024-08-13 00:50:09,2024-06-06 00:03:38,724.0,6.0,122.0,9.0,477.0,16.0,80.0,195.0,2024-06-06 00:06:28,0.2.19,26.0,60.0,dpdata,deepmodeling/dpdata,122.0,122.0,https://pypi.org/project/dpdata,30991.0,30997.0,https://anaconda.org/deepmodeling/dpdata,2023-09-27 20:07:36.945,218.0,1.0,,,,,,,,-1.0,,,,,,,,,,
+56,MEGNet,,ml-iap,BSD-3-Clause,https://github.com/materialsvirtuallab/megnet,Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals.,22,False,['multifidelity'],materialsvirtuallab/megnet,https://github.com/materialsvirtuallab/megnet,2018-12-12 21:31:28,2023-04-27 02:39:17,2023-04-27 02:39:17,1146.0,,152.0,25.0,314.0,17.0,57.0,494.0,2022-11-16 21:24:36,1.3.2,34.0,14.0,megnet,,80.0,80.0,https://pypi.org/project/megnet,389.0,389.0,,,,1.0,,,,,,,,,,,,,,,,,,
+57,TorchANI,,ml-iap,MIT,https://github.com/aiqm/torchani,Accurate Neural Network Potential on PyTorch.,22,True,,aiqm/torchani,https://github.com/aiqm/torchani,2018-04-02 15:43:04,2024-07-19 17:54:52,2023-11-14 16:32:59,434.0,,124.0,31.0,483.0,24.0,144.0,455.0,2023-11-14 16:38:04,2.2.4,24.0,17.0,torchani,conda-forge/torchani,39.0,39.0,https://pypi.org/project/torchani,3920.0,12326.0,https://anaconda.org/conda-forge/torchani,2024-05-31 06:36:10.067,403533.0,1.0,,,,,,,,,,,,,,,,,,
+58,MACE,,ml-iap,MIT,https://github.com/ACEsuit/mace,MACE - Fast and accurate machine learning interatomic potentials with higher order equivariant message passing.,22,True,,ACEsuit/mace,https://github.com/ACEsuit/mace,2022-06-21 18:44:34,2024-08-13 16:18:00,2024-08-12 10:01:02,699.0,58.0,169.0,24.0,219.0,46.0,168.0,445.0,2024-07-16 10:55:30,0.3.6,7.0,35.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+59,GPUMD,,ml-iap,GPL-3.0,https://github.com/brucefan1983/GPUMD,GPUMD is a highly efficient general-purpose molecular dynamic (MD) package and enables machine-learned potentials..,22,True,"['md', 'lang-cpp', 'electrostatics']",brucefan1983/GPUMD,https://github.com/brucefan1983/GPUMD,2017-07-14 15:32:56,2024-08-15 06:41:50,2024-08-15 06:41:47,3940.0,211.0,111.0,28.0,510.0,15.0,160.0,428.0,2024-05-15 13:24:38,3.9.4,41.0,30.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+60,DP-GEN,,ml-iap,LGPL-3.0,https://github.com/deepmodeling/dpgen,The deep potential generator to generate a deep-learning based model of interatomic potential energy and force field.,22,True,['workflows'],deepmodeling/dpgen,https://github.com/deepmodeling/dpgen,2019-06-13 11:43:56,2024-08-13 00:50:19,2024-04-10 06:31:36,2083.0,,167.0,13.0,835.0,31.0,261.0,290.0,2024-04-10 06:37:07,0.12.1,18.0,64.0,dpgen,deepmodeling/dpgen,6.0,6.0,https://pypi.org/project/dpgen,317.0,352.0,https://anaconda.org/deepmodeling/dpgen,2023-06-16 19:27:03.566,204.0,1.0,,,,,,1745.0,,,,,,,,,,,,
+61,CHGNet,,uip,https://github.com/CederGroupHub/chgnet/blob/main/LICENSE,https://github.com/CederGroupHub/chgnet,Pretrained universal neural network potential for charge-informed atomistic modeling https://chgnet.lbl.gov.,22,True,"['ml-iap', 'md', 'pretrained', 'electrostatics', 'magnetism', 'structure-relaxation']",CederGroupHub/chgnet,https://github.com/CederGroupHub/chgnet,2023-02-24 23:44:24,2024-08-09 02:58:00,2024-08-01 11:11:48,413.0,20.0,58.0,5.0,89.0,3.0,48.0,217.0,2024-06-05 16:28:25,0.3.8,16.0,7.0,chgnet,,30.0,30.0,https://pypi.org/project/chgnet,31347.0,31347.0,,,,2.0,,,,,,,,,,,,,,,,,,
+62,MPContribs,,datasets,MIT,https://github.com/materialsproject/MPContribs,Platform for materials scientists to contribute and disseminate their materials data through Materials Project.,22,True,,materialsproject/MPContribs,https://github.com/materialsproject/MPContribs,2014-12-11 18:25:27,2024-08-12 17:10:18,2024-08-12 17:10:17,5576.0,41.0,19.0,10.0,1710.0,20.0,78.0,34.0,2024-06-20 22:37:13,5.8.4,78.0,25.0,mpcontribs-client,,38.0,38.0,https://pypi.org/project/mpcontribs-client,1261.0,1261.0,,,,1.0,,,,,,,,,,,,,,,,,,
+63,Best-of Machine Learning with Python,,community,CC-BY-4.0,https://github.com/ml-tooling/best-of-ml-python,A ranked list of awesome machine learning Python libraries. Updated weekly.,21,True,"['general-ml', 'lang-py']",ml-tooling/best-of-ml-python,https://github.com/ml-tooling/best-of-ml-python,2020-11-29 19:41:36,2024-07-22 15:36:22,2024-07-22 15:36:22,496.0,9.0,2257.0,409.0,266.0,19.0,34.0,16172.0,2024-06-06 15:57:10,2024.06.06,100.0,46.0,,,,,,,,,,,1.0,,,,,,,,-1.0,,,,,,,,,,
+64,NVIDIA Deep Learning Examples for Tensor Cores,,rep-learn,https://github.com/NVIDIA/DeepLearningExamples/blob/master/DGLPyTorch/DrugDiscovery/SE3Transformer/LICENSE,https://github.com/NVIDIA/DeepLearningExamples#graph-neural-networks,State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and..,21,True,"['educational', 'drug-discovery']",NVIDIA/DeepLearningExamples,https://github.com/NVIDIA/DeepLearningExamples,2018-05-02 17:04:05,2024-08-12 14:01:29,2024-04-04 13:37:56,1437.0,,3022.0,300.0,538.0,260.0,570.0,13111.0,,,,115.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+65,DIG: Dive into Graphs,,rep-learn,GPL-3.0,https://github.com/divelab/DIG,A library for graph deep learning research.,21,True,,divelab/DIG,https://github.com/divelab/DIG,2020-10-30 03:51:15,2024-07-15 07:18:56,2024-02-04 20:37:53,1083.0,,278.0,29.0,41.0,31.0,176.0,1827.0,2023-04-07 20:33:15,1.1.0,10.0,50.0,dive-into-graphs,,,,https://pypi.org/project/dive-into-graphs,435.0,435.0,,,,2.0,,,,,,,,,,,,,,,,,,
+66,FAIR Chemistry datasets,,datasets,MIT,https://github.com/FAIR-Chem/fairchem,"Datasets OC20, OC22, etc. Formerly known as Open Catalyst Project.",21,True,['catalysis'],FAIR-Chem/fairchem,https://github.com/FAIR-Chem/fairchem,2019-09-26 04:47:27,2024-08-15 02:44:15,2024-08-14 19:31:46,820.0,59.0,230.0,23.0,616.0,8.0,187.0,746.0,2024-08-14 16:52:55,fairchem_demo_ocpapi-0.1.0,8.0,41.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+67,pymatviz,,visualization,MIT,https://github.com/janosh/pymatviz,A toolkit for visualizations in materials informatics.,21,True,"['general-tool', 'probabilistic']",janosh/pymatviz,https://github.com/janosh/pymatviz,2021-02-21 12:40:34,2024-08-08 09:44:49,2024-08-07 20:43:20,323.0,50.0,12.0,7.0,150.0,10.0,31.0,150.0,2024-07-31 23:17:33,0.10.0,26.0,7.0,pymatviz,,8.0,8.0,https://pypi.org/project/pymatviz,2142.0,2142.0,,,,1.0,,,,,,,,1.0,,,,,,,,,,
+68,Metatensor,,data-structures,BSD-3-Clause,https://github.com/lab-cosmo/metatensor,Self-describing sparse tensor data format for atomistic machine learning and beyond.,21,True,"['lang-rust', 'lang-c', 'lang-cpp', 'lang-py']",lab-cosmo/metatensor,https://github.com/lab-cosmo/metatensor,2022-03-01 15:58:28,2024-08-15 09:48:55,2024-08-15 08:46:03,774.0,67.0,15.0,18.0,514.0,74.0,128.0,47.0,2024-07-15 12:55:26,metatensor-torch-v0.5.3,38.0,21.0,,,11.0,11.0,,,2431.0,,,,2.0,,,,,,24318.0,,,,,,,,,,,,
+69,DM21,,ml-dft,Apache-2.0,https://github.com/google-deepmind/deepmind-research/tree/master/density_functional_approximation_dm21,This package provides a PySCF interface to the DM21 (DeepMind 21) family of exchange-correlation functionals described..,20,False,,google-deepmind/deepmind-research,https://github.com/google-deepmind/deepmind-research,2019-01-15 09:54:13,2024-08-09 16:59:25,2023-06-02 17:04:50,369.0,,2532.0,325.0,236.0,177.0,138.0,13011.0,,,,92.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+70,FLARE,,active-learning,MIT,https://github.com/mir-group/flare,An open-source Python package for creating fast and accurate interatomic potentials.,20,True,"['lang-cpp', 'ml-iap']",mir-group/flare,https://github.com/mir-group/flare,2018-08-30 23:40:56,2024-06-11 22:18:56,2024-06-11 15:13:36,4399.0,7.0,64.0,20.0,187.0,33.0,170.0,283.0,2024-03-25 15:48:12,1.3.0,6.0,36.0,,,11.0,11.0,,,0.0,,,,1.0,,,,,,7.0,,,,,,,,,,,,
+71,ALIGNN,,rep-learn,https://github.com/usnistgov/alignn/blob/main/LICENSE.rst,https://github.com/usnistgov/alignn,Atomistic Line Graph Neural Network https://scholar.google.com/citations?user=9Q-tNnwAAAAJ&hl=en.,20,True,,usnistgov/alignn,https://github.com/usnistgov/alignn,2021-04-19 20:08:09,2024-07-29 12:39:30,2024-07-15 20:09:42,707.0,15.0,77.0,10.0,107.0,33.0,24.0,204.0,2024-06-28 03:29:50,2024.5.27,46.0,7.0,alignn,,14.0,14.0,https://pypi.org/project/alignn,870.0,870.0,,,,2.0,,,,,,,,,,,,,,,,,,
+72,e3nn-jax,,rep-learn,Apache-2.0,https://github.com/e3nn/e3nn-jax,jax library for E3 Equivariant Neural Networks.,20,True,,e3nn/e3nn-jax,https://github.com/e3nn/e3nn-jax,2021-06-08 13:21:51,2024-08-14 05:14:56,2024-08-14 05:13:07,1000.0,15.0,18.0,12.0,48.0,1.0,19.0,173.0,2024-08-14 05:14:56,0.20.7,43.0,7.0,e3nn-jax,,36.0,36.0,https://pypi.org/project/e3nn-jax,2716.0,2716.0,,,,2.0,,,,,,,,2.0,,,,,,,,,,
+73,fairchem,,ml-iap,,https://github.com/FAIR-Chem/fairchem,FAIR Chemistrys library of machine learning methods for chemistry. Formerly known as Open Catalyst Project (ocp).,19,True,"['pretrained', 'rep-learn', 'catalysis']",FAIR-Chem/fairchem,https://github.com/FAIR-Chem/fairchem,2019-09-26 04:47:27,2024-08-15 02:44:15,2024-08-14 19:31:46,820.0,59.0,230.0,23.0,616.0,8.0,187.0,746.0,2024-08-14 16:52:55,fairchem_demo_ocpapi-0.1.0,8.0,41.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+74,exmol,,xai,MIT,https://github.com/ur-whitelab/exmol,Explainer for black box models that predict molecule properties.,19,True,,ur-whitelab/exmol,https://github.com/ur-whitelab/exmol,2021-08-03 17:56:06,2024-06-02 00:38:18,2023-12-04 18:03:57,189.0,,41.0,9.0,77.0,11.0,58.0,278.0,2023-06-19 20:50:51,3.0.3,27.0,7.0,exmol,,20.0,20.0,https://pypi.org/project/exmol,637.0,637.0,,,,1.0,,,,,,,,,,,,,,,,,,
+75,KFAC-JAX,,math,Apache-2.0,https://github.com/google-deepmind/kfac-jax,Second Order Optimization and Curvature Estimation with K-FAC in JAX.,19,True,,google-deepmind/kfac-jax,https://github.com/google-deepmind/kfac-jax,2022-03-18 10:19:24,2024-08-15 06:27:08,2024-08-12 15:12:14,220.0,22.0,16.0,12.0,243.0,5.0,9.0,225.0,2024-04-03 17:12:00,0.0.6,5.0,13.0,kfac-jax,,10.0,10.0,https://pypi.org/project/kfac-jax,667.0,667.0,,,,1.0,,,,,,,,,,,,,,,,,,
+76,Chemiscope,,visualization,BSD-3-Clause,https://github.com/lab-cosmo/chemiscope,An interactive structure/property explorer for materials and molecules.,19,True,['lang-js'],lab-cosmo/chemiscope,https://github.com/lab-cosmo/chemiscope,2019-10-03 09:59:42,2024-08-13 16:40:24,2024-08-05 21:35:00,730.0,22.0,29.0,19.0,238.0,33.0,86.0,122.0,2024-06-14 16:42:03,0.7.1,16.0,22.0,,,6.0,6.0,,,50.0,,,,3.0,,,,,,246.0,,,,,,chemiscope,https://www.npmjs.com/package/chemiscope,46.0,,,,
+77,MAST-ML,,general-tool,MIT,https://github.com/uw-cmg/MAST-ML,MAterials Simulation Toolkit for Machine Learning (MAST-ML).,19,True,,uw-cmg/MAST-ML,https://github.com/uw-cmg/MAST-ML,2017-02-16 17:03:57,2024-08-05 20:49:39,2024-04-17 20:51:19,3296.0,,58.0,14.0,37.0,22.0,191.0,101.0,2024-04-17 21:30:14,3.2.0,7.0,18.0,,,43.0,43.0,,,2.0,,,,2.0,,,,,,95.0,,,,,,,,,,,,
+78,mlcolvar,,md,MIT,https://github.com/luigibonati/mlcolvar,A unified framework for machine learning collective variables for enhanced sampling simulations.,19,True,['enhanced-sampling'],luigibonati/mlcolvar,https://github.com/luigibonati/mlcolvar,2021-09-21 21:32:04,2024-07-31 15:12:33,2024-06-14 14:38:42,1089.0,58.0,23.0,7.0,80.0,13.0,57.0,91.0,2024-06-12 17:03:44,1.1.1,10.0,8.0,mlcolvar,,2.0,2.0,https://pypi.org/project/mlcolvar,154.0,154.0,,,,2.0,,,,,,,,,,,,,,,,,,
+79,MALA,,ml-dft,BSD-3-Clause,https://github.com/mala-project/mala,Materials Learning Algorithms. A framework for machine learning materials properties from first-principles data.,19,True,,mala-project/mala,https://github.com/mala-project/mala,2021-03-31 11:40:38,2024-08-14 11:15:04,2024-07-04 09:53:01,2307.0,92.0,23.0,9.0,303.0,37.0,230.0,80.0,2024-02-01 08:57:56,1.2.1,9.0,44.0,,,1.0,1.0,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+80,Scikit-Matter,,general-tool,BSD-3-Clause,https://github.com/scikit-learn-contrib/scikit-matter,A collection of scikit-learn compatible utilities that implement methods born out of the materials science and..,19,True,['scikit-learn'],scikit-learn-contrib/scikit-matter,https://github.com/scikit-learn-contrib/scikit-matter,2020-10-12 19:23:26,2024-08-12 16:25:31,2024-08-06 07:51:07,386.0,18.0,20.0,17.0,162.0,13.0,56.0,72.0,2023-08-24 17:18:49,0.2.0,7.0,15.0,skmatter,conda-forge/skmatter,10.0,10.0,https://pypi.org/project/skmatter,1134.0,1246.0,https://anaconda.org/conda-forge/skmatter,2023-08-24 19:08:29.551,1918.0,2.0,,,,,,,,,,,,,,,,,,
+81,ZnDraw,,visualization,EPL-2.0,https://github.com/zincware/ZnDraw,"A powerful tool for visualizing, modifying, and analysing atomistic systems.",19,True,"['md', 'generative', 'lang-js']",zincware/ZnDraw,https://github.com/zincware/ZnDraw,2023-04-12 15:01:21,2024-08-15 09:04:27,2024-08-14 07:17:45,381.0,81.0,2.0,1.0,341.0,68.0,208.0,29.0,2024-08-14 07:17:12,0.4.6,24.0,7.0,zndraw,,3.0,3.0,https://pypi.org/project/zndraw,1112.0,1112.0,,,,3.0,,,,,,,,,,,,,,,,,,
+82,Graph-based Deep Learning Literature,,community,MIT,https://github.com/naganandy/graph-based-deep-learning-literature,links to conference publications in graph-based deep learning.,18,True,"['general-ml', 'rep-learn']",naganandy/graph-based-deep-learning-literature,https://github.com/naganandy/graph-based-deep-learning-literature,2017-12-01 14:48:35,2024-08-04 17:35:07,2024-08-04 17:35:03,7711.0,31.0,736.0,247.0,21.0,,14.0,4711.0,,,,12.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+83,Uni-Mol,,rep-learn,MIT,https://github.com/deepmodeling/Uni-Mol,Official Repository for the Uni-Mol Series Methods.,18,True,['pretrained'],deepmodeling/Uni-Mol,https://github.com/deepmodeling/Uni-Mol,2022-05-22 13:26:41,2024-08-14 10:40:57,2024-08-14 10:40:52,130.0,21.0,116.0,15.0,111.0,59.0,88.0,637.0,2024-07-06 07:05:10,0.2.1,3.0,16.0,,,,,,,659.0,,,,2.0,,,,,,14504.0,,,,,,,,,,,,
+84,GT4SD,,generative,MIT,https://github.com/GT4SD/gt4sd-core,"GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.",18,True,"['pretrained', 'drug-discovery', 'rep-learn']",GT4SD/gt4sd-core,https://github.com/GT4SD/gt4sd-core,2022-02-11 19:06:58,2024-07-04 11:11:27,2024-07-04 11:11:26,296.0,8.0,66.0,17.0,148.0,1.0,98.0,326.0,2024-06-13 15:18:45,1.4.1,57.0,20.0,gt4sd,,,,https://pypi.org/project/gt4sd,661.0,661.0,,,,1.0,,,,,,,,,,,,,,,,,,
+85,ATOM3D,,datasets,MIT,https://github.com/drorlab/atom3d,ATOM3D: tasks on molecules in three dimensions.,18,False,"['biomolecules', 'benchmarking']",drorlab/atom3d,https://github.com/drorlab/atom3d,2020-04-03 22:53:11,2023-03-02 18:21:02,2023-03-02 18:20:29,798.0,,35.0,17.0,6.0,21.0,40.0,294.0,2022-07-20 00:56:05,0.2.6,15.0,10.0,atom3d,,40.0,40.0,https://pypi.org/project/atom3d,521.0,521.0,,,,2.0,,,,,,,,,,,,,,,,,,
+86,Neural Force Field,,ml-iap,MIT,https://github.com/learningmatter-mit/NeuralForceField,Neural Network Force Field based on PyTorch.,18,True,['pretrained'],learningmatter-mit/NeuralForceField,https://github.com/learningmatter-mit/NeuralForceField,2020-10-04 15:17:41,2024-08-11 22:33:54,2024-07-24 20:30:53,3121.0,76.0,47.0,7.0,5.0,1.0,18.0,223.0,2024-05-29 21:15:00,1.0.0,1.0,40.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+87,MatBench,,community,MIT,https://github.com/materialsproject/matbench,Matbench: Benchmarks for materials science property prediction.,18,True,"['datasets', 'benchmarking', 'model-repository']",materialsproject/matbench,https://github.com/materialsproject/matbench,2021-02-24 03:58:42,2024-06-26 23:31:08,2024-01-20 09:41:36,772.0,,42.0,8.0,297.0,31.0,26.0,105.0,2022-07-27 04:40:26,0.6,5.0,25.0,matbench,,16.0,16.0,https://pypi.org/project/matbench,501.0,501.0,,,,1.0,,,,,,,,,,,,,,,,,,
+88,kgcnn,,rep-learn,MIT,https://github.com/aimat-lab/gcnn_keras,"Graph convolutions in Keras with TensorFlow, PyTorch or Jax.",18,True,,aimat-lab/gcnn_keras,https://github.com/aimat-lab/gcnn_keras,2020-07-17 11:12:46,2024-05-06 10:08:41,2024-05-06 10:08:14,3099.0,,29.0,7.0,30.0,12.0,74.0,103.0,2024-02-27 12:21:46,4.0.1,26.0,7.0,kgcnn,,18.0,18.0,https://pypi.org/project/kgcnn,229.0,229.0,,,,2.0,,,,,,,,,,,,,,,,,,
+89,apax,,ml-iap,MIT,https://github.com/apax-hub/apax,A flexible and performant framework for training machine learning potentials.,18,True,,apax-hub/apax,https://github.com/apax-hub/apax,2022-11-18 12:31:19,2024-08-12 22:21:46,2024-08-09 15:26:47,1705.0,245.0,1.0,4.0,209.0,14.0,101.0,14.0,2024-08-09 20:31:11,0.6.0,6.0,7.0,apax,,2.0,2.0,https://pypi.org/project/apax,310.0,310.0,,,,2.0,,,,,,,,,,,,,,,,,,
+90,DeepQMC,,ml-wft,MIT,https://github.com/deepqmc/deepqmc,Deep learning quantum Monte Carlo for electrons in real space.,17,True,,deepqmc/deepqmc,https://github.com/deepqmc/deepqmc,2019-12-06 14:50:59,2024-08-14 09:04:29,2024-08-14 09:04:27,1461.0,1.0,58.0,23.0,156.0,5.0,39.0,340.0,2023-11-20 10:09:02,1.1.2,10.0,13.0,deepqmc,,2.0,2.0,https://pypi.org/project/deepqmc,100.0,100.0,,,,1.0,,,,,,,,,,,,,,,,,,
+91,M3GNet,,uip,BSD-3-Clause,https://github.com/materialsvirtuallab/m3gnet,Materials graph network with 3-body interactions featuring a DFT surrogate crystal relaxer and a state-of-the-art..,17,False,"['ml-iap', 'pretrained']",materialsvirtuallab/m3gnet,https://github.com/materialsvirtuallab/m3gnet,2022-01-18 18:10:58,2023-06-06 23:56:08,2023-06-06 23:56:03,261.0,,58.0,11.0,33.0,15.0,20.0,225.0,2022-11-17 23:25:35,0.2.4,16.0,15.0,m3gnet,,23.0,23.0,https://pypi.org/project/m3gnet,667.0,667.0,,,,2.0,,,,,,,,,,,,,,,,,,
+92,FitSNAP,,md,GPL-2.0,https://github.com/FitSNAP/FitSNAP,Software for generating SNAP machine-learning interatomic potentials.,17,True,,FitSNAP/FitSNAP,https://github.com/FitSNAP/FitSNAP,2019-09-12 14:46:18,2024-08-09 16:04:42,2024-08-09 16:04:41,1388.0,9.0,48.0,7.0,182.0,12.0,56.0,142.0,2023-06-28 16:00:48,3.1.0,7.0,24.0,,conda-forge/fitsnap3,2.0,2.0,,,168.0,https://anaconda.org/conda-forge/fitsnap3,2023-06-16 00:19:04.615,7583.0,2.0,,,,,,9.0,,,,,,,,,,,,
+93,matsciml,,rep-learn,MIT,https://github.com/IntelLabs/matsciml,Open MatSci ML Toolkit is a framework for prototyping and scaling out deep learning models for materials discovery..,17,True,"['workflows', 'benchmarking']",IntelLabs/matsciml,https://github.com/IntelLabs/matsciml,2022-09-13 20:27:28,2024-08-14 22:46:53,2024-08-14 22:46:53,2373.0,231.0,17.0,5.0,214.0,19.0,35.0,134.0,2023-08-31 23:59:40,1.0.0,2.0,11.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+94,DADApy,,unsupervised,Apache-2.0,https://github.com/sissa-data-science/DADApy,Distance-based Analysis of DAta-manifolds in python.,17,True,,sissa-data-science/DADApy,https://github.com/sissa-data-science/DADApy,2021-02-16 17:45:23,2024-08-08 11:25:55,2024-07-24 22:45:27,825.0,36.0,16.0,7.0,110.0,5.0,27.0,101.0,2024-07-02 15:52:45,0.3.1,5.0,19.0,dadapy,,7.0,7.0,https://pypi.org/project/dadapy,134.0,134.0,,,,1.0,,,,,,,,,,,,,,,,,,
+95,CatLearn,,rep-eng,GPL-3.0,https://github.com/SUNCAT-Center/CatLearn,,17,False,['surface-science'],SUNCAT-Center/CatLearn,https://github.com/SUNCAT-Center/CatLearn,2018-04-20 04:16:14,2024-06-28 07:53:45,2023-02-07 09:31:25,1960.0,,50.0,19.0,80.0,9.0,17.0,99.0,2020-03-27 09:26:03,0.6.2,8.0,22.0,catlearn,,5.0,5.0,https://pypi.org/project/catlearn,180.0,180.0,,,,1.0,,,,,,,,,,,,,,,,,,
+96,Open Databases Integration for Materials Design (OPTIMADE),,datasets,CC-BY-4.0,https://github.com/Materials-Consortia/OPTIMADE,Specification of a common REST API for access to materials databases.,17,True,,Materials-Consortia/OPTIMADE,https://github.com/Materials-Consortia/OPTIMADE,2018-01-08 23:32:29,2024-07-29 21:09:07,2024-06-12 09:31:09,1786.0,2.0,35.0,21.0,297.0,64.0,169.0,76.0,2024-06-10 16:32:29,1.2.0,9.0,21.0,,,,,,,,,,,2.0,,,,,,,,-1.0,,,,,,,,,,
+97,Graphormer,,rep-learn,MIT,https://github.com/microsoft/Graphormer,Graphormer is a general-purpose deep learning backbone for molecular modeling.,16,True,"['transformer', 'pretrained']",microsoft/Graphormer,https://github.com/microsoft/Graphormer,2021-05-27 05:31:18,2024-06-07 17:01:35,2024-05-28 06:22:34,77.0,2.0,321.0,31.0,46.0,86.0,64.0,2044.0,2024-04-03 08:23:10,dig-v1.0,2.0,14.0,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,,,,
+98,OpenML,,community,BSD-3,https://github.com/openml/OpenML,Open Machine Learning.,16,True,['datasets'],openml/OpenML,https://github.com/openml/OpenML,2012-12-11 11:27:40,2024-04-05 08:51:24,2024-01-12 08:40:06,2317.0,,90.0,48.0,202.0,367.0,560.0,656.0,,,,35.0,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,,,,
+99,ChemCrow,,language-models,MIT,https://github.com/ur-whitelab/chemcrow-public,Open source package for the accurate solution of reasoning-intensive chemical tasks.,16,True,['ai-agent'],ur-whitelab/chemcrow-public,https://github.com/ur-whitelab/chemcrow-public,2023-06-04 15:59:05,2024-04-03 19:49:19,2024-03-27 04:32:41,110.0,,75.0,16.0,22.0,4.0,14.0,547.0,2024-03-27 04:28:45,0.3.24,12.0,3.0,chemcrow,,4.0,4.0,https://pypi.org/project/chemcrow,542.0,542.0,,,,1.0,,,,,,,,,,,,,,,,,,
+100,Uni-Fold,,biomolecules,Apache-2.0,https://github.com/dptech-corp/Uni-Fold,An open-source platform for developing protein models beyond AlphaFold.,16,True,,dptech-corp/Uni-Fold,https://github.com/dptech-corp/Uni-Fold,2022-07-30 03:37:29,2024-06-26 02:52:56,2024-01-08 06:19:47,98.0,,66.0,7.0,80.0,20.0,50.0,364.0,2022-10-19 12:44:31,2.2.0,3.0,7.0,,,,,,,161.0,,,,3.0,,,,,,3558.0,,,,,,,,,,,,
+101,GT4SD - Generative Toolkit for Scientific Discovery,,community,MIT,https://huggingface.co/GT4SD,Gradio apps of generative models in GT4SD.,16,True,"['generative', 'pretrained', 'drug-discovery', 'model-repository']",GT4SD/gt4sd-core,https://github.com/GT4SD/gt4sd-core,2022-02-11 19:06:58,2024-07-04 11:11:27,2024-07-04 11:11:26,296.0,8.0,66.0,17.0,148.0,1.0,98.0,326.0,2024-06-13 15:18:45,1.4.1,57.0,20.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+102,ChemDataExtractor,,language-models,MIT,https://github.com/mcs07/ChemDataExtractor,Automatically extract chemical information from scientific documents.,16,False,['literature-data'],mcs07/ChemDataExtractor,https://github.com/mcs07/ChemDataExtractor,2016-10-02 23:50:01,2023-07-27 18:05:13,2017-02-21 23:20:23,106.0,,106.0,18.0,16.0,19.0,9.0,296.0,2017-02-03 00:28:29,1.3.0,7.0,2.0,chemdataextractor,chemdataextractor/chemdataextractor,112.0,112.0,https://pypi.org/project/chemdataextractor,686.0,750.0,https://anaconda.org/chemdataextractor/chemdataextractor,2023-06-16 13:17:47.249,3138.0,1.0,,,,,,2996.0,,,,,,,,,,,,
+103,gpax,,math,MIT,https://github.com/ziatdinovmax/gpax,Gaussian Processes for Experimental Sciences.,16,True,"['probabilistic', 'active-learning']",ziatdinovmax/gpax,https://github.com/ziatdinovmax/gpax,2021-10-28 13:43:18,2024-08-09 21:37:33,2024-05-21 08:13:54,787.0,1.0,22.0,7.0,68.0,7.0,32.0,194.0,2024-03-20 06:39:05,0.1.8,16.0,6.0,gpax,,1.0,1.0,https://pypi.org/project/gpax,128.0,128.0,,,,1.0,,,,,,,,,,,,,,,,,,
+104,openmm-torch,,md,https://github.com/openmm/openmm-torch#license,https://github.com/openmm/openmm-torch,OpenMM plugin to define forces with neural networks.,16,True,"['ml-iap', 'lang-cpp']",openmm/openmm-torch,https://github.com/openmm/openmm-torch,2019-09-27 18:15:19,2024-07-09 06:18:50,2024-07-09 06:18:50,71.0,4.0,24.0,12.0,61.0,25.0,65.0,177.0,2023-10-09 08:49:10,1.4,16.0,8.0,,conda-forge/openmm-torch,,,,,9229.0,https://anaconda.org/conda-forge/openmm-torch,2024-06-03 12:02:18.688,396876.0,2.0,,,,,,,,-1.0,,,,,,,,,,
+105,XenonPy,,general-tool,BSD-3-Clause,https://github.com/yoshida-lab/XenonPy,XenonPy is a Python Software for Materials Informatics.,16,True,,yoshida-lab/XenonPy,https://github.com/yoshida-lab/XenonPy,2018-01-17 10:13:29,2024-07-15 21:14:48,2024-04-21 06:58:38,693.0,,57.0,11.0,184.0,20.0,66.0,130.0,2023-05-21 15:54:32,0.6.8,45.0,10.0,xenonpy,,,,https://pypi.org/project/xenonpy,211.0,229.0,,,,2.0,,,,,,1393.0,,,,,,,,,,,,
+106,MatBench Discovery,,community,MIT,https://github.com/janosh/matbench-discovery,An evaluation framework for machine learning models simulating high-throughput materials discovery.,16,True,"['datasets', 'benchmarking', 'model-repository']",janosh/matbench-discovery,https://github.com/janosh/matbench-discovery,2022-06-20 18:32:44,2024-08-11 20:57:25,2024-08-11 20:57:23,357.0,23.0,11.0,8.0,77.0,2.0,32.0,82.0,2024-07-15 20:07:19,1.2.0,6.0,7.0,matbench-discovery,,2.0,2.0,https://pypi.org/project/matbench-discovery,142.0,142.0,,,,2.0,,,,,,,,-1.0,,,,,,,,,,
+107,PMTransformer,,generative,MIT,https://github.com/hspark1212/MOFTransformer,"Universal Transfer Learning in Porous Materials, including MOFs.",16,True,"['transfer-learning', 'pretrained', 'transformer']",hspark1212/MOFTransformer,https://github.com/hspark1212/MOFTransformer,2021-12-11 06:30:12,2024-06-20 06:58:46,2024-06-20 06:57:57,410.0,6.0,11.0,5.0,127.0,,36.0,82.0,2024-06-20 07:02:24,2.2.0,17.0,2.0,moftransformer,,6.0,6.0,https://pypi.org/project/moftransformer,298.0,298.0,,,,1.0,,,,,,,,,True,,,,,,,,,
+108,SpheriCart,,math,MIT,https://github.com/lab-cosmo/sphericart,Multi-language library for the calculation of spherical harmonics in Cartesian coordinates.,16,True,,lab-cosmo/sphericart,https://github.com/lab-cosmo/sphericart,2023-02-04 15:15:25,2024-08-06 22:48:54,2024-08-06 22:45:41,364.0,16.0,10.0,5.0,102.0,19.0,13.0,62.0,2023-04-26 12:06:09,0.3.0,3.0,10.0,sphericart,,3.0,3.0,https://pypi.org/project/sphericart,200.0,203.0,,,,1.0,,,,,,60.0,,,,,,,,,,,,
+109,mp-pyrho,,data-structures,https://github.com/materialsproject/pyrho,https://github.com/materialsproject/pyrho,Tools for re-griding volumetric quantum chemistry data for machine-learning purposes.,16,True,['ml-dft'],materialsproject/pyrho,https://github.com/materialsproject/pyrho,2020-05-25 22:44:02,2024-08-14 00:15:19,2024-02-23 02:53:46,287.0,,6.0,9.0,115.0,1.0,3.0,36.0,2024-02-23 02:54:45,0.4.4,28.0,8.0,mp-pyrho,,23.0,23.0,https://pypi.org/project/mp-pyrho,6490.0,6490.0,,,,3.0,,,,,,,,,,,,,,,,,,
+110,wfl,,ml-iap,GPL-2.0,https://github.com/libAtoms/workflow,Workflow is a Python toolkit for building interatomic potential creation and atomistic simulation workflows.,16,True,"['workflows', 'htc']",libAtoms/workflow,https://github.com/libAtoms/workflow,2021-11-04 17:03:34,2024-08-14 08:48:30,2024-08-08 22:10:12,1143.0,106.0,18.0,9.0,178.0,63.0,91.0,27.0,2024-04-25 15:07:11,0.2.4,4.0,18.0,,,1.0,1.0,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+111,IPSuite,,active-learning,EPL-2.0,https://github.com/zincware/IPSuite,A Python toolkit for FAIR development and deployment of machine-learned interatomic potentials.,16,True,"['ml-iap', 'md', 'workflows', 'htc', 'FAIR']",zincware/IPSuite,https://github.com/zincware/IPSuite,2023-03-01 16:34:45,2024-08-14 17:22:32,2024-08-09 08:56:01,442.0,38.0,8.0,3.0,203.0,67.0,65.0,17.0,2024-08-08 20:37:20,0.1.3,5.0,8.0,ipsuite,,6.0,6.0,https://pypi.org/project/ipsuite,139.0,139.0,,,,2.0,,,,,,,,,,,,,,,,,,
+112,MoLeR,,generative,MIT,https://github.com/microsoft/molecule-generation,Implementation of MoLeR: a generative model of molecular graphs which supports scaffold-constrained generation.,15,True,,microsoft/molecule-generation,https://github.com/microsoft/molecule-generation,2022-02-17 19:16:29,2024-01-04 18:10:00,2024-01-03 14:28:02,67.0,,38.0,11.0,37.0,10.0,28.0,250.0,2024-01-04 18:12:47,0.4.1,5.0,5.0,molecule-generation,,,,https://pypi.org/project/molecule-generation,229.0,229.0,,,,2.0,,,,,,,,,,,,,,,,,,
+113,QML,,general-tool,MIT,https://github.com/qmlcode/qml,QML: Quantum Machine Learning.,15,False,,qmlcode/qml,https://github.com/qmlcode/qml,2017-04-22 04:48:38,2024-04-12 13:38:21,2018-09-10 11:14:35,75.0,,81.0,23.0,101.0,30.0,19.0,197.0,,,3.0,2.0,qml,,31.0,31.0,https://pypi.org/project/qml,362.0,362.0,,,,3.0,,,,,,,,,,,,,,,,,,
+114,ChemNLP project,,language-models,MIT,https://github.com/OpenBioML/chemnlp,ChemNLP project.,15,True,['datasets'],OpenBioML/chemnlp,https://github.com/OpenBioML/chemnlp,2023-02-13 16:20:23,2024-08-15 02:41:56,2024-08-15 02:41:32,367.0,36.0,45.0,3.0,284.0,111.0,140.0,144.0,,,,27.0,chemnlp,,,,https://pypi.org/project/chemnlp,58.0,58.0,,,,2.0,,,,,,,,,,,,,,,,,,
+115,Automatminer,,general-tool,https://github.com/hackingmaterials/automatminer/blob/main/LICENSE,https://github.com/hackingmaterials/automatminer,An automatic engine for predicting materials properties.,15,False,['automl'],hackingmaterials/automatminer,https://github.com/hackingmaterials/automatminer,2018-05-10 18:27:08,2023-11-12 10:09:39,2022-01-06 19:39:49,1666.0,,49.0,12.0,233.0,36.0,138.0,134.0,2020-07-28 02:19:07,1.0.3.20200727,17.0,13.0,automatminer,,8.0,8.0,https://pypi.org/project/automatminer,222.0,222.0,,,,3.0,,,,,,,,,,,,,,,,,,
+116,MODNet,,rep-eng,MIT,https://github.com/ppdebreuck/modnet,MODNet: a framework for machine learning materials properties.,15,True,"['pretrained', 'small-data', 'transfer-learning']",ppdebreuck/modnet,https://github.com/ppdebreuck/modnet,2020-03-13 07:39:21,2024-06-24 13:31:56,2024-06-24 12:29:45,276.0,1.0,31.0,7.0,174.0,15.0,27.0,74.0,2024-05-07 14:09:13,0.4.4,21.0,8.0,,,7.0,7.0,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+117,Ultra-Fast Force Fields (UF3),,ml-iap,Apache-2.0,https://github.com/uf3/uf3,UF3: a python library for generating ultra-fast interatomic potentials.,15,True,,uf3/uf3,https://github.com/uf3/uf3,2021-10-01 13:21:44,2024-07-27 23:40:38,2024-07-12 22:56:23,703.0,21.0,20.0,6.0,82.0,13.0,30.0,56.0,2023-10-27 16:36:21,0.4.0,4.0,10.0,uf3,,1.0,1.0,https://pypi.org/project/uf3,35.0,35.0,,,,2.0,,,,,,,,,,,,,,,,,,
+118,aviary,,materials-discovery,MIT,https://github.com/CompRhys/aviary,The Wren sits on its Roost in the Aviary.,15,True,,CompRhys/aviary,https://github.com/CompRhys/aviary,2021-09-28 12:29:05,2024-08-05 20:10:13,2024-08-05 20:09:13,638.0,28.0,11.0,3.0,61.0,2.0,24.0,45.0,2024-07-22 19:03:03,1.0.0,5.0,4.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+119,KLIFF,,ml-iap,LGPL-2.1,https://github.com/openkim/kliff,KIM-based Learning-Integrated Fitting Framework for interatomic potentials.,15,True,"['probabilistic', 'workflows']",openkim/kliff,https://github.com/openkim/kliff,2017-08-01 20:33:58,2024-08-14 00:02:36,2024-07-06 01:33:46,1073.0,8.0,20.0,4.0,148.0,22.0,19.0,34.0,2023-12-17 02:12:00,0.4.3,18.0,9.0,kliff,conda-forge/kliff,3.0,3.0,https://pypi.org/project/kliff,75.0,2132.0,https://anaconda.org/conda-forge/kliff,2023-12-18 18:25:23.770,94653.0,2.0,,,,,,,,,,,,,,,,,,
+120,Polynomials4ML.jl,,math,MIT,https://github.com/ACEsuit/Polynomials4ML.jl,"Polynomials for ML: fast evaluation, batching, differentiation.",15,True,['lang-julia'],ACEsuit/Polynomials4ML.jl,https://github.com/ACEsuit/Polynomials4ML.jl,2022-09-20 23:05:53,2024-06-22 16:34:34,2024-06-22 16:18:31,410.0,50.0,5.0,4.0,39.0,17.0,34.0,12.0,2024-06-22 16:34:35,0.3.1,17.0,10.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+121,benchmarking-gnns,,rep-learn,MIT,https://github.com/graphdeeplearning/benchmarking-gnns,Repository for benchmarking graph neural networks.,14,False,"['single-paper', 'benchmarking']",graphdeeplearning/benchmarking-gnns,https://github.com/graphdeeplearning/benchmarking-gnns,2020-03-03 03:42:50,2023-06-22 04:03:53,2022-05-10 13:22:20,45.0,,446.0,58.0,17.0,5.0,63.0,2475.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+122,dlpack,,data-structures,Apache-2.0,https://github.com/dmlc/dlpack,common in-memory tensor structure.,14,True,['lang-cpp'],dmlc/dlpack,https://github.com/dmlc/dlpack,2017-02-24 16:56:47,2024-05-13 08:28:51,2024-03-26 12:57:17,75.0,,130.0,47.0,77.0,27.0,42.0,883.0,2023-01-05 18:42:00,0.8,9.0,23.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+123,FermiNet,,ml-wft,Apache-2.0,https://github.com/google-deepmind/ferminet,An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations.,14,True,['transformer'],google-deepmind/ferminet,https://github.com/google-deepmind/ferminet,2020-10-06 12:21:06,2024-06-04 15:46:46,2024-06-04 15:46:09,228.0,4.0,110.0,37.0,30.0,1.0,44.0,659.0,,,,18.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+124,escnn,,rep-learn,https://github.com/QUVA-Lab/escnn/blob/master/LICENSE,https://github.com/QUVA-Lab/escnn,Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/.,14,True,,QUVA-Lab/escnn,https://github.com/QUVA-Lab/escnn,2022-03-16 10:15:02,2024-06-26 14:25:20,2023-10-17 22:37:11,244.0,,42.0,17.0,33.0,27.0,36.0,339.0,,,,10.0,escnn,,,,https://pypi.org/project/escnn,527.0,527.0,,,,2.0,,,,,,,,,,,,,,,,,,
+125,sGDML,,ml-iap,MIT,https://github.com/stefanch/sGDML,sGDML - Reference implementation of the Symmetric Gradient Domain Machine Learning model.,14,True,,stefanch/sGDML,https://github.com/stefanch/sGDML,2018-07-11 15:20:30,2023-08-31 12:58:49,2023-08-31 12:57:53,205.0,,35.0,8.0,12.0,6.0,11.0,139.0,2023-08-31 12:58:49,1.0.2,15.0,8.0,sgdml,,9.0,9.0,https://pypi.org/project/sgdml,141.0,141.0,,,,2.0,,,,,,,,,,,,,,,,,,
+126,SevenNet,,uip,GPL-3.0,https://github.com/MDIL-SNU/SevenNet,SevenNet (Scalable EquiVariance Enabled Neural Network) is a graph neural network interatomic potential package that..,14,True,"['ml-iap', 'md', 'pretrained']",MDIL-SNU/SevenNet,https://github.com/MDIL-SNU/SevenNet,2023-02-16 06:31:53,2024-08-15 10:05:32,2024-07-30 04:17:16,380.0,67.0,9.0,4.0,54.0,2.0,6.0,86.0,2024-07-26 01:40:27,0.9.3,6.0,6.0,,,1.0,1.0,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+127,PyXtalFF,,ml-iap,MIT,https://github.com/MaterSim/PyXtal_FF,Machine Learning Interatomic Potential Predictions.,14,True,,MaterSim/PyXtal_FF,https://github.com/MaterSim/PyXtal_FF,2019-01-08 08:43:35,2024-02-15 16:12:06,2024-01-07 14:27:45,561.0,,23.0,9.0,4.0,11.0,51.0,85.0,2023-06-09 17:17:24,0.2.3,19.0,9.0,pyxtal_ff,,,,https://pypi.org/project/pyxtal_ff,71.0,71.0,,,,2.0,,,,,,,,,,,,,,,,,,
+128,HydraGNN,,rep-learn,BSD-3,https://github.com/ORNL/HydraGNN,Distributed PyTorch implementation of multi-headed graph convolutional neural networks.,14,True,,ORNL/HydraGNN,https://github.com/ORNL/HydraGNN,2021-05-28 03:32:03,2024-08-13 16:34:41,2024-08-06 16:10:42,675.0,23.0,23.0,10.0,228.0,14.0,32.0,56.0,2023-11-10 15:25:43,3.0,2.0,13.0,,,1.0,1.0,,,,,,,2.0,,,,,,,,,True,,,,,,,,,
+129,SchNetPack G-SchNet,,generative,MIT,https://github.com/atomistic-machine-learning/schnetpack-gschnet,G-SchNet extension for SchNetPack.,14,True,,atomistic-machine-learning/schnetpack-gschnet,https://github.com/atomistic-machine-learning/schnetpack-gschnet,2022-04-21 12:34:13,2024-07-05 12:47:35,2024-07-05 12:44:53,164.0,31.0,8.0,3.0,1.0,,14.0,43.0,2024-07-03 16:43:48,1.1.0,3.0,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+130,SALTED,,ml-dft,GPL-3.0,https://github.com/andreagrisafi/SALTED,Symmetry-Adapted Learning of Three-dimensional Electron Densities.,14,True,,andreagrisafi/SALTED,https://github.com/andreagrisafi/SALTED,2020-01-22 10:24:29,2024-08-02 15:26:59,2024-07-08 10:41:32,699.0,49.0,4.0,3.0,39.0,1.0,5.0,30.0,2024-06-22 12:42:33,3.0.0,2.0,16.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+131,GlassPy,,rep-eng,GPL-3.0,https://github.com/drcassar/glasspy,Python module for scientists working with glass materials.,14,True,,drcassar/glasspy,https://github.com/drcassar/glasspy,2019-07-18 23:15:43,2024-08-11 17:13:25,2024-01-21 13:59:55,334.0,,7.0,6.0,13.0,1.0,5.0,26.0,2024-01-21 13:47:58,0.4.6,8.0,,glasspy,,5.0,5.0,https://pypi.org/project/glasspy,165.0,165.0,,,,2.0,,,,,,,,,,,,,,,,,,
+132,SISSO,,rep-eng,Apache-2.0,https://github.com/rouyang2017/SISSO,A data-driven method combining symbolic regression and compressed sensing for accurate & interpretable models.,13,True,['lang-fortran'],rouyang2017/SISSO,https://github.com/rouyang2017/SISSO,2017-10-16 11:31:57,2024-06-19 15:58:39,2023-09-12 08:50:38,166.0,,76.0,6.0,3.0,8.0,57.0,229.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+133,n2p2,,ml-iap,GPL-3.0,https://github.com/CompPhysVienna/n2p2,n2p2 - A Neural Network Potential Package.,13,False,['lang-cpp'],CompPhysVienna/n2p2,https://github.com/CompPhysVienna/n2p2,2018-07-25 12:29:17,2023-05-11 16:26:02,2022-09-05 10:56:20,387.0,,75.0,12.0,53.0,64.0,85.0,216.0,2022-05-23 12:53:39,2.2.0,11.0,9.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+134,Librascal,,rep-eng,LGPL-2.1,https://github.com/lab-cosmo/librascal,A scalable and versatile library to generate representations for atomic-scale learning.,13,True,,lab-cosmo/librascal,https://github.com/lab-cosmo/librascal,2018-02-01 08:38:51,2024-01-11 17:38:31,2023-11-30 14:48:28,2931.0,,19.0,22.0,201.0,100.0,132.0,80.0,,,3.0,30.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+135,OpenMM-ML,,md,MIT,https://github.com/openmm/openmm-ml,High level API for using machine learning models in OpenMM simulations.,13,True,['ml-iap'],openmm/openmm-ml,https://github.com/openmm/openmm-ml,2021-02-10 20:55:25,2024-08-06 19:01:36,2024-08-06 19:01:36,46.0,2.0,18.0,14.0,33.0,20.0,34.0,80.0,2024-06-06 16:49:09,1.2,6.0,5.0,,conda-forge/openmm-ml,,,,,190.0,https://anaconda.org/conda-forge/openmm-ml,2024-06-07 16:52:07.157,4577.0,3.0,,,,,,,,,,,,,,,,,,
+136,NNPOps,,ml-iap,MIT,https://github.com/openmm/NNPOps,High-performance operations for neural network potentials.,13,True,"['md', 'lang-cpp']",openmm/NNPOps,https://github.com/openmm/NNPOps,2020-09-10 21:02:00,2024-07-10 15:29:02,2024-07-10 15:29:02,95.0,1.0,17.0,9.0,63.0,21.0,34.0,80.0,2023-07-26 11:21:58,0.6,7.0,9.0,,conda-forge/nnpops,,,,,6342.0,https://anaconda.org/conda-forge/nnpops,2024-05-31 15:49:32.883,183926.0,2.0,,,,,,,,,,,,,,,,,,
+137,ChatMOF,,language-models,MIT,https://github.com/Yeonghun1675/ChatMOF,Predict and Inverse design for metal-organic framework with large-language models (llms).,13,True,['generative'],Yeonghun1675/ChatMOF,https://github.com/Yeonghun1675/ChatMOF,2023-05-19 06:33:06,2024-07-01 04:57:44,2024-07-01 04:57:36,72.0,4.0,7.0,1.0,12.0,,5.0,53.0,2024-06-14 09:56:27,0.2.1,6.0,,chatmof,,2.0,2.0,https://pypi.org/project/chatmof,243.0,243.0,,,,2.0,,,,,,,,,True,,,,,,,,,
+138,Crystal Graph Convolutional Neural Networks (CGCNN),,rep-learn,MIT,https://github.com/txie-93/cgcnn,Crystal graph convolutional neural networks for predicting material properties.,12,False,,txie-93/cgcnn,https://github.com/txie-93/cgcnn,2018-03-14 20:41:21,2021-09-06 05:23:51,2021-09-06 05:23:38,25.0,,272.0,23.0,7.0,17.0,20.0,621.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+139,mat2vec,,language-models,MIT,https://github.com/materialsintelligence/mat2vec,Supplementary Materials for Tshitoyan et al. Unsupervised word embeddings capture latent knowledge from materials..,12,False,['rep-learn'],materialsintelligence/mat2vec,https://github.com/materialsintelligence/mat2vec,2019-04-25 07:55:30,2023-05-06 22:45:49,2023-05-06 22:45:49,55.0,,174.0,40.0,7.0,6.0,18.0,615.0,,,,5.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+140,AI for Science Resources,,community,GPL-3.0 license,https://github.com/divelab/AIRS/blob/main/Overview/resources.md,"List of resources for AI4Science research, including learning resources.",12,True,,divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2024-07-12 20:06:37,2024-07-12 20:06:37,425.0,6.0,57.0,18.0,5.0,2.0,12.0,477.0,,,,28.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+141,QH9,,datasets,CC-BY-NC-SA-4.0,https://github.com/divelab/AIRS/tree/main/OpenDFT/QHBench/QH9,A Quantum Hamiltonian Prediction Benchmark.,12,True,['ml-dft'],divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2024-07-12 20:06:37,2024-07-12 20:06:37,425.0,6.0,57.0,18.0,5.0,2.0,12.0,477.0,,,,28.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+142,Artificial Intelligence for Science (AIRS),,general-tool,GPL-3.0 license,https://github.com/divelab/AIRS,Artificial Intelligence Research for Science (AIRS).,12,True,"['rep-learn', 'generative', 'ml-iap', 'md', 'ml-dft', 'ml-wft', 'biomolecules']",divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2024-07-12 20:06:37,2024-07-12 20:06:37,425.0,6.0,57.0,18.0,5.0,2.0,12.0,477.0,,,,28.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+143,QHNet,,ml-dft,GPL-3.0,https://github.com/divelab/AIRS/tree/main/OpenDFT/QHNet,Artificial Intelligence Research for Science (AIRS).,12,True,['rep-learn'],divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2024-07-12 20:06:37,2024-07-12 20:06:37,425.0,6.0,57.0,18.0,5.0,2.0,12.0,477.0,,,,28.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+144,Geometric GNN Dojo,,educational,MIT,https://github.com/chaitjo/geometric-gnn-dojo/blob/main/geometric_gnn_101.ipynb,"New to geometric GNNs: try our practical notebook, prepared for MPhil students at the University of Cambridge.",12,False,['rep-learn'],chaitjo/geometric-gnn-dojo,https://github.com/chaitjo/geometric-gnn-dojo,2023-01-21 20:08:45,2024-05-22 11:06:03,2023-06-18 23:17:32,26.0,,43.0,10.0,5.0,3.0,6.0,446.0,2023-06-18 23:20:44,0.2.0,2.0,3.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+145,TensorMol,,ml-iap,GPL-3.0,https://github.com/jparkhill/TensorMol,Tensorflow + Molecules = TensorMol.,12,False,['single-paper'],jparkhill/TensorMol,https://github.com/jparkhill/TensorMol,2016-10-28 19:40:11,2021-02-11 00:12:00,2018-03-30 12:26:14,1724.0,,70.0,45.0,8.0,18.0,19.0,270.0,2017-11-08 18:05:50,0.1,1.0,12.0,,,1.0,1.0,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+146,gptchem,,language-models,MIT,https://github.com/kjappelbaum/gptchem,Use GPT-3 to solve chemistry problems.,12,True,,kjappelbaum/gptchem,https://github.com/kjappelbaum/gptchem,2023-01-06 15:34:32,2024-05-17 19:25:11,2023-10-04 11:27:09,147.0,,39.0,9.0,5.0,19.0,2.0,221.0,2023-11-30 09:31:51,0.0.4,2.0,4.0,gptchem,,,,https://pypi.org/project/gptchem,31.0,31.0,,,,2.0,,,,,,,,,,,,,,,,,,
+147,ANI-1,,ml-iap,MIT,https://github.com/isayev/ASE_ANI,ANI-1 neural net potential with python interface (ASE).,12,True,,isayev/ASE_ANI,https://github.com/isayev/ASE_ANI,2016-12-08 05:09:32,2024-03-11 21:50:26,2024-03-11 21:50:26,112.0,,55.0,33.0,9.0,16.0,21.0,220.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+148,DMFF,,ml-iap,LGPL-3.0,https://github.com/deepmodeling/DMFF,DMFF (Differentiable Molecular Force Field) is a Jax-based python package that provides a full differentiable..,12,True,,deepmodeling/DMFF,https://github.com/deepmodeling/DMFF,2022-02-14 01:35:50,2024-07-23 03:11:30,2024-01-12 00:58:20,431.0,,40.0,9.0,158.0,10.0,16.0,146.0,2023-11-09 14:32:37,1.0.0,4.0,14.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+149,ASAP,,unsupervised,MIT,https://github.com/BingqingCheng/ASAP,ASAP is a package that can quickly analyze and visualize datasets of crystal or molecular structures.,12,True,,BingqingCheng/ASAP,https://github.com/BingqingCheng/ASAP,2019-08-11 12:45:14,2024-06-27 12:53:17,2024-06-27 12:53:00,763.0,3.0,28.0,7.0,37.0,6.0,19.0,143.0,2023-08-30 13:54:23,1,1.0,6.0,,,6.0,6.0,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+150,SPICE,,datasets,MIT,https://github.com/openmm/spice-dataset,A collection of QM data for training potential functions.,12,True,"['ml-iap', 'md']",openmm/spice-dataset,https://github.com/openmm/spice-dataset,2021-08-31 18:52:05,2024-04-15 20:17:14,2024-04-15 20:14:31,42.0,,8.0,17.0,46.0,15.0,45.0,141.0,2024-04-15 20:17:14,2.0.1,8.0,,,,,,,,9.0,,,,2.0,,,,,,244.0,,,,,,,,,,,,
+151,So3krates (MLFF),,ml-iap,MIT,https://github.com/thorben-frank/mlff,Build neural networks for machine learning force fields with JAX.,12,True,,thorben-frank/mlff,https://github.com/thorben-frank/mlff,2022-09-30 07:40:17,2024-08-12 14:37:34,2024-08-06 09:40:56,138.0,7.0,13.0,7.0,21.0,3.0,6.0,69.0,2024-06-24 11:09:20,0.3.0,2.0,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+152,jarvis-tools-notebooks,,educational,NIST,https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks,A Google-Colab Notebook Collection for Materials Design: https://jarvis.nist.gov/.,12,True,,JARVIS-Materials-Design/jarvis-tools-notebooks,https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks,2020-06-27 20:22:02,2024-08-14 02:50:36,2024-08-14 02:50:35,753.0,118.0,26.0,4.0,46.0,,,58.0,,,,5.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+153,Neural fingerprint (nfp),,rep-learn,https://github.com/NREL/nfp/blob/master/LICENSE,https://github.com/NREL/nfp,Keras layers for end-to-end learning with rdkit and pymatgen.,12,False,,NREL/nfp,https://github.com/NREL/nfp,2018-11-20 23:55:23,2024-02-24 20:11:49,2022-06-14 22:18:28,143.0,,27.0,7.0,19.0,,6.0,57.0,2022-04-27 17:05:25,0.3.12,13.0,4.0,,,13.0,13.0,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+154,Rascaline,,rep-eng,BSD-3-Clause,https://github.com/Luthaf/rascaline,Computing representations for atomistic machine learning.,12,True,"['lang-rust', 'lang-cpp']",Luthaf/rascaline,https://github.com/Luthaf/rascaline,2020-09-24 14:28:34,2024-08-14 13:15:55,2024-08-14 13:10:20,561.0,17.0,13.0,7.0,255.0,32.0,35.0,44.0,,,,14.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+155,synspace,,generative,MIT,https://github.com/whitead/synspace,Synthesis generative model.,12,False,,whitead/synspace,https://github.com/whitead/synspace,2022-12-28 00:59:14,2023-04-15 22:42:57,2023-04-15 18:04:16,27.0,,3.0,3.0,1.0,2.0,1.0,35.0,2023-04-15 22:42:57,0.3.0,3.0,2.0,synspace,,17.0,17.0,https://pypi.org/project/synspace,906.0,906.0,,,,2.0,,,,,,,,,,,,,,,,,,
+156,MACE-MP,,uip,MIT,https://github.com/ACEsuit/mace-mp,Pretrained foundation models for materials chemistry.,12,True,"['ml-iap', 'pretrained', 'rep-learn', 'md']",ACEsuit/mace-mp,https://github.com/ACEsuit/mace-mp,2024-01-11 10:55:55,2024-04-28 17:30:31,2024-04-24 14:56:12,10.0,,5.0,10.0,1.0,1.0,6.0,33.0,2024-04-28 17:30:31,mace_mp_0b,2.0,2.0,mace-torch,,,,https://pypi.org/project/mace-torch,11135.0,14179.0,,,,3.0,,,,,,21310.0,,,True,,,,,,,,,
+157,Compositionally-Restricted Attention-Based Network (CrabNet),,rep-learn,MIT,https://github.com/sparks-baird/CrabNet,Predict materials properties using only the composition information!.,12,False,,sparks-baird/CrabNet,https://github.com/sparks-baird/CrabNet,2021-09-17 07:58:15,2023-06-19 09:35:52,2023-06-19 09:35:52,427.0,,4.0,1.0,54.0,15.0,2.0,12.0,2023-06-07 01:07:33,2.0.8,5.0,5.0,crabnet,,13.0,13.0,https://pypi.org/project/crabnet,262.0,262.0,,,,2.0,,,,,,,,,,,,,,,,,,
+158,Deep Learning for Molecules and Materials Book,,educational,https://github.com/whitead/dmol-book/blob/main/LICENSE,https://dmol.pub/,Deep learning for molecules and materials book.,11,False,,whitead/dmol-book,https://github.com/whitead/dmol-book,2020-08-19 19:24:32,2023-07-02 18:02:57,2023-07-02 18:02:56,558.0,,111.0,16.0,92.0,28.0,129.0,604.0,,,,19.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+159,ReLeaSE,,reinforcement-learning,MIT,https://github.com/isayev/ReLeaSE,Deep Reinforcement Learning for de-novo Drug Design.,11,False,['drug-discovery'],isayev/ReLeaSE,https://github.com/isayev/ReLeaSE,2018-04-26 14:50:34,2021-12-08 19:49:36,2021-12-08 19:49:36,160.0,,130.0,19.0,9.0,27.0,8.0,347.0,,,,5.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+160,DeepLearningLifeSciences,,educational,MIT,https://github.com/deepchem/DeepLearningLifeSciences,Example code from the book Deep Learning for the Life Sciences.,11,False,,deepchem/DeepLearningLifeSciences,https://github.com/deepchem/DeepLearningLifeSciences,2019-02-05 17:16:18,2021-09-17 05:10:37,2021-09-17 05:10:37,52.0,,144.0,25.0,15.0,9.0,10.0,344.0,2019-10-28 18:46:28,1.0,1.0,10.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+161,DeepH-pack,,ml-dft,LGPL-3.0,https://github.com/mzjb/DeepH-pack,Deep neural networks for density functional theory Hamiltonian.,11,True,['lang-julia'],mzjb/DeepH-pack,https://github.com/mzjb/DeepH-pack,2022-05-13 02:51:32,2024-05-22 10:50:01,2024-05-22 10:50:01,66.0,2.0,36.0,7.0,17.0,12.0,38.0,199.0,2023-07-11 08:13:06,0.2.2,2.0,9.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+162,PiNN,,ml-iap,BSD-3-Clause,https://github.com/Teoroo-CMC/PiNN,A Python library for building atomic neural networks.,11,True,,Teoroo-CMC/PiNN,https://github.com/Teoroo-CMC/PiNN,2019-10-04 08:13:18,2024-08-02 06:55:47,2024-06-27 11:23:15,160.0,2.0,31.0,6.0,15.0,1.0,5.0,104.0,2019-10-09 09:21:30,0.3.0,1.0,5.0,,,,,,,4.0,,,,2.0,teoroo/pinn,https://hub.docker.com/r/teoroo/pinn,2024-06-27 11:32:07.538231,,243.0,,,,,,,,,,,,,
+163,tinker-hp,,ml-iap,https://github.com/TinkerTools/tinker-hp/blob/master/license-Tinker.pdf,https://github.com/TinkerTools/tinker-hp,Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs & GPUs.,11,True,,TinkerTools/tinker-hp,https://github.com/TinkerTools/tinker-hp,2018-06-12 12:15:51,2024-08-05 15:47:54,2024-08-05 15:47:21,562.0,14.0,21.0,13.0,2.0,3.0,17.0,78.0,2019-11-24 16:21:50,published-version-V1,1.0,12.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+164,hippynn,,rep-learn,https://github.com/lanl/hippynn/blob/main/LICENSE.txt,https://github.com/lanl/hippynn,python library for atomistic machine learning.,11,True,['workflows'],lanl/hippynn,https://github.com/lanl/hippynn,2021-11-17 00:45:13,2024-08-14 20:00:55,2024-08-14 19:09:04,147.0,18.0,23.0,9.0,75.0,7.0,8.0,65.0,2024-01-29 22:04:53,hippynn-0.0.3,3.0,14.0,,,1.0,1.0,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+165,Pacemaker,,ml-iap,https://github.com/ICAMS/python-ace/blob/master/LICENSE.md,https://cortner.github.io/ACEweb/software/,Python package for fitting atomic cluster expansion (ACE) potentials.,11,True,,ICAMS/python-ace,https://github.com/ICAMS/python-ace,2021-11-19 11:39:54,2024-07-22 19:16:32,2024-07-22 19:16:32,160.0,1.0,15.0,4.0,24.0,16.0,33.0,62.0,2022-10-24 19:59:33,0.2.8,2.0,5.0,python-ace,,,,https://pypi.org/project/python-ace,18.0,18.0,,,,2.0,,,,,,,,,,,,,,,,,,
+166,Neural-Network-Models-for-Chemistry,,community,,https://github.com/Eipgen/Neural-Network-Models-for-Chemistry,A collection of Nerual Network Models for chemistry.,11,True,['rep-learn'],Eipgen/Neural-Network-Models-for-Chemistry,https://github.com/Eipgen/Neural-Network-Models-for-Chemistry,2022-05-23 06:35:09,2024-08-13 07:05:05,2024-08-08 14:14:24,210.0,14.0,8.0,3.0,22.0,1.0,1.0,59.0,2024-07-17 02:01:45,0.0.5,5.0,3.0,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,,,,
+167,AMPtorch,,general-tool,GPL-3.0,https://github.com/ulissigroup/amptorch,AMPtorch: Atomistic Machine Learning Package (AMP) - PyTorch.,11,False,,ulissigroup/amptorch,https://github.com/ulissigroup/amptorch,2019-01-24 15:15:48,2023-07-16 02:11:38,2023-07-16 02:08:13,759.0,,32.0,10.0,99.0,7.0,26.0,58.0,2023-07-16 02:11:38,1.0,3.0,14.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+168,SIMPLE-NN,,ml-iap,GPL-3.0,https://github.com/MDIL-SNU/SIMPLE-NN,SIMPLE-NN(SNU Interatomic Machine-learning PotentiaL packagE version Neural Network).,11,False,,MDIL-SNU/SIMPLE-NN,https://github.com/MDIL-SNU/SIMPLE-NN,2018-03-26 23:53:35,2022-01-27 05:04:05,2022-01-27 05:04:05,586.0,,17.0,12.0,91.0,4.0,26.0,47.0,2021-09-23 01:41:42,1.1.1,9.0,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+169,DeepErwin,,ml-wft,https://github.com/mdsunivie/deeperwin/blob/master/LICENSE,https://github.com/mdsunivie/deeperwin,DeepErwin is a python 3.8+ package that implements and optimizes JAX 2.x wave function models for numerical solutions..,11,True,,mdsunivie/deeperwin,https://github.com/mdsunivie/deeperwin,2021-06-14 15:18:32,2024-06-07 15:52:47,2024-06-07 15:52:33,66.0,6.0,6.0,3.0,5.0,,11.0,46.0,2024-03-25 13:47:47,transferable_atomic_orbitals,3.0,7.0,deeperwin,,,,https://pypi.org/project/deeperwin,46.0,46.0,,,,3.0,,,,,,8.0,,,,,,,,,,,,
+170,nlcc,,language-models,MIT,https://github.com/whitead/nlcc,Natural language computational chemistry command line interface.,11,False,['single-paper'],whitead/nlcc,https://github.com/whitead/nlcc,2021-08-19 18:23:52,2023-02-04 03:07:56,2023-02-04 03:06:33,144.0,,7.0,5.0,1.0,,9.0,44.0,2023-02-04 03:07:56,0.6.0,10.0,3.0,nlcc,,1.0,1.0,https://pypi.org/project/nlcc,45.0,45.0,,,,2.0,,,,,,,,,,,,,,,,,,
+171,pair_nequip,,md,MIT,https://github.com/mir-group/pair_nequip,LAMMPS pair style for NequIP.,11,True,"['ml-iap', 'rep-learn']",mir-group/pair_nequip,https://github.com/mir-group/pair_nequip,2021-04-02 15:28:02,2024-06-05 17:06:39,2024-06-05 17:06:39,101.0,4.0,12.0,9.0,8.0,9.0,20.0,40.0,2022-05-20 00:39:04,0.5.2,4.0,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+172,load-atoms,,datasets,MIT,https://github.com/jla-gardner/load-atoms,download and manipulate atomistic datasets.,11,True,['data-structures'],jla-gardner/load-atoms,https://github.com/jla-gardner/load-atoms,2022-11-21 21:59:15,2024-04-06 05:14:57,2024-04-06 05:13:05,271.0,,2.0,1.0,31.0,2.0,29.0,37.0,,,,3.0,load-atoms,,3.0,3.0,https://pypi.org/project/load-atoms,459.0,459.0,,,,2.0,,,,,,,,,True,,,,,,,,,
+173,NeuralXC,,ml-dft,BSD-3-Clause,https://github.com/semodi/neuralxc,Implementation of a machine learned density functional.,11,False,,semodi/neuralxc,https://github.com/semodi/neuralxc,2019-03-14 18:13:40,2024-06-17 22:55:40,2021-07-05 21:36:23,337.0,,10.0,5.0,10.0,5.0,5.0,33.0,,,3.0,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+174,CCS_fit,,ml-iap,GPL-3.0,https://github.com/Teoroo-CMC/CCS,Curvature Constrained Splines.,11,True,,Teoroo-CMC/CCS,https://github.com/Teoroo-CMC/CCS,2021-12-13 14:29:53,2024-05-14 08:53:09,2024-02-16 09:31:25,762.0,,10.0,3.0,13.0,8.0,6.0,7.0,2024-02-16 09:31:28,0.22.5,100.0,8.0,ccs_fit,,,,https://pypi.org/project/ccs_fit,255.0,275.0,,,,2.0,,,,,,422.0,,,,,,,,,,,,
+175,pretrained-gnns,,rep-learn,MIT,https://github.com/snap-stanford/pretrain-gnns,Strategies for Pre-training Graph Neural Networks.,10,False,['pretrained'],snap-stanford/pretrain-gnns,https://github.com/snap-stanford/pretrain-gnns,2020-01-30 22:12:41,2023-07-29 06:21:39,2023-07-29 06:21:39,13.0,,160.0,17.0,8.0,34.0,29.0,954.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+176,GNoME Explorer,,community,Apache-2.0,https://next-gen.materialsproject.org/materials/gnome,Graph Networks for Materials Exploration Database.,10,True,"['datasets', 'materials-discovery']",google-deepmind/materials_discovery,https://github.com/google-deepmind/materials_discovery,2023-11-28 10:29:51,2024-07-09 19:00:36,2023-12-02 03:54:29,8.0,,132.0,47.0,7.0,17.0,4.0,854.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+177,Materials Discovery: GNoME,,materials-discovery,Apache-2.0,https://github.com/google-deepmind/materials_discovery,"Graph Networks for Materials Science (GNoME) and dataset of 381,000 novel stable materials.",10,True,"['uip', 'datasets', 'rep-learn', 'proprietary']",google-deepmind/materials_discovery,https://github.com/google-deepmind/materials_discovery,2023-11-28 10:29:51,2024-07-09 19:00:36,2023-12-02 03:54:29,8.0,,132.0,47.0,7.0,17.0,4.0,854.0,,,,2.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+178,OpenChem,,general-tool,MIT,https://github.com/Mariewelt/OpenChem,OpenChem: Deep Learning toolkit for Computational Chemistry and Drug Design Research.,10,False,,Mariewelt/OpenChem,https://github.com/Mariewelt/OpenChem,2018-07-10 01:27:33,2023-11-26 05:03:36,2022-04-27 19:27:40,444.0,,111.0,36.0,12.0,15.0,2.0,668.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+179,EDM,,generative,MIT,https://github.com/ehoogeboom/e3_diffusion_for_molecules,E(3) Equivariant Diffusion Model for Molecule Generation in 3D.,10,False,,ehoogeboom/e3_diffusion_for_molecules,https://github.com/ehoogeboom/e3_diffusion_for_molecules,2022-04-15 14:34:35,2022-07-10 17:56:18,2022-07-10 17:56:12,6.0,,109.0,8.0,,2.0,36.0,417.0,,,,,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+180,Awesome Materials Informatics,,community,https://github.com/tilde-lab/awesome-materials-informatics#license,https://github.com/tilde-lab/awesome-materials-informatics,"Curated list of known efforts in materials informatics, i.e. in modern materials science.",10,True,,tilde-lab/awesome-materials-informatics,https://github.com/tilde-lab/awesome-materials-informatics,2018-02-15 15:14:16,2024-07-12 09:19:42,2024-07-12 09:19:42,138.0,3.0,80.0,17.0,54.0,,8.0,359.0,2023-03-02 19:56:59,2023.03.02,1.0,19.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+181,Allegro,,ml-iap,MIT,https://github.com/mir-group/allegro,Allegro is an open-source code for building highly scalable and accurate equivariant deep learning interatomic..,10,False,,mir-group/allegro,https://github.com/mir-group/allegro,2022-02-06 23:50:40,2024-07-01 20:43:10,2023-05-08 21:16:45,38.0,,44.0,20.0,5.0,18.0,15.0,309.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+182,GDC,,rep-learn,MIT,https://github.com/gasteigerjo/gdc,"Graph Diffusion Convolution, as proposed in Diffusion Improves Graph Learning (NeurIPS 2019).",10,False,['generative'],gasteigerjo/gdc,https://github.com/gasteigerjo/gdc,2019-10-26 16:05:11,2023-04-26 14:22:40,2023-04-26 14:22:40,28.0,,42.0,3.0,1.0,,11.0,262.0,,,,3.0,,,1.0,1.0,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+183,AI4Chemistry course,,educational,MIT,https://github.com/schwallergroup/ai4chem_course,"EPFL AI for chemistry course, Spring 2023. https://schwallergroup.github.io/ai4chem_course.",10,True,['chemistry'],schwallergroup/ai4chem_course,https://github.com/schwallergroup/ai4chem_course,2022-08-22 07:29:30,2024-05-02 20:41:12,2024-05-02 20:41:12,232.0,,30.0,4.0,9.0,1.0,3.0,127.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,,,,
+184,DeePKS-kit,,ml-dft,LGPL-3.0,https://github.com/deepmodeling/deepks-kit,a package for developing machine learning-based chemically accurate energy and density functional models.,10,True,,deepmodeling/deepks-kit,https://github.com/deepmodeling/deepks-kit,2020-07-29 03:27:50,2024-08-08 16:28:48,2024-04-13 03:44:40,384.0,,35.0,14.0,44.0,5.0,14.0,96.0,,,,7.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+185,Grad DFT,,ml-dft,Apache-2.0,https://github.com/XanaduAI/GradDFT,GradDFT is a JAX-based library enabling the differentiable design and experimentation of exchange-correlation..,10,True,,XanaduAI/GradDFT,https://github.com/XanaduAI/GradDFT,2023-05-15 16:18:25,2024-02-13 16:05:53,2024-02-13 16:05:51,419.0,,5.0,5.0,43.0,11.0,43.0,71.0,,,,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+186,LLaMP,,language-models,BSD-3-Clause,https://github.com/chiang-yuan/llamp,A web app and Python API for multi-modal RAG framework to ground LLMs on high-fidelity materials informatics. An..,10,True,"['materials-discovery', 'cheminformatics', 'generative', 'MD', 'multimodal', 'language-models', 'lang-py', 'general-tool']",chiang-yuan/llamp,https://github.com/chiang-yuan/llamp,2023-07-01 08:15:34,2024-08-11 08:26:47,2024-08-01 23:06:38,372.0,9.0,6.0,,30.0,8.0,17.0,49.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+187,DSECOP,,educational,CCO-1.0,https://github.com/GDS-Education-Community-of-Practice/DSECOP,This repository contains data science educational materials developed by DSECOP Fellows.,10,True,,GDS-Education-Community-of-Practice/DSECOP,https://github.com/GDS-Education-Community-of-Practice/DSECOP,2022-03-07 17:47:33,2024-06-26 14:49:22,2024-06-26 14:49:19,555.0,6.0,25.0,10.0,25.0,1.0,7.0,43.0,,,,13.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+188,Finetuna,,active-learning,MIT,https://github.com/ulissigroup/finetuna,Active Learning for Machine Learning Potentials.,10,True,,ulissigroup/finetuna,https://github.com/ulissigroup/finetuna,2020-09-22 14:39:52,2024-05-15 17:26:24,2024-05-15 17:25:23,1200.0,,11.0,3.0,40.0,5.0,15.0,42.0,,,,11.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+189,flare++,,active-learning,MIT,https://github.com/mir-group/flare_pp,A many-body extension of the FLARE code.,10,False,"['lang-cpp', 'ml-iap']",mir-group/flare_pp,https://github.com/mir-group/flare_pp,2019-11-20 22:46:32,2022-02-27 21:05:09,2022-02-24 19:00:50,989.0,,6.0,7.0,28.0,8.0,17.0,35.0,,,,10.0,flare_pp,,,,https://pypi.org/project/flare_pp,129.0,129.0,,,,2.0,,,,,,,,,,,,,,,,,,
+190,cmlkit,,rep-eng,MIT,https://github.com/sirmarcel/cmlkit,tools for machine learning in condensed matter physics and quantum chemistry.,10,False,['benchmarking'],sirmarcel/cmlkit,https://github.com/sirmarcel/cmlkit,2018-05-31 07:56:52,2022-04-01 00:39:14,2022-03-25 22:27:04,526.0,,6.0,3.0,1.0,6.0,2.0,34.0,,,,,cmlkit,,5.0,5.0,https://pypi.org/project/cmlkit,118.0,118.0,,,,2.0,,,,,,,,,,,,,,,,,,
+191,OpenKIM,,datasets,LGPL-2.1,https://openkim.org/,"The Open Knowledgebase of Interatomic Models (OpenKIM) aims to be an online resource for standardized testing, long-..",10,False,"['model-repository', 'knowledge-base', 'pretrained']",openkim/kim-api,https://github.com/openkim/kim-api,2014-07-28 21:21:08,2023-08-16 00:09:44,2022-03-17 23:01:36,2371.0,,20.0,12.0,55.0,17.0,18.0,31.0,,,,24.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+192,Point Edge Transformer (PET),,ml-iap,MIT,https://github.com/spozdn/pet,Point Edge Transformer.,10,True,"['rep-learn', 'transformer']",spozdn/pet,https://github.com/spozdn/pet,2023-02-08 18:36:10,2024-07-18 13:35:00,2024-07-02 10:29:58,201.0,12.0,5.0,4.0,12.0,5.0,,18.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+193,ACEhamiltonians,,ml-dft,MIT,https://github.com/ACEsuit/ACEhamiltonians.jl,"Provides tools for constructing, fitting, and predicting self-consistent Hamiltonian and overlap matrices in solid-..",10,False,['lang-julia'],ACEsuit/ACEhamiltonians.jl,https://github.com/ACEsuit/ACEhamiltonians.jl,2022-01-17 20:54:22,2024-06-05 15:25:30,2023-04-12 15:04:14,33.0,,6.0,5.0,42.0,2.0,3.0,12.0,2024-02-07 16:35:47,0.1.0,2.0,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+194,NNsforMD,,ml-iap,MIT,https://github.com/aimat-lab/NNsForMD,"Neural network class for molecular dynamics to predict potential energy, forces and non-adiabatic couplings.",10,False,,aimat-lab/NNsForMD,https://github.com/aimat-lab/NNsForMD,2020-08-31 11:14:18,2022-11-10 13:04:49,2022-11-10 13:04:45,265.0,,6.0,3.0,,,,10.0,2022-04-12 15:10:32,2.0.0,5.0,2.0,pyNNsMD,,1.0,1.0,https://pypi.org/project/pyNNsMD,46.0,46.0,,,,3.0,,,,,,,,,,,,,,,,,,
+195,ACEfit,,ml-iap,MIT,https://github.com/ACEsuit/ACEfit.jl,,10,True,['lang-julia'],ACEsuit/ACEfit.jl,https://github.com/ACEsuit/ACEfit.jl,2022-01-01 00:09:17,2024-08-13 04:26:08,2024-08-13 04:22:01,226.0,5.0,5.0,4.0,22.0,22.0,33.0,8.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+196,SE(3)-Transformers,,rep-learn,MIT,https://github.com/FabianFuchsML/se3-transformer-public,code for the SE3 Transformers paper: https://arxiv.org/abs/2006.10503.,9,False,"['single-paper', 'transformer']",FabianFuchsML/se3-transformer-public,https://github.com/FabianFuchsML/se3-transformer-public,2020-08-31 10:36:57,2023-07-10 05:13:25,2021-11-18 09:11:56,63.0,,67.0,17.0,5.0,9.0,17.0,482.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+197,molecularGNN_smiles,,rep-learn,Apache-2.0,https://github.com/masashitsubaki/molecularGNN_smiles,"The code of a graph neural network (GNN) for molecules, which is based on learning representations of r-radius..",9,False,,masashitsubaki/molecularGNN_smiles,https://github.com/masashitsubaki/molecularGNN_smiles,2018-11-06 00:25:26,2020-11-28 02:04:45,2020-11-28 02:04:45,79.0,,75.0,6.0,,6.0,1.0,286.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+198,DimeNet,,ml-iap,https://github.com/gasteigerjo/dimenet/blob/master/LICENSE.md,https://github.com/gasteigerjo/dimenet,"DimeNet and DimeNet++ models, as proposed in Directional Message Passing for Molecular Graphs (ICLR 2020) and Fast and..",9,True,,gasteigerjo/dimenet,https://github.com/gasteigerjo/dimenet,2020-02-14 12:40:15,2023-10-03 09:57:19,2023-10-03 09:57:19,103.0,,57.0,4.0,,1.0,30.0,278.0,,,,2.0,,,1.0,1.0,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+199,MoLFormers UI,,community,Apache-2.0,https://molformer.res.ibm.com/,A family of foundation models trained on chemicals.,9,True,"['transformer', 'language-models', 'pretrained', 'drug-discovery']",IBM/molformer,https://github.com/IBM/molformer,2022-11-07 18:48:17,2023-10-16 16:34:25,2023-10-16 16:33:13,7.0,,40.0,10.0,3.0,9.0,10.0,231.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+200,MoLFormer,,language-models,Apache-2.0,https://github.com/IBM/molformer,Repository for MolFormer.,9,True,"['transformer', 'pretrained', 'drug-discovery']",IBM/molformer,https://github.com/IBM/molformer,2022-11-07 18:48:17,2023-10-16 16:34:25,2023-10-16 16:33:13,7.0,,40.0,10.0,3.0,9.0,10.0,231.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+201,SchNet,,ml-iap,MIT,https://github.com/atomistic-machine-learning/SchNet,SchNet - a deep learning architecture for quantum chemistry.,9,False,,atomistic-machine-learning/SchNet,https://github.com/atomistic-machine-learning/SchNet,2017-10-03 11:52:20,2018-09-04 08:42:35,2018-09-04 08:42:34,53.0,,65.0,16.0,,1.0,2.0,212.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+202,QDF for molecule,,ml-esm,MIT,https://github.com/masashitsubaki/QuantumDeepField_molecule,"Quantum deep field: data-driven wave function, electron density generation, and energy prediction and extrapolation..",9,False,,masashitsubaki/QuantumDeepField_molecule,https://github.com/masashitsubaki/QuantumDeepField_molecule,2020-11-11 01:06:09,2021-02-20 03:46:18,2021-02-20 03:46:09,20.0,,40.0,4.0,,1.0,3.0,197.0,,,,,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,,
+203,Equiformer,,rep-learn,MIT,https://github.com/atomicarchitects/equiformer,[ICLR23 Spotlight] Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs.,9,True,['transformer'],atomicarchitects/equiformer,https://github.com/atomicarchitects/equiformer,2023-02-28 00:21:30,2024-07-27 08:42:53,2024-07-18 10:32:17,6.0,3.0,36.0,5.0,2.0,5.0,7.0,187.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+204,GemNet,,ml-iap,https://github.com/TUM-DAML/gemnet_pytorch/blob/master/LICENSE,https://github.com/TUM-DAML/gemnet_pytorch,"GemNet model in PyTorch, as proposed in GemNet: Universal Directional Graph Neural Networks for Molecules (NeurIPS..",9,False,,TUM-DAML/gemnet_pytorch,https://github.com/TUM-DAML/gemnet_pytorch,2021-10-11 07:30:36,2023-04-26 14:20:12,2023-04-26 14:20:12,36.0,,27.0,4.0,1.0,,14.0,175.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+205,MolSkill,,language-models,MIT,https://github.com/microsoft/molskill,Extracting medicinal chemistry intuition via preference machine learning.,9,True,"['drug-discovery', 'recommender']",microsoft/molskill,https://github.com/microsoft/molskill,2023-01-12 13:48:31,2023-10-31 17:03:36,2023-10-31 17:03:36,81.0,,9.0,6.0,8.0,2.0,4.0,101.0,2023-08-04 12:22:15,1.2b,5.0,4.0,,msr-ai4science/molskill,,,,,15.0,https://anaconda.org/msr-ai4science/molskill,2023-06-18 17:27:43.196,275.0,3.0,,,,,,,,,,,,,,,,,,
+206,GATGNN: Global Attention Graph Neural Network,,rep-learn,MIT,https://github.com/superlouis/GATGNN,Pytorch Repository for our work: Graph convolutional neural networks with global attention for improved materials..,9,False,,superlouis/GATGNN,https://github.com/superlouis/GATGNN,2020-06-21 03:27:36,2022-10-03 21:57:33,2022-10-03 21:57:33,99.0,,17.0,8.0,,3.0,3.0,67.0,2021-04-05 06:49:29,0.2,2.0,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+207,ACE.jl,,ml-iap,https://github.com/ACEsuit/ACE.jl/blob/main/license/mit.md,https://github.com/ACEsuit/ACE.jl,Parameterisation of Equivariant Properties of Particle Systems.,9,False,['lang-julia'],ACEsuit/ACE.jl,https://github.com/ACEsuit/ACE.jl,2019-11-30 16:22:51,2023-06-09 21:31:30,2023-06-09 21:29:10,912.0,,15.0,8.0,65.0,24.0,58.0,66.0,,,,12.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+208,PROPhet,,ml-dft,GPL-3.0,https://github.com/biklooost/PROPhet,PROPhet is a code to integrate machine learning techniques with first-principles quantum chemistry approaches.,9,False,"['ml-iap', 'md', 'single-paper', 'lang-cpp']",biklooost/PROPhet,https://github.com/biklooost/PROPhet,2016-09-16 16:21:06,2018-04-19 02:09:46,2018-04-19 02:00:46,120.0,,26.0,14.0,6.0,9.0,7.0,62.0,2018-04-15 16:55:15,1.2,3.0,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+209,HamGNN,,ml-dft,GPL-3.0,https://github.com/QuantumLab-ZY/HamGNN,An E(3) equivariant Graph Neural Network for predicting electronic Hamiltonian matrix.,9,True,"['rep-learn', 'magnetism', 'lang-c']",QuantumLab-ZY/HamGNN,https://github.com/QuantumLab-ZY/HamGNN,2023-07-14 12:20:27,2024-08-06 17:17:12,2024-08-06 17:16:48,63.0,32.0,12.0,5.0,,20.0,4.0,49.0,,,,,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,,,,
+210,AI for Science paper collection,,community,Apache-2.0,https://github.com/sherrylixuecheng/AI_for_Science_paper_collection,List the AI for Science papers accepted by top conferences.,9,True,,sherrylixuecheng/AI_for_Science_paper_collection,https://github.com/sherrylixuecheng/AI_for_Science_paper_collection,2024-06-28 16:20:57,2024-08-13 03:53:31,2024-08-04 06:21:15,66.0,66.0,5.0,2.0,8.0,,,43.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+211,pair_allegro,,md,MIT,https://github.com/mir-group/pair_allegro,LAMMPS pair style for Allegro deep learning interatomic potentials with parallelization support.,9,True,"['ml-iap', 'rep-learn']",mir-group/pair_allegro,https://github.com/mir-group/pair_allegro,2021-08-09 17:26:51,2024-06-05 17:00:50,2024-06-05 17:00:50,101.0,10.0,7.0,10.0,3.0,10.0,18.0,34.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+212,ALF,,ml-iap,https://github.com/lanl/ALF/blob/main/LICENSE,https://github.com/lanl/ALF,A framework for performing active learning for training machine-learned interatomic potentials.,9,True,['active-learning'],lanl/alf,https://github.com/lanl/ALF,2023-01-04 23:13:24,2024-08-08 16:59:38,2024-08-08 16:59:10,149.0,3.0,11.0,8.0,27.0,,,29.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+213,lie-nn,,math,MIT,https://github.com/lie-nn/lie-nn,Tools for building equivariant polynomials on reductive Lie groups.,9,False,['rep-learn'],lie-nn/lie-nn,https://github.com/lie-nn/lie-nn,2022-04-01 18:02:49,2023-06-29 19:38:34,2023-06-20 22:30:53,249.0,,1.0,8.0,3.0,,,26.0,2023-06-20 22:31:12,0.0.0,1.0,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+214,FAENet,,rep-learn,MIT,https://github.com/vict0rsch/faenet,Frame Averaging Equivariant GNN for materials modeling.,9,True,,vict0rsch/faenet,https://github.com/vict0rsch/faenet,2023-02-10 22:10:27,2023-10-12 08:46:26,2023-10-12 08:46:22,125.0,,2.0,3.0,5.0,,,25.0,2023-09-12 04:00:49,0.1.2,1.0,3.0,faenet,,2.0,2.0,https://pypi.org/project/faenet,62.0,62.0,,,,3.0,,,,,,,,,,,,,,,,,,
+215,iam-notebooks,,educational,Apache-2.0,https://github.com/ceriottm/iam-notebooks,Jupyter notebooks for the lectures of the Introduction to Atomistic Modeling.,9,True,,ceriottm/iam-notebooks,https://github.com/ceriottm/iam-notebooks,2020-11-23 21:27:41,2024-06-26 12:42:53,2024-06-26 12:42:45,242.0,2.0,5.0,4.0,7.0,3.0,,24.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+216,CBFV,,rep-eng,,https://github.com/Kaaiian/CBFV,Tool to quickly create a composition-based feature vector.,9,False,,kaaiian/CBFV,https://github.com/Kaaiian/CBFV,2019-09-05 23:07:46,2022-03-30 05:47:53,2021-10-24 17:10:17,49.0,,6.0,4.0,7.0,5.0,5.0,23.0,,,,3.0,CBFV,,9.0,9.0,https://pypi.org/project/CBFV,286.0,286.0,,,,2.0,,,,,,,,,,,,,,,,,,
+217,PACE,,md,https://github.com/ICAMS/lammps-user-pace/blob/main/LICENSE,https://github.com/ICAMS/lammps-user-pace,"The LAMMPS ML-IAP `pair_style pace`, aka Atomic Cluster Expansion (ACE), aka ML-PACE,..",9,True,,ICAMS/lammps-user-pace,https://github.com/ICAMS/lammps-user-pace,2021-02-25 10:04:48,2024-07-10 09:17:44,2023-11-27 21:28:13,59.0,,10.0,6.0,16.0,,6.0,21.0,2023-11-25 21:58:41,.2023.11.25.fix,6.0,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+218,UVVisML,,rep-learn,MIT,https://github.com/learningmatter-mit/uvvisml,Predict optical properties of molecules with machine learning.,9,False,"['optical-properties', 'single-paper', 'probabilistic']",learningmatter-mit/uvvisml,https://github.com/learningmatter-mit/uvvisml,2021-10-13 05:58:48,2023-05-26 22:35:14,2023-05-26 22:35:14,17.0,,6.0,4.0,1.0,,,21.0,2022-02-06 18:14:14,0.0.2,2.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+219,TurboGAP,,ml-iap,https://github.com/mcaroba/turbogap/blob/master/LICENSE.md,https://github.com/mcaroba/turbogap,The TurboGAP code.,9,True,['lang-fortran'],mcaroba/turbogap,https://github.com/mcaroba/turbogap,2021-05-02 09:19:05,2024-08-08 08:26:12,2024-07-09 06:58:53,309.0,12.0,8.0,8.0,7.0,6.0,3.0,16.0,,,,8.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+220,BenchML,,rep-eng,Apache-2.0,https://github.com/capoe/benchml,ML benchmarking and pipeling framework.,9,False,['benchmarking'],capoe/benchml,https://github.com/capoe/benchml,2020-04-28 13:26:29,2023-05-24 15:13:06,2023-05-24 15:04:57,341.0,,4.0,5.0,7.0,3.0,10.0,15.0,,,,9.0,benchml,,,,https://pypi.org/project/benchml,91.0,91.0,,,,2.0,,,,,,,,,,,,,,,,,,
+221,OPTIMADE Tutorial Exercises,,educational,MIT,https://github.com/Materials-Consortia/optimade-tutorial-exercises,Tutorial exercises for the OPTIMADE API.,9,True,['datasets'],Materials-Consortia/optimade-tutorial-exercises,https://github.com/Materials-Consortia/optimade-tutorial-exercises,2021-08-25 17:33:15,2023-09-27 08:32:31,2023-09-27 08:32:30,49.0,,7.0,12.0,15.0,,3.0,14.0,2023-06-12 07:47:14,2.0.1,5.0,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+222,Q-stack,,ml-dft,MIT,https://github.com/lcmd-epfl/Q-stack,Stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML).,9,True,"['excited-states', 'general-tool']",lcmd-epfl/Q-stack,https://github.com/lcmd-epfl/Q-stack,2021-10-20 15:33:26,2024-07-25 14:47:23,2024-07-19 11:29:08,413.0,32.0,5.0,2.0,45.0,9.0,20.0,14.0,,,1.0,7.0,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,,,,
+223,calorine,,ml-iap,https://gitlab.com/materials-modeling/calorine/-/blob/master/LICENSE,https://gitlab.com/materials-modeling/calorine,A Python package for constructing and sampling neuroevolution potential models. https://doi.org/10.21105/joss.06264.,9,False,,,,2021-04-23 16:12:56,2021-04-23 16:12:56,,,,4.0,,,9.0,76.0,12.0,,,14.0,,calorine,,,,https://pypi.org/project/calorine,1273.0,1273.0,,,,3.0,,,,,,,,,,,,,,,materials-modeling/calorine,https://gitlab.com/materials-modeling/calorine,,
+224,Materials Data Facility (MDF),,datasets,Apache-2.0,https://www.materialsdatafacility.org,"A simple way to publish, discover, and access materials datasets. Publication of very large datasets supported (e.g.,..",9,True,,materials-data-facility/connect_client,https://github.com/materials-data-facility/connect_client,2018-09-12 20:49:58,2024-03-10 03:11:45,2024-02-05 22:48:40,158.0,,1.0,4.0,35.0,1.0,6.0,10.0,2024-02-05 22:49:58,0.5.0,23.0,7.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+225,optimade.science,,community,MIT,https://optimade.science,A sky-scanner Optimade browser-only GUI.,9,True,['datasets'],tilde-lab/optimade.science,https://github.com/tilde-lab/optimade.science,2019-06-08 14:10:54,2024-06-10 12:03:39,2024-06-10 12:03:39,247.0,4.0,2.0,4.0,32.0,7.0,19.0,8.0,2023-03-02 20:13:25,2.0.0,1.0,8.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+226,2DMD dataset,,datasets,Apache-2.0,https://github.com/HSE-LAMBDA/ai4material_design/blob/main/docs/DATA.md,"Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of..",9,True,['material-defect'],HSE-LAMBDA/ai4material_design,https://github.com/HSE-LAMBDA/ai4material_design,2021-03-25 10:06:20,2023-11-21 11:30:42,2023-11-21 11:30:33,1118.0,,3.0,8.0,28.0,,12.0,6.0,,,,11.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+227,ai4material_design,,rep-learn,Apache-2.0,https://github.com/HSE-LAMBDA/ai4material_design,"Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of..",9,True,"['pretrained', 'material-defect']",HSE-LAMBDA/ai4material_design,https://github.com/HSE-LAMBDA/ai4material_design,2021-03-25 10:06:20,2023-11-21 11:30:42,2023-11-21 11:30:33,1118.0,,3.0,8.0,28.0,,12.0,6.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+228,MADICES Awesome Interoperability,,community,MIT,MADICES/MADICES.github.io/blob/main/docs/awesome_interoperability.md,Linked data interoperability resources of the Machine-actionable data interoperability for the chemical sciences..,9,False,['datasets'],MADICES/MADICES.github.io,https://github.com/MADICES/MADICES.github.io,2021-12-26 13:27:32,2024-07-10 07:36:51,2024-07-10 07:35:07,217.0,18.0,5.0,4.0,17.0,1.0,14.0,1.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+229,Awesome Neural Geometry,,community,,https://github.com/neurreps/awesome-neural-geometry,"A curated collection of resources and research related to the geometry of representations in the brain, deep networks,..",8,True,"['educational', 'rep-learn']",neurreps/awesome-neural-geometry,https://github.com/neurreps/awesome-neural-geometry,2022-07-31 01:19:57,2024-08-13 14:39:08,2024-07-17 18:47:49,124.0,2.0,56.0,28.0,13.0,,1.0,886.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+230,Awesome-Graph-Generation,,community,,https://github.com/yuanqidu/awesome-graph-generation,A curated list of up-to-date graph generation papers and resources.,8,True,['rep-learn'],yuanqidu/awesome-graph-generation,https://github.com/yuanqidu/awesome-graph-generation,2021-08-07 05:43:46,2024-06-24 01:56:37,2024-03-17 06:07:46,84.0,,16.0,7.0,2.0,,,255.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+231,RDKit Tutorials,,educational,https://github.com/rdkit/rdkit-tutorials/blob/master/LICENSE,https://github.com/rdkit/rdkit-tutorials,Tutorials to learn how to work with the RDKit.,8,False,,rdkit/rdkit-tutorials,https://github.com/rdkit/rdkit-tutorials,2016-10-07 03:34:01,2023-03-19 13:36:55,2023-03-19 13:36:55,68.0,,70.0,17.0,7.0,3.0,1.0,251.0,,,,5.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+232,EquiformerV2,,rep-learn,MIT,https://github.com/atomicarchitects/equiformer_v2,[ICLR24] EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations.,8,True,,atomicarchitects/equiformer_v2,https://github.com/atomicarchitects/equiformer_v2,2023-06-21 07:09:58,2024-07-31 23:38:48,2024-07-16 05:51:23,16.0,4.0,24.0,5.0,1.0,15.0,2.0,184.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+233,BestPractices,,educational,MIT,https://github.com/anthony-wang/BestPractices,Things that you should (and should not) do in your Materials Informatics research.,8,True,,anthony-wang/BestPractices,https://github.com/anthony-wang/BestPractices,2020-05-05 19:41:25,2023-11-17 02:58:25,2023-11-17 02:58:25,17.0,,68.0,8.0,8.0,5.0,2.0,165.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+234,G-SchNet,,generative,MIT,https://github.com/atomistic-machine-learning/G-SchNet,G-SchNet - a generative model for 3d molecular structures.,8,False,,atomistic-machine-learning/G-SchNet,https://github.com/atomistic-machine-learning/G-SchNet,2019-10-21 13:48:59,2023-03-24 12:05:41,2023-03-24 12:05:41,64.0,,25.0,7.0,,,10.0,129.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+235,A Highly Opinionated List of Open-Source Materials Informatics Resources,,community,MIT,https://github.com/ncfrey/resources,A Highly Opinionated List of Open Source Materials Informatics Resources.,8,False,,ncfrey/resources,https://github.com/ncfrey/resources,2020-11-17 23:47:07,2022-02-18 13:37:51,2022-02-18 13:37:51,8.0,,22.0,9.0,,,,116.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+236,ANI-1 Dataset,,datasets,MIT,https://github.com/isayev/ANI1_dataset,A data set of 20 million calculated off-equilibrium conformations for organic molecules.,8,False,,isayev/ANI1_dataset,https://github.com/isayev/ANI1_dataset,2017-08-07 20:08:46,2022-08-08 15:56:17,2022-08-08 15:56:17,25.0,,18.0,12.0,2.0,8.0,3.0,96.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+237,AIMNet,,ml-iap,MIT,https://github.com/aiqm/aimnet,Atoms In Molecules Neural Network Potential.,8,False,['single-paper'],aiqm/aimnet,https://github.com/aiqm/aimnet,2018-09-26 17:28:37,2019-11-21 23:49:01,2019-11-21 23:49:00,7.0,,24.0,10.0,2.0,4.0,,94.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+238,MoleculeNet Leaderboard,,datasets,MIT,https://github.com/deepchem/moleculenet,,8,False,['benchmarking'],deepchem/moleculenet,https://github.com/deepchem/moleculenet,2020-02-24 18:14:05,2021-04-29 19:51:06,2021-04-29 19:51:06,78.0,,19.0,5.0,15.0,23.0,5.0,87.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+239,Awesome Neural SBI,,community,MIT,https://github.com/smsharma/awesome-neural-sbi,Community-sourced list of papers and resources on neural simulation-based inference.,8,True,['active-learning'],smsharma/awesome-neural-sbi,https://github.com/smsharma/awesome-neural-sbi,2023-01-20 19:48:13,2024-06-17 04:24:32,2024-06-17 04:24:27,56.0,5.0,4.0,6.0,2.0,1.0,1.0,80.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+240,MACE-Jax,,ml-iap,MIT,https://github.com/ACEsuit/mace-jax,Equivariant machine learning interatomic potentials in JAX.,8,True,,ACEsuit/mace-jax,https://github.com/ACEsuit/mace-jax,2023-02-06 12:10:16,2023-10-04 08:07:35,2023-10-04 08:07:35,207.0,,4.0,11.0,1.0,3.0,3.0,58.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+241,graphite,,rep-learn,MIT,https://github.com/LLNL/graphite,A repository for implementing graph network models based on atomic structures.,8,True,,llnl/graphite,https://github.com/LLNL/graphite,2022-06-27 19:15:27,2024-08-08 04:10:45,2024-08-08 04:10:44,30.0,2.0,9.0,5.0,4.0,2.0,1.0,53.0,,,,2.0,,,11.0,11.0,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+242,cG-SchNet,,generative,MIT,https://github.com/atomistic-machine-learning/cG-SchNet,cG-SchNet - a conditional generative neural network for 3d molecular structures.,8,False,,atomistic-machine-learning/cG-SchNet,https://github.com/atomistic-machine-learning/cG-SchNet,2021-12-02 15:35:18,2023-03-24 12:09:56,2023-03-24 12:09:56,28.0,,15.0,3.0,,,3.0,50.0,2022-02-21 13:36:41,1.0,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+243,DeeperGATGNN,,rep-learn,MIT,https://github.com/usccolumbia/deeperGATGNN,Scalable graph neural networks for materials property prediction.,8,True,,usccolumbia/deeperGATGNN,https://github.com/usccolumbia/deeperGATGNN,2021-09-29 17:31:02,2024-01-19 18:11:52,2024-01-19 18:11:38,25.0,,8.0,3.0,1.0,,8.0,45.0,2022-03-08 02:14:28,1.0,1.0,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+244,Sketchmap,,unsupervised,GPL-3.0,https://github.com/lab-cosmo/sketchmap,Suite of programs to perform non-linear dimensionality reduction -- sketch-map in particular.,8,False,['lang-cpp'],lab-cosmo/sketchmap,https://github.com/lab-cosmo/sketchmap,2014-05-20 09:33:32,2024-02-20 20:57:41,2023-05-24 22:47:50,64.0,,10.0,31.0,1.0,3.0,5.0,44.0,,,,8.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+245,PyNEP,,ml-iap,MIT,https://github.com/bigd4/PyNEP,A python interface of the machine learning potential NEP used in GPUMD.,8,True,,bigd4/PyNEP,https://github.com/bigd4/PyNEP,2022-03-21 06:27:13,2024-06-01 09:06:22,2024-06-01 09:06:22,80.0,3.0,17.0,2.0,15.0,4.0,7.0,44.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+246,GAP,,ml-iap,https://github.com/libAtoms/GAP/blob/main/LICENSE.md,https://libatoms.github.io/,Gaussian Approximation Potential (GAP).,8,True,,libAtoms/GAP,https://github.com/libAtoms/GAP,2021-03-22 14:48:56,2024-07-19 14:11:30,2024-07-19 14:11:30,205.0,2.0,20.0,10.0,66.0,,,39.0,,,,13.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+247,SIMPLE-NN v2,,ml-iap,GPL-3.0,https://github.com/MDIL-SNU/SIMPLE-NN_v2,SIMPLE-NN is an open package that constructs Behler-Parrinello-type neural-network interatomic potentials from ab..,8,True,,MDIL-SNU/SIMPLE-NN_v2,https://github.com/MDIL-SNU/SIMPLE-NN_v2,2021-03-02 09:36:49,2023-12-29 02:08:47,2023-12-29 02:08:47,504.0,,17.0,5.0,88.0,4.0,9.0,39.0,,,,13.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+248,SNAP,,ml-iap,BSD-3-Clause,https://github.com/materialsvirtuallab/snap,Repository for spectral neighbor analysis potential (SNAP) model development.,8,False,,materialsvirtuallab/snap,https://github.com/materialsvirtuallab/snap,2017-06-26 21:56:00,2020-06-30 05:20:37,2020-06-30 05:20:37,38.0,,17.0,11.0,1.0,1.0,3.0,36.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+249,Atomistic Adversarial Attacks,,ml-iap,MIT,https://github.com/learningmatter-mit/Atomistic-Adversarial-Attacks,Code for performing adversarial attacks on atomistic systems using NN potentials.,8,False,['probabilistic'],learningmatter-mit/Atomistic-Adversarial-Attacks,https://github.com/learningmatter-mit/Atomistic-Adversarial-Attacks,2021-03-28 17:39:52,2022-10-03 16:19:31,2022-10-03 16:19:29,33.0,,7.0,5.0,1.0,,1.0,30.0,2021-07-19 18:09:36,1.0.1,1.0,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+250,CGAT,,rep-learn,MIT,https://github.com/hyllios/CGAT,Crystal graph attention neural networks for materials prediction.,8,False,,hyllios/CGAT,https://github.com/hyllios/CGAT,2021-03-28 09:51:15,2023-07-18 12:04:35,2023-01-10 22:31:07,153.0,,8.0,3.0,1.0,,1.0,25.0,2023-07-18 12:04:35,0.1,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+251,SkipAtom,,rep-eng,MIT,https://github.com/lantunes/skipatom,"Distributed representations of atoms, inspired by the Skip-gram model.",8,False,,lantunes/skipatom,https://github.com/lantunes/skipatom,2021-06-19 13:09:13,2023-07-16 19:28:39,2022-05-04 13:18:30,46.0,,3.0,2.0,7.0,3.0,1.0,23.0,,,1.0,,skipatom,conda-forge/skipatom,1.0,1.0,https://pypi.org/project/skipatom,92.0,151.0,https://anaconda.org/conda-forge/skipatom,2023-06-18 08:42:05.505,1492.0,3.0,,,,,,,,,,,,,,,,,,
+252,ACE1.jl,,ml-iap,https://github.com/ACEsuit/ACE1.jl/blob/main/ASL.md,https://acesuit.github.io/,Atomic Cluster Expansion for Modelling Invariant Atomic Properties.,8,True,['lang-julia'],ACEsuit/ACE1.jl,https://github.com/ACEsuit/ACE1.jl,2022-01-14 19:52:49,2024-07-02 14:12:25,2024-07-02 14:12:23,558.0,1.0,7.0,5.0,30.0,22.0,24.0,20.0,,,,9.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+253,GElib,,math,MPL-2.0,https://github.com/risi-kondor/GElib,C++/CUDA library for SO(3) equivariant operations.,8,True,['lang-cpp'],risi-kondor/GElib,https://github.com/risi-kondor/GElib,2021-08-24 20:56:40,2024-08-06 20:45:38,2024-07-27 21:36:58,602.0,1.0,3.0,4.0,4.0,3.0,4.0,19.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+254,bVAE-IM,,generative,MIT,https://github.com/tsudalab/bVAE-IM,Implementation of Chemical Design with GPU-based Ising Machine.,8,False,"['qml', 'single-paper']",tsudalab/bVAE-IM,https://github.com/tsudalab/bVAE-IM,2023-03-01 08:26:56,2023-07-11 04:39:24,2023-07-11 04:39:24,39.0,,3.0,8.0,,,,11.0,2023-03-01 14:26:13,1.0.0,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+255,SiMGen,,generative,MIT,https://github.com/RokasEl/simgen,Zero Shot Molecular Generation via Similarity Kernels.,8,True,['visualization'],RokasEl/simgen,https://github.com/RokasEl/simgen,2023-01-25 16:41:18,2024-06-13 15:43:18,2024-02-15 10:31:41,257.0,,,2.0,23.0,1.0,3.0,11.0,2024-02-14 10:35:02,0.1.0,1.0,4.0,simgen,,1.0,1.0,https://pypi.org/project/simgen,20.0,20.0,,,,3.0,,,,,,,,,True,,,,,,,,,
+256,T-e3nn,,rep-learn,MIT,https://github.com/Hongyu-yu/T-e3nn,Time-reversal Euclidean neural networks based on e3nn.,8,False,['magnetism'],Hongyu-yu/T-e3nn,https://github.com/Hongyu-yu/T-e3nn,2022-11-21 14:49:45,2023-02-21 16:36:26,2023-02-21 16:36:25,2145.0,,,2.0,,,,8.0,,,,26.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+257,MLXDM,,ml-iap,MIT,https://github.com/RowleyGroup/MLXDM,A Neural Network Potential with Rigorous Treatment of Long-Range Dispersion https://doi.org/10.1039/D2DD00150K.,8,True,['long-range'],RowleyGroup/MLXDM,https://github.com/RowleyGroup/MLXDM,2022-05-03 17:47:26,2024-08-08 21:52:47,2024-08-08 21:48:15,48.0,13.0,2.0,5.0,,,,6.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+258,GEOM,,datasets,,https://github.com/learningmatter-mit/geom,GEOM: Energy-annotated molecular conformations.,7,False,['drug-discovery'],learningmatter-mit/geom,https://github.com/learningmatter-mit/geom,2020-06-03 17:58:37,2022-04-24 18:57:39,2022-04-24 18:57:39,95.0,,24.0,10.0,,2.0,11.0,188.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+259,tensorfieldnetworks,,rep-learn,MIT,https://github.com/tensorfieldnetworks/tensorfieldnetworks,Rotation- and translation-equivariant neural networks for 3D point clouds.,7,False,,tensorfieldnetworks/tensorfieldnetworks,https://github.com/tensorfieldnetworks/tensorfieldnetworks,2018-02-09 23:18:13,2020-01-07 17:22:16,2020-01-07 17:22:15,10.0,,28.0,9.0,2.0,1.0,2.0,151.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+260,PhysNet,,ml-iap,MIT,https://github.com/MMunibas/PhysNet,Code for training PhysNet models.,7,False,['electrostatics'],MMunibas/PhysNet,https://github.com/MMunibas/PhysNet,2019-03-28 09:05:22,2022-10-16 17:45:42,2020-12-07 11:09:20,4.0,,26.0,9.0,1.0,5.0,,88.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+261,DTNN,,rep-learn,MIT,https://github.com/atomistic-machine-learning/dtnn,Deep Tensor Neural Network.,7,False,,atomistic-machine-learning/dtnn,https://github.com/atomistic-machine-learning/dtnn,2017-03-10 14:40:05,2017-07-11 08:26:15,2017-07-11 08:25:39,9.0,,30.0,14.0,,,3.0,76.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+262,JAXChem,,general-tool,MIT,https://github.com/deepchem/jaxchem,JAXChem is a JAX-based deep learning library for complex and versatile chemical modeling.,7,False,,deepchem/jaxchem,https://github.com/deepchem/jaxchem,2020-05-11 18:54:41,2020-07-15 05:02:21,2020-07-15 04:55:41,96.0,,10.0,7.0,13.0,1.0,1.0,76.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+263,Cormorant,,rep-learn,https://github.com/risilab/cormorant/blob/master/LICENSE,https://github.com/risilab/cormorant,Codebase for Cormorant Neural Networks.,7,False,,risilab/cormorant,https://github.com/risilab/cormorant,2019-10-27 18:22:07,2022-05-11 12:49:05,2020-03-11 15:25:51,160.0,,10.0,6.0,1.0,3.0,,59.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+264,Awesome-Crystal-GNNs,,community,MIT,https://github.com/kdmsit/Awesome-Crystal-GNNs,This repository contains a collection of resources and papers on GNN Models on Crystal Solid State Materials.,7,True,,kdmsit/Awesome-Crystal-GNNs,https://github.com/kdmsit/Awesome-Crystal-GNNs,2022-11-15 11:12:18,2024-06-16 16:02:41,2024-06-16 16:02:37,34.0,2.0,7.0,4.0,,,,54.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+265,uncertainty_benchmarking,,general-tool,,https://github.com/ulissigroup/uncertainty_benchmarking,Various code/notebooks to benchmark different ways we could estimate uncertainty in ML predictions.,7,False,"['benchmarking', 'probabilistic']",ulissigroup/uncertainty_benchmarking,https://github.com/ulissigroup/uncertainty_benchmarking,2019-08-28 19:39:28,2021-06-07 23:29:39,2021-06-07 23:27:19,265.0,,7.0,6.0,1.0,,,38.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+266,AdsorbML,,rep-learn,MIT,https://github.com/Open-Catalyst-Project/AdsorbML,,7,False,"['surface-science', 'single-paper']",Open-Catalyst-Project/AdsorbML,https://github.com/Open-Catalyst-Project/AdsorbML,2022-11-30 01:38:20,2024-05-07 21:54:19,2023-07-31 16:28:09,56.0,,4.0,7.0,11.0,3.0,1.0,35.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+267,torchchem,,general-tool,MIT,https://github.com/deepchem/torchchem,An experimental repo for experimenting with PyTorch models.,7,False,,deepchem/torchchem,https://github.com/deepchem/torchchem,2020-03-07 17:06:44,2023-03-24 23:13:19,2020-05-01 20:12:23,49.0,,13.0,8.0,27.0,2.0,1.0,34.0,,,,5.0,,,1.0,1.0,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+268,chemlift,,language-models,MIT,https://github.com/lamalab-org/chemlift,Language-interfaced fine-tuning for chemistry.,7,True,,lamalab-org/chemlift,https://github.com/lamalab-org/chemlift,2023-07-10 06:54:07,2023-11-30 10:47:50,2023-10-14 16:50:14,36.0,,3.0,1.0,1.0,11.0,7.0,31.0,2023-11-30 19:42:07,0.0.1,1.0,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+269,Mat2Spec,,ml-dft,MIT,https://github.com/gomes-lab/Mat2Spec,Density of States Prediction for Materials Discovery via Contrastive Learning from Probabilistic Embeddings.,7,False,['spectroscopy'],gomes-lab/Mat2Spec,https://github.com/gomes-lab/Mat2Spec,2022-01-17 11:45:57,2022-04-17 17:12:29,2022-04-17 17:12:29,8.0,,10.0,,,,,27.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+270,escnn_jax,,rep-learn,https://github.com/emilemathieu/escnn_jax/blob/master/LICENSE,https://github.com/emilemathieu/escnn_jax,Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/.,7,False,,emilemathieu/escnn_jax,https://github.com/emilemathieu/escnn_jax,2023-06-15 09:45:45,2023-06-28 14:40:32,2023-06-28 14:39:56,203.0,,2.0,,,,,26.0,,,,8.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+271,LLM-Prop,,language-models,MIT,https://github.com/vertaix/LLM-Prop,A repository for the LLM-Prop implementation.,7,True,,vertaix/LLM-Prop,https://github.com/vertaix/LLM-Prop,2022-10-16 19:15:21,2024-04-26 14:20:54,2024-04-26 14:20:54,175.0,,5.0,2.0,,1.0,1.0,25.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+272,BOSS,,materials-discovery,,https://gitlab.com/cest-group/boss,Bayesian Optimization Structure Search (BOSS).,7,False,['probabilistic'],,,2020-02-12 08:48:33,2020-02-12 08:48:33,,,,10.0,,,2.0,28.0,20.0,,,19.0,,aalto-boss,,,,https://pypi.org/project/aalto-boss,603.0,603.0,,,,2.0,,,,,,,,,,,,,,,cest-group/boss,https://gitlab.com/cest-group/boss,,
+273,Libnxc,,ml-dft,MPL-2.0,https://github.com/semodi/libnxc,A library for using machine-learned exchange-correlation functionals for density-functional theory.,7,False,"['lang-cpp', 'lang-fortran']",semodi/libnxc,https://github.com/semodi/libnxc,2020-07-01 18:21:50,2021-09-18 14:53:52,2021-08-14 16:26:32,100.0,,4.0,2.0,3.0,13.0,3.0,16.0,,,2.0,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+274,AGOX,,materials-discovery,GPL-3.0,https://gitlab.com/agox/agox,AGOX is a package for global optimization of atomic system using e.g. the energy calculated from density functional..,7,False,['structure-optimization'],,,2022-03-08 09:08:13,2022-03-08 09:08:13,,,,5.0,,,14.0,9.0,13.0,,,2.0,,agox,,,,https://pypi.org/project/agox,197.0,197.0,,,,2.0,,,,,,,,,,,,,,,agox/agox,https://gitlab.com/agox/agox,,
+275,COSMO Software Cookbook,,educational,BSD-3-Clause,https://github.com/lab-cosmo/atomistic-cookbook,The COSMO cookbook contains recipes for atomic-scale modelling for materials and molecules.,7,True,,lab-cosmo/software-cookbook,https://github.com/lab-cosmo/atomistic-cookbook,2023-05-23 10:33:47,2024-08-14 17:52:22,2024-08-14 17:43:05,69.0,5.0,1.0,16.0,57.0,2.0,10.0,12.0,,,,9.0,,,,,,,,,,,3.0,,,,,,,lab-cosmo/atomistic-cookbook,,,,,,,,,,,
+276,NICE,,rep-eng,MIT,https://github.com/lab-cosmo/nice,NICE (N-body Iteratively Contracted Equivariants) is a set of tools designed for the calculation of invariant and..,7,True,,lab-cosmo/nice,https://github.com/lab-cosmo/nice,2020-07-03 08:47:41,2024-04-15 14:39:34,2024-04-15 14:39:33,233.0,,3.0,17.0,7.0,2.0,1.0,12.0,,,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+277,rxngenerator,,generative,MIT,https://github.com/tsudalab/rxngenerator,A generative model for molecular generation via multi-step chemical reactions.,7,False,,tsudalab/rxngenerator,https://github.com/tsudalab/rxngenerator,2021-06-18 07:44:53,2024-07-24 05:27:21,2022-08-09 07:21:05,16.0,,3.0,9.0,2.0,1.0,,11.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+278,AIS Square,,datasets,LGPL-3.0,https://github.com/deepmodeling/AIS-Square,"A collaborative and open-source platform for sharing AI for Science datasets, models, and workflows. Home of the..",7,True,"['community', 'model-repository']",deepmodeling/AIS-Square,https://github.com/deepmodeling/AIS-Square,2022-09-13 09:52:30,2024-07-30 13:14:00,2023-12-06 03:06:55,469.0,,8.0,8.0,210.0,5.0,1.0,10.0,,,,8.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+279,rho_learn,,ml-dft,MIT,https://github.com/jwa7/rho_learn,A proof-of-concept framework for torch-based learning of the electron density and related scalar fields.,7,False,,jwa7/rho_learn,https://github.com/jwa7/rho_learn,2023-03-27 16:59:34,2024-08-14 15:12:39,2024-03-20 15:20:39,111.0,,1.0,,4.0,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+280,MAChINE,,educational,MIT,https://github.com/aimat-lab/MAChINE,Client-Server Web App to introduce usage of ML in materials science to beginners.,7,False,,aimat-lab/MAChINE,https://github.com/aimat-lab/MAChINE,2023-04-17 14:29:06,2023-09-29 14:20:12,2023-09-29 10:20:31,1026.0,,,,7.0,9.0,23.0,1.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+281,ML4pXRDs,,rep-learn,MIT,https://github.com/aimat-lab/ML4pXRDs,Contains code to train neural networks based on simulated powder XRDs from synthetic crystals.,7,False,"['xrd', 'single-paper']",aimat-lab/ML4pXRDs,https://github.com/aimat-lab/ML4pXRDs,2022-12-01 16:24:29,2023-07-14 08:17:06,2023-07-14 08:17:04,1320.0,,,3.0,,,,,2023-03-22 11:04:31,1.0,1.0,,,,,,,,0.0,,,,3.0,,,,,,2.0,,,,,,,,,,,,
+282,The Collection of Database and Dataset Resources in Materials Science,,community,,https://github.com/sedaoturak/data-resources-for-materials-science,"A list of databases, datasets and books/handbooks where you can find materials properties for machine learning..",6,True,['datasets'],sedaoturak/data-resources-for-materials-science,https://github.com/sedaoturak/data-resources-for-materials-science,2021-02-20 06:38:45,2024-06-07 15:51:11,2024-06-07 15:51:11,30.0,1.0,40.0,12.0,2.0,1.0,1.0,248.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+283,DeepH-E3,,ml-dft,MIT,https://github.com/Xiaoxun-Gong/DeepH-E3,General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian.,6,False,['magnetism'],Xiaoxun-Gong/DeepH-E3,https://github.com/Xiaoxun-Gong/DeepH-E3,2023-03-16 11:25:58,2023-04-04 13:27:01,2023-04-04 13:26:27,16.0,,16.0,6.0,,9.0,6.0,60.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+284,Applied AI for Materials,,educational,,https://github.com/WardLT/applied-ai-for-materials,Course materials for Applied AI for Materials Science and Engineering.,6,False,,WardLT/applied-ai-for-materials,https://github.com/WardLT/applied-ai-for-materials,2020-10-12 19:39:06,2022-03-12 02:26:58,2022-03-12 02:26:41,107.0,,31.0,4.0,13.0,5.0,,58.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+285,DeepDFT,,ml-dft,MIT,https://github.com/peterbjorgensen/DeepDFT,Official implementation of DeepDFT model.,6,False,,peterbjorgensen/DeepDFT,https://github.com/peterbjorgensen/DeepDFT,2020-11-03 11:51:15,2023-02-28 15:37:49,2023-02-28 15:37:37,128.0,,7.0,1.0,,,5.0,54.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+286,ANI-1x Datasets,,datasets,MIT,https://github.com/aiqm/ANI1x_datasets,"The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for organic molecules.",6,False,,aiqm/ANI1x_datasets,https://github.com/aiqm/ANI1x_datasets,2019-09-17 18:19:28,2022-04-11 17:25:55,2022-04-11 17:25:55,12.0,,5.0,5.0,,4.0,3.0,53.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+287,COMP6 Benchmark dataset,,datasets,MIT,https://github.com/isayev/COMP6,COMP6 Benchmark dataset for ML potentials.,6,False,,isayev/COMP6,https://github.com/isayev/COMP6,2017-12-29 16:58:35,2018-07-09 23:56:35,2018-07-09 23:56:34,27.0,,4.0,5.0,,2.0,1.0,39.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+288,MACE-Layer,,rep-learn,MIT,https://github.com/ACEsuit/mace-layer,Higher order equivariant graph neural networks for 3D point clouds.,6,False,,ACEsuit/mace-layer,https://github.com/ACEsuit/mace-layer,2022-11-09 17:03:41,2023-06-27 15:32:49,2023-06-06 10:09:58,19.0,,6.0,5.0,2.0,1.0,,33.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+289,MACE-tutorials,,educational,MIT,https://github.com/ilyes319/mace-tutorials,Another set of tutorials for the MACE interatomic potential by one of the authors.,6,True,"['ml-iap', 'rep-learn', 'md']",ilyes319/mace-tutorials,https://github.com/ilyes319/mace-tutorials,2023-09-11 18:09:18,2024-07-16 12:45:45,2024-07-16 12:45:42,7.0,2.0,9.0,3.0,,1.0,,31.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+290,milad,,rep-eng,GPL-3.0,https://github.com/muhrin/milad,Moment Invariants Local Atomic Descriptor.,6,False,['generative'],muhrin/milad,https://github.com/muhrin/milad,2020-04-23 09:14:24,2022-12-03 10:40:05,2022-12-03 10:39:59,110.0,,1.0,4.0,,,,29.0,,,,,,,2.0,2.0,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+291,charge_transfer_nnp,,rep-learn,MIT,https://github.com/pfnet-research/charge_transfer_nnp,Graph neural network potential with charge transfer.,6,False,['electrostatics'],pfnet-research/charge_transfer_nnp,https://github.com/pfnet-research/charge_transfer_nnp,2022-04-06 01:48:18,2022-04-06 01:53:35,2022-04-06 01:53:22,1.0,,8.0,12.0,,,,28.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+292,SciBot,,language-models,,https://github.com/CFN-softbio/SciBot,SciBot is a simple demo of building a domain-specific chatbot for science.,6,True,['ai-agent'],CFN-softbio/SciBot,https://github.com/CFN-softbio/SciBot,2023-06-12 12:41:44,2024-04-19 18:34:24,2024-04-19 18:17:00,22.0,,8.0,6.0,,,,28.0,,,,,,,1.0,1.0,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+293,ChargE3Net,,ml-dft,MIT,https://github.com/AIforGreatGood/charge3net,Higher-order equivariant neural networks for charge density prediction in materials.,6,True,['rep-learn'],AIforGreatGood/charge3net,https://github.com/AIforGreatGood/charge3net,2023-12-16 13:54:56,2024-08-01 20:33:49,2024-07-29 16:24:35,9.0,5.0,6.0,4.0,,1.0,1.0,28.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+294,MLIP-3,,ml-iap,BSD-2-Clause,https://gitlab.com/ashapeev/mlip-3,MLIP-3: Active learning on atomic environments with Moment Tensor Potentials (MTP).,6,False,['lang-cpp'],,,2023-04-24 14:05:53,2023-04-24 14:05:53,,,,6.0,,,23.0,6.0,25.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,ashapeev/mlip-3,https://gitlab.com/ashapeev/mlip-3,,
+295,GLAMOUR,,rep-learn,MIT,https://github.com/learningmatter-mit/GLAMOUR,Graph Learning over Macromolecule Representations.,6,False,['single-paper'],learningmatter-mit/GLAMOUR,https://github.com/learningmatter-mit/GLAMOUR,2021-08-20 18:16:40,2022-12-31 17:56:21,2022-12-31 17:56:21,14.0,,6.0,3.0,,,8.0,20.0,2021-08-23 18:58:52,0.1,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+296,SA-GPR,,rep-eng,LGPL-3.0,https://github.com/dilkins/TENSOAP,Public repository for symmetry-adapted Gaussian Process Regression (SA-GPR).,6,True,['lang-c'],dilkins/TENSOAP,https://github.com/dilkins/TENSOAP,2020-05-04 14:19:01,2024-07-23 13:03:45,2024-07-23 13:03:44,26.0,1.0,13.0,3.0,10.0,2.0,5.0,19.0,2020-12-17 16:51:47,2020.0,1.0,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+297,EquivariantOperators.jl,,math,MIT,https://github.com/aced-differentiate/EquivariantOperators.jl,This package is deprecated. Functionalities are migrating to Porcupine.jl.,6,True,['lang-julia'],aced-differentiate/EquivariantOperators.jl,https://github.com/aced-differentiate/EquivariantOperators.jl,2021-11-29 03:36:21,2023-09-27 18:34:44,2023-09-27 18:34:44,62.0,,,4.0,,,,18.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+298,CatGym,,reinforcement-learning,GPL,https://github.com/ulissigroup/catgym,Surface segregation using Deep Reinforcement Learning.,6,False,,ulissigroup/catgym,https://github.com/ulissigroup/catgym,2019-08-06 19:25:27,2021-08-30 17:05:36,2021-08-30 17:05:32,162.0,,2.0,4.0,,2.0,,11.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+299,testing-framework,,ml-iap,,https://github.com/libAtoms/testing-framework,The purpose of this repository is to aid the testing of a large number of interatomic potentials for a variety of..,6,False,['benchmarking'],libAtoms/testing-framework,https://github.com/libAtoms/testing-framework,2020-03-04 11:43:15,2022-02-10 17:23:46,2022-02-10 17:23:46,225.0,,6.0,16.0,10.0,5.0,3.0,11.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+300,PANNA,,ml-iap,MIT,https://gitlab.com/PANNAdevs/panna,A package to train and validate all-to-all connected network models for BP[1] and modified-BP[2] type local atomic..,6,False,['benchmarking'],,,2018-11-09 10:47:48,2018-11-09 10:47:48,,,,10.0,,,,,9.0,,,2.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,PANNAdevs/panna,https://gitlab.com/PANNAdevs/panna,,
+301,ML for catalysis tutorials,,educational,MIT,https://github.com/ulissigroup/ml_catalysis_tutorials,A jupyter book repo for tutorial on how to use OCP ML models for catalysis.,6,False,,ulissigroup/ml_catalysis_tutorials,https://github.com/ulissigroup/ml_catalysis_tutorials,2022-10-28 20:37:30,2022-10-31 18:06:07,2022-10-31 17:49:25,40.0,,1.0,4.0,,,,8.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+302,COSMO Toolbox,,math,,https://github.com/lab-cosmo/toolbox,Assorted libraries and utilities for atomistic simulation analysis.,6,True,['lang-cpp'],lab-cosmo/toolbox,https://github.com/lab-cosmo/toolbox,2014-05-20 11:23:13,2024-03-19 13:27:28,2024-03-19 13:27:02,107.0,,5.0,27.0,1.0,,,7.0,,,,9.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+303,fplib,,rep-eng,MIT,https://github.com/zhuligs/fplib,a fingerprint library.,6,False,"['lang-c', 'single-paper']",zhuligs/fplib,https://github.com/zhuligs/fplib,2015-09-07 08:18:27,2022-02-09 05:31:21,2022-02-09 05:31:12,37.0,,2.0,3.0,,,3.0,7.0,2021-02-03 21:40:23,pub,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+304,SOAPxx,,rep-eng,GPL-2.0,https://github.com/capoe/soapxx,A SOAP implementation.,6,False,['lang-cpp'],capoe/soapxx,https://github.com/capoe/soapxx,2016-03-29 10:00:00,2020-03-27 13:47:44,2020-03-27 13:47:36,289.0,,3.0,3.0,1.0,,2.0,7.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+305,Equisolve,,general-tool,BSD-3-Clause,https://github.com/lab-cosmo/equisolve,A ML toolkit package utilizing the metatensor data format to build models for the prediction of equivariant properties..,6,True,['ml-iap'],lab-cosmo/equisolve,https://github.com/lab-cosmo/equisolve,2022-10-04 15:29:19,2023-10-27 10:03:59,2023-10-27 09:55:17,55.0,,1.0,17.0,43.0,19.0,4.0,5.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+306,Cephalo,,language-models,Apache-2.0,https://github.com/lamm-mit/Cephalo,Multimodal Vision-Language Models for Bio-Inspired Materials Analysis and Design.,6,True,"['generative', 'multimodal', 'pretrained']",lamm-mit/Cephalo,https://github.com/lamm-mit/Cephalo,2024-05-28 12:29:13,2024-07-23 09:27:58,2024-07-23 09:27:57,24.0,24.0,1.0,1.0,,,,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+307,cnine,,math,,https://github.com/risi-kondor/cnine,Cnine tensor library.,6,False,['lang-cpp'],risi-kondor/cnine,https://github.com/risi-kondor/cnine,2022-10-07 20:54:54,2024-08-14 20:13:06,2024-08-09 03:21:10,381.0,10.0,4.0,2.0,7.0,,1.0,4.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,https://risi-kondor.github.io/cnine/,
+308,soap_turbo,,rep-eng,https://github.com/libAtoms/soap_turbo/blob/master/LICENSE.md,https://github.com/libAtoms/soap_turbo,soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP.,6,False,['lang-fortran'],libAtoms/soap_turbo,https://github.com/libAtoms/soap_turbo,2021-03-19 15:20:25,2024-06-28 11:53:50,2023-05-24 09:42:00,36.0,,8.0,8.0,,5.0,3.0,4.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+309,KSR-DFT,,others,Apache-2.0,https://github.com/pedersor/ksr_dft,Kohn-Sham regularizer for machine-learned DFT functionals.,6,False,,pedersor/ksr_dft,https://github.com/pedersor/ksr_dft,2023-03-01 17:24:48,2023-03-04 07:20:22,2023-03-04 07:20:18,466.0,,,1.0,,,,4.0,,,,,,,,,,,,,,,1.0,,,,,,,,,True,,,,,,,,,
+310,pyLODE,,rep-eng,Apache-2.0,https://github.com/ceriottm/lode,Pythonic implementation of LOng Distance Equivariants.,6,False,['electrostatics'],ceriottm/lode,https://github.com/ceriottm/lode,2022-01-19 17:01:38,2023-07-05 09:57:29,2023-07-05 09:57:14,241.0,,1.0,2.0,,1.0,,3.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+311,ACEpsi.jl,,ml-wft,MIT,https://github.com/ACEsuit/ACEpsi.jl,ACE wave function parameterizations.,6,False,"['rep-eng', 'lang-julia']",ACEsuit/ACEpsi.jl,https://github.com/ACEsuit/ACEpsi.jl,2022-10-21 03:51:18,2024-04-12 06:18:19,2023-10-05 21:21:35,162.0,,,4.0,16.0,5.0,4.0,2.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+312,OPTIMADE providers dashboard,,datasets,,https://www.optimade.org/providers-dashboard/,A dashboard of known providers.,6,False,,Materials-Consortia/providers-dashboard,https://github.com/Materials-Consortia/providers-dashboard,2020-06-17 16:15:07,2024-08-15 06:33:50,2024-08-01 23:27:42,139.0,21.0,3.0,19.0,141.0,10.0,18.0,1.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+313,Computational Autonomy for Materials Discovery (CAMD),,materials-discovery,Apache-2.0,https://github.com/ulissigroup/CAMD,Agent-based sequential learning software for materials discovery.,6,False,,ulissigroup/CAMD,https://github.com/ulissigroup/CAMD,2023-01-10 19:42:57,2023-01-10 19:49:35,2023-01-10 19:49:13,1336.0,,,1.0,,,,1.0,,,,17.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+314,ACE1Pack.jl,,ml-iap,MIT,https://github.com/ACEsuit/ACE1pack.jl,"Provides convenience functionality for the usage of ACE1.jl, ACEfit.jl, JuLIP.jl for fitting interatomic potentials..",6,True,['lang-julia'],ACEsuit/ACE1pack.jl,https://github.com/ACEsuit/ACE1pack.jl,2023-08-21 16:25:00,2023-08-21 16:30:19,2023-08-21 15:48:54,547.0,,,1.0,,,,,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,https://acesuit.github.io/ACE1pack.jl,
+315,COATI,,generative,Apache 2.0,https://github.com/terraytherapeutics/COATI,COATI: multi-modal contrastive pre-training for representing and traversing chemical space.,5,True,"['drug-discovery', 'multimodal', 'pretrained', 'rep-learn']",terraytherapeutics/COATI,https://github.com/terraytherapeutics/COATI,2023-08-11 14:56:39,2024-03-23 18:06:26,2024-03-23 18:06:26,16.0,,5.0,2.0,6.0,1.0,2.0,89.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+316,AI4Science101,,educational,,https://github.com/deepmodeling/AI4Science101,AI for Science.,5,False,,deepmodeling/AI4Science101,https://github.com/deepmodeling/AI4Science101,2022-06-19 02:26:48,2024-04-11 02:15:55,2022-09-04 02:06:18,139.0,,13.0,9.0,29.0,,1.0,83.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+317,crystal-text-llm,,language-models,CC-BY-NC-4.0,https://github.com/facebookresearch/crystal-text-llm,Large language models to generate stable crystals.,5,True,['materials-discovery'],facebookresearch/crystal-text-llm,https://github.com/facebookresearch/crystal-text-llm,2024-02-05 22:29:12,2024-06-18 17:10:52,2024-06-18 17:10:52,13.0,2.0,10.0,5.0,3.0,7.0,2.0,63.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+318,The Perovskite Database Project,,datasets,,https://github.com/Jesperkemist/perovskitedatabase,"Perovskite Database Project aims at making all perovskite device data, both past and future, available in a form..",5,True,['community'],Jesperkemist/perovskitedatabase,https://github.com/Jesperkemist/perovskitedatabase,2021-01-17 14:26:45,2024-03-07 11:09:21,2024-03-07 11:09:17,44.0,,18.0,3.0,7.0,1.0,,58.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+319,SchNOrb,,ml-wft,MIT,https://github.com/atomistic-machine-learning/SchNOrb,Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions.,5,False,,atomistic-machine-learning/SchNOrb,https://github.com/atomistic-machine-learning/SchNOrb,2019-09-17 12:41:48,2019-09-17 14:31:47,2019-09-17 14:31:19,2.0,,19.0,5.0,,1.0,,58.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+320,Machine Learning for Materials Hard and Soft,,educational,,https://github.com/CompPhysVienna/MLSummerSchoolVienna2022,ESI-DCAFM-TACO-VDSP Summer School on Machine Learning for Materials Hard and Soft.,5,False,,CompPhysVienna/MLSummerSchoolVienna2022,https://github.com/CompPhysVienna/MLSummerSchoolVienna2022,2022-07-01 08:42:41,2022-07-22 08:10:24,2022-07-22 08:10:24,49.0,,17.0,1.0,14.0,,,34.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+321,Joint Multidomain Pre-Training (JMP),,uip,CC-BY-NC-4.0,https://github.com/facebookresearch/JMP,Code for From Molecules to Materials Pre-training Large Generalizable Models for Atomic Property Prediction.,5,True,"['pretrained', 'ml-iap', 'general-tool']",facebookresearch/JMP,https://github.com/facebookresearch/JMP,2024-03-14 23:10:10,2024-06-20 04:11:08,2024-05-07 08:19:12,1.0,,4.0,4.0,1.0,1.0,,32.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+322,xDeepH,,ml-dft,LGPL-3.0,https://github.com/mzjb/xDeepH,Extended DeepH (xDeepH) method for magnetic materials.,5,False,"['magnetism', 'lang-julia']",mzjb/xDeepH,https://github.com/mzjb/xDeepH,2023-02-23 12:56:49,2023-06-14 11:44:53,2023-06-14 11:44:46,4.0,,3.0,3.0,,1.0,,31.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+323,Autobahn,,rep-learn,MIT,https://github.com/risilab/Autobahn,Repository for Autobahn: Automorphism Based Graph Neural Networks.,5,False,,risilab/Autobahn,https://github.com/risilab/Autobahn,2021-03-02 01:14:40,2022-03-01 21:04:09,2022-03-01 21:04:04,11.0,,2.0,5.0,,,,30.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+324,ML-DFT,,ml-dft,MIT,https://github.com/MihailBogojeski/ml-dft,A package for density functional approximation using machine learning.,5,False,,MihailBogojeski/ml-dft,https://github.com/MihailBogojeski/ml-dft,2020-09-14 22:15:56,2020-09-18 16:36:30,2020-09-18 16:36:30,9.0,,7.0,2.0,,1.0,1.0,23.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+325,Coarse-Graining-Auto-encoders,,unsupervised,,https://github.com/learningmatter-mit/Coarse-Graining-Auto-encoders,Implementation of coarse-graining Autoencoders.,5,False,['single-paper'],learningmatter-mit/Coarse-Graining-Auto-encoders,https://github.com/learningmatter-mit/Coarse-Graining-Auto-encoders,2019-09-16 15:27:57,2019-08-16 21:39:34,2019-08-16 21:39:33,14.0,,7.0,6.0,,,,21.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+326,CSPML (crystal structure prediction with machine learning-based element substitution),,materials-discovery,,https://github.com/Minoru938/CSPML,Original implementation of CSPML.,5,True,['structure-prediction'],minoru938/cspml,https://github.com/Minoru938/CSPML,2022-01-15 10:59:27,2024-07-09 12:40:53,2024-07-09 12:40:53,23.0,16.0,8.0,2.0,,2.0,1.0,18.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+327,NequIP-JAX,,ml-iap,,https://github.com/mariogeiger/nequip-jax,JAX implementation of the NequIP interatomic potential.,5,True,,mariogeiger/nequip-jax,https://github.com/mariogeiger/nequip-jax,2023-03-08 04:18:28,2023-11-01 20:35:48,2023-11-01 20:35:44,39.0,,3.0,1.0,2.0,1.0,,17.0,2023-06-22 22:36:36,1.1.0,3.0,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+328,FieldSchNet,,rep-learn,MIT,https://github.com/atomistic-machine-learning/field_schnet,Deep neural network for molecules in external fields.,5,False,,atomistic-machine-learning/field_schnet,https://github.com/atomistic-machine-learning/field_schnet,2020-11-18 10:26:59,2022-05-19 09:28:38,2022-05-19 09:28:38,26.0,,4.0,2.0,1.0,1.0,,16.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+329,Does this material exist?,,community,MIT,https://thismaterialdoesnotexist.com/,Vote on whether you think predicted crystal structures could be synthesised.,5,True,"['for-fun', 'materials-discovery']",ml-evs/this-material-does-not-exist,https://github.com/ml-evs/this-material-does-not-exist,2023-12-01 18:16:28,2024-07-29 09:50:18,2024-04-10 12:32:06,16.0,,3.0,2.0,2.0,2.0,,15.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+330,3DSC Database,,datasets,https://github.com/aimat-lab/3DSC/blob/main/LICENSE.md,https://github.com/aimat-lab/3DSC,Repo for the paper publishing the superconductor database with 3D crystal structures.,5,True,"['superconductors', 'materials-discovery']",aimat-lab/3DSC,https://github.com/aimat-lab/3DSC,2021-11-02 09:07:57,2024-01-08 09:21:11,2024-01-08 09:21:11,53.0,,4.0,2.0,,1.0,,15.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+331,SCFNN,,rep-learn,MIT,https://github.com/andy90/SCFNN,Self-consistent determination of long-range electrostatics in neural network potentials.,5,False,"['lang-cpp', 'electrostatics', 'single-paper']",andy90/SCFNN,https://github.com/andy90/SCFNN,2021-09-22 12:02:00,2022-01-30 02:29:03,2022-01-24 09:40:40,10.0,,8.0,2.0,,,,15.0,2022-01-30 02:29:04,1.0.0,1.0,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+332,CraTENet,,rep-learn,MIT,https://github.com/lantunes/CraTENet,An attention-based deep neural network for thermoelectric transport properties.,5,False,['transport-phenomena'],lantunes/CraTENet,https://github.com/lantunes/CraTENet,2022-06-30 10:40:06,2023-04-05 01:13:22,2023-04-05 01:13:11,24.0,,1.0,1.0,,,,13.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+333,ACEHAL,,active-learning,,https://github.com/ACEsuit/ACEHAL,Hyperactive Learning (HAL) Python interface for building Atomic Cluster Expansion potentials.,5,True,['lang-julia'],ACEsuit/ACEHAL,https://github.com/ACEsuit/ACEHAL,2023-02-24 17:33:47,2023-10-01 12:19:41,2023-09-21 21:50:43,121.0,,7.0,5.0,15.0,4.0,6.0,11.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+334,BERT-PSIE-TC,,language-models,MIT,https://github.com/StefanoSanvitoGroup/BERT-PSIE-TC,A dataset of Curie temperatures automatically extracted from scientific literature with the use of the BERT-PSIE..,5,True,['magnetism'],StefanoSanvitoGroup/BERT-PSIE-TC,https://github.com/StefanoSanvitoGroup/BERT-PSIE-TC,2023-01-25 10:27:26,2023-08-18 11:47:45,2023-08-18 12:48:31,36.0,,3.0,1.0,,,,11.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+335,QMLearn,,ml-esm,MIT,http://qmlearn.rutgers.edu/,Quantum Machine Learning by learning one-body reduced density matrices in the AO basis...,5,False,,,,2022-02-15 13:42:13,2022-02-15 13:42:13,,,,3.0,,,,,11.0,,,0.0,,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,pavanello-research-group/qmlearn,https://gitlab.com/pavanello-research-group/qmlearn,,
+336,SciGlass,,datasets,MIT,https://github.com/drcassar/SciGlass,The database contains a vast set of data on the properties of glass materials.,5,True,,drcassar/SciGlass,https://github.com/drcassar/SciGlass,2019-06-19 19:36:32,2023-08-27 13:46:44,2023-08-27 13:46:44,28.0,,3.0,1.0,,,,10.0,2023-08-27 13:48:09,2.0.1,1.0,2.0,,,,,,,1.0,,,,3.0,,,,,,16.0,,,,,,,,,,,,
+337,InfGCN for Electron Density Estimation,,ml-dft,MIT,https://github.com/ccr-cheng/InfGCN-pytorch,Official implementation of the NeurIPS 23 spotlight paper of InfGCN.,5,True,['rep-learn'],ccr-cheng/infgcn-pytorch,https://github.com/ccr-cheng/InfGCN-pytorch,2023-10-01 21:21:40,2023-12-05 01:31:19,2023-12-05 01:31:14,3.0,,3.0,1.0,,,3.0,10.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+338,GN-MM,,ml-iap,MIT,https://gitlab.com/zaverkin_v/gmnn,The Gaussian Moment Neural Network (GM-NN) package developed for large-scale atomistic simulations employing atomistic..,5,False,"['active-learning', 'md', 'rep-eng', 'magnetism']",,,2021-09-19 15:56:31,2021-09-19 15:56:31,,,,4.0,,,,,10.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,zaverkin_v/gmnn,https://gitlab.com/zaverkin_v/gmnn,,
+339,MAPI_LLM,,language-models,MIT,https://github.com/maykcaldas/MAPI_LLM,A LLM application developed during the LLM March MADNESS Hackathon https://doi.org/10.1039/D3DD00113J.,5,True,"['ai-agent', 'dataset']",maykcaldas/MAPI_LLM,https://github.com/maykcaldas/MAPI_LLM,2023-03-30 04:24:54,2024-04-20 03:16:17,2024-04-11 22:22:28,31.0,,2.0,1.0,7.0,,,8.0,2023-06-29 18:48:44,0.0.1,1.0,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+340,EGraFFBench,,rep-learn,,https://github.com/M3RG-IITD/MDBENCHGNN,,5,False,"['single-paper', 'benchmarking', 'ml-iap']",M3RG-IITD/MDBENCHGNN,https://github.com/M3RG-IITD/MDBENCHGNN,2023-07-06 18:15:34,2023-11-19 05:16:12,2023-11-19 05:14:44,161.0,,,,,4.0,,8.0,2023-07-16 05:46:38,0.1.0,1.0,5.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+341,GDB-9-Ex9 and ORNL_AISD-Ex,,datasets,,https://github.com/ORNL/Analysis-of-Large-Scale-Molecular-Datasets-with-Python,Distributed computing workflow for generation and analysis of large scale molecular datasets obtained running multi-..,5,True,,ORNL/Analysis-of-Large-Scale-Molecular-Datasets-with-Python,https://github.com/ORNL/Analysis-of-Large-Scale-Molecular-Datasets-with-Python,2023-01-06 18:09:54,2023-08-11 16:49:35,2023-08-11 16:49:35,47.0,,5.0,6.0,13.0,2.0,,6.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+342,MEGAN: Multi Explanation Graph Attention Student,,xai,MIT,https://github.com/aimat-lab/graph_attention_student,Minimal implementation of graph attention student model architecture.,5,True,,aimat-lab/graph_attention_student,https://github.com/aimat-lab/graph_attention_student,2022-07-28 06:22:50,2024-07-31 07:57:28,2024-07-31 07:57:23,88.0,9.0,1.0,3.0,1.0,,2.0,5.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+343,MolSLEPA,,generative,MIT,https://github.com/tsudalab/MolSLEPA,Interpretable Fragment-based Molecule Design with Self-learning Entropic Population Annealing.,5,False,['xai'],tsudalab/MolSLEPA,https://github.com/tsudalab/MolSLEPA,2023-04-10 15:04:55,2023-04-13 12:48:49,2023-04-13 12:48:49,11.0,,1.0,8.0,2.0,,,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+344,MEGAN,,xai,MIT,https://github.com/aimat-lab/graph_attention_student,Minimal implementation of graph attention student model architecture.,5,True,"['xai', 'rep-learn']",aimat-lab/graph_attention_student,https://github.com/aimat-lab/graph_attention_student,2022-07-28 06:22:50,2024-07-31 07:57:28,2024-07-31 07:57:23,88.0,9.0,1.0,3.0,1.0,,2.0,5.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,,
+345,MXenes4HER,,rep-eng,GPL-3.0,https://github.com/cnislab/MXenes4HER,Predicting hydrogen evolution (HER) activity over 4500 MXene materials https://doi.org/10.1039/D3TA00344B.,5,False,"['materials-discovery', 'catalysis', 'scikit-learn', 'single-paper']",cnislab/MXenes4HER,https://github.com/cnislab/MXenes4HER,2022-11-28 09:27:36,2023-02-27 18:08:05,2023-02-27 18:08:05,67.0,,3.0,1.0,1.0,,,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+346,COSMO tools,,others,,https://github.com/lab-cosmo/cosmo-tools,"Scripts, jupyter nbs, and general helpful stuff from COSMO by COSMO.",5,False,,lab-cosmo/cosmo-tools,https://github.com/lab-cosmo/cosmo-tools,2018-11-06 09:40:00,2024-05-24 05:53:06,2024-05-24 05:53:06,63.0,1.0,4.0,23.0,,,,4.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,True
+347,q-pac,,ml-esm,MIT,https://gitlab.com/jmargraf/qpac,Kernel charge equilibration method.,5,False,['electrostatics'],,,2020-11-15 20:11:27,2020-11-15 20:11:27,,,,4.0,,,2.0,,4.0,,,0.0,,,,,,,,,,,,2.0,,,,,,,,,,,,,,,jmargraf/qpac,https://gitlab.com/jmargraf/qpac,,
+348,paper-ml-robustness-material-property,,unsupervised,BSD-3-Clause,https://github.com/mathsphy/paper-ml-robustness-material-property,A critical examination of robustness and generalizability of machine learning prediction of materials properties.,5,False,"['datasets', 'single-paper']",mathsphy/paper-ml-robustness-material-property,https://github.com/mathsphy/paper-ml-robustness-material-property,2023-02-21 02:38:13,2023-04-13 01:18:02,2023-04-13 01:18:02,3.0,,3.0,1.0,,,,4.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+349,SISSO++,,rep-eng,Apache-2.0,https://gitlab.com/sissopp_developers/sissopp,C++ Implementation of SISSO with python bindings.,5,False,['lang-cpp'],,,2021-04-30 14:20:59,2021-04-30 14:20:59,,,,3.0,,,2.0,18.0,3.0,,,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,sissopp_developers/sissopp,https://gitlab.com/sissopp_developers/sissopp,,
+350,Alchemical learning,,ml-iap,BSD-3-Clause,https://github.com/Luthaf/alchemical-learning,Code for the Modeling high-entropy transition metal alloys with alchemical compression article.,5,False,,Luthaf/alchemical-learning,https://github.com/Luthaf/alchemical-learning,2021-12-02 17:02:00,2023-04-24 18:35:45,2023-04-07 10:19:10,120.0,,1.0,7.0,1.0,,4.0,2.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+351,Visual Graph Datasets,,datasets,MIT,https://github.com/aimat-lab/visual_graph_datasets,Datasets for the training of graph neural networks (GNNs) and subsequent visualization of attributional explanations..,5,False,"['xai', 'rep-learn']",aimat-lab/visual_graph_datasets,https://github.com/aimat-lab/visual_graph_datasets,2023-06-01 11:33:18,2024-06-26 14:06:17,2024-06-26 14:06:13,53.0,3.0,2.0,3.0,,1.0,,1.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+352,linear-regression-benchmarks,,datasets,MIT,https://github.com/BingqingCheng/linear-regression-benchmarks,Data sets used for linear regression benchmarks.,5,False,"['benchmarking', 'single-paper']",BingqingCheng/linear-regression-benchmarks,https://github.com/BingqingCheng/linear-regression-benchmarks,2020-04-16 20:48:28,2022-01-26 08:29:46,2022-01-26 08:29:46,24.0,,,3.0,2.0,,,1.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+353,"Data Handling, DoE and Statistical Analysis for Material Chemists",,educational,GPL-3.0,https://github.com/Teoroo-CMC/DoE_Course_Material,"Notebooks for workshops of DoE course, hosted by the Computational Materials Chemistry group at Uppsala University.",5,False,,Teoroo-CMC/DoE_Course_Material,https://github.com/Teoroo-CMC/DoE_Course_Material,2023-05-22 08:11:41,2023-06-26 12:48:17,2023-06-26 12:48:15,157.0,,15.0,2.0,1.0,,,1.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+354,Per-Site CGCNN,,rep-learn,MIT,https://github.com/learningmatter-mit/per-site_cgcnn,Crystal graph convolutional neural networks for predicting material properties.,5,False,"['pretrained', 'single-paper']",learningmatter-mit/per-site_cgcnn,https://github.com/learningmatter-mit/per-site_cgcnn,2023-05-30 18:59:03,2023-06-05 17:38:46,2023-06-05 17:38:41,28.0,,,,,,,1.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+355,Per-site PAiNN,,rep-learn,MIT,https://github.com/learningmatter-mit/per-site_painn,Fork of PaiNN for PerovskiteOrderingGCNNs.,5,False,"['probabilistic', 'pretrained', 'single-paper']",learningmatter-mit/per-site_painn,https://github.com/learningmatter-mit/per-site_painn,2023-06-04 14:23:49,2023-06-05 17:35:19,2023-06-05 17:30:34,123.0,,,,,,,1.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+356,Geometric-GNNs,,community,,https://github.com/AlexDuvalinho/geometric-gnns,List of Geometric GNNs for 3D atomic systems.,4,False,"['datasets', 'educational', 'rep-learn']",AlexDuvalinho/geometric-gnns,https://github.com/AlexDuvalinho/geometric-gnns,2023-08-31 09:10:32,2024-02-29 16:25:54,2024-02-29 16:25:53,37.0,,6.0,1.0,3.0,,1.0,85.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+357,ML-in-chemistry-101,,educational,,https://github.com/BingqingCheng/ML-in-chemistry-101,The course materials for Machine Learning in Chemistry 101.,4,False,,BingqingCheng/ML-in-chemistry-101,https://github.com/BingqingCheng/ML-in-chemistry-101,2020-02-09 17:47:07,2020-10-19 08:10:31,2020-10-19 08:10:30,13.0,,17.0,2.0,,,,67.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+358,MAGUS,,materials-discovery,,https://gitlab.com/bigd4/magus,Machine learning And Graph theory assisted Universal structure Searcher.,4,False,"['structure-prediction', 'active-learning']",,,2023-01-31 09:00:23,2023-01-31 09:00:23,,,,15.0,,,,,56.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,bigd4/magus,https://gitlab.com/bigd4/magus,,
+359,Atom2Vec,,rep-learn,,https://github.com/idocx/Atom2Vec,Atom2Vec: a simple way to describe atoms for machine learning.,4,False,,idocx/Atom2Vec,https://github.com/idocx/Atom2Vec,2020-01-18 23:31:47,2024-02-23 21:44:03,2024-02-23 21:43:58,4.0,,8.0,1.0,1.0,2.0,1.0,32.0,,,,,atom2vec,,2.0,2.0,https://pypi.org/project/atom2vec,64.0,64.0,,,,3.0,,,,,,,,,,,,,,,,,,
+360,Allegro-Legato,,ml-iap,MIT,https://github.com/ibayashi-hikaru/allegro-legato,An extension of Allegro with enhanced robustness and time-to-failure.,4,False,['md'],ibayashi-hikaru/allegro-legato,https://github.com/ibayashi-hikaru/allegro-legato,2023-01-17 19:46:10,2023-08-03 22:25:11,2023-08-03 22:24:35,82.0,,1.0,1.0,,,,19.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+361,glp,,ml-iap,MIT,https://github.com/sirmarcel/glp,tools for graph-based machine-learning potentials in jax.,4,False,,sirmarcel/glp,https://github.com/sirmarcel/glp,2023-03-27 15:19:40,2024-04-09 12:06:56,2024-03-20 09:00:27,11.0,,1.0,2.0,3.0,,,17.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+362,Graph Transport Network,,rep-learn,https://github.com/gasteigerjo/gtn/blob/main/LICENSE.md,https://github.com/gasteigerjo/gtn,"Graph transport network (GTN), as proposed in Scalable Optimal Transport in High Dimensions for Graph Distances,..",4,False,['transport-phenomena'],gasteigerjo/gtn,https://github.com/gasteigerjo/gtn,2021-07-11 23:36:22,2023-04-26 14:22:00,2023-04-26 14:22:00,9.0,,3.0,2.0,,,,16.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+363,ChemDataWriter,,language-models,MIT,https://github.com/ShuHuang/chemdatawriter,ChemDataWriter is a transformer-based library for automatically generating research books in the chemistry area.,4,False,['literature-data'],ShuHuang/chemdatawriter,https://github.com/ShuHuang/chemdatawriter,2023-09-22 10:05:25,2023-10-07 04:23:47,2023-10-07 04:07:59,9.0,,1.0,2.0,,1.0,,14.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+364,SPINNER,,materials-discovery,GPL-3.0,https://github.com/MDIL-SNU/SPINNER,SPINNER (Structure Prediction of Inorganic crystals using Neural Network potentials with Evolutionary and Random..,4,False,"['lang-cpp', 'structure-prediction']",MDIL-SNU/SPINNER,https://github.com/MDIL-SNU/SPINNER,2021-07-15 02:10:58,2024-07-20 05:12:50,2021-11-25 07:58:15,102.0,,2.0,1.0,,1.0,,12.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+365,SOMD,,md,AGPL-3.0,https://github.com/initqp/somd,Molecular dynamics package designed for the SIESTA DFT code.,4,False,"['ml-iap', 'active-learning']",initqp/somd,https://github.com/initqp/somd,2023-03-09 19:00:41,2024-07-03 18:06:36,2024-07-03 17:46:18,301.0,2.0,2.0,1.0,11.0,,1.0,11.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+366,charge-density-models,,ml-dft,MIT,https://github.com/ulissigroup/charge-density-models,Tools to build charge density models using [fairchem](https://github.com/FAIR-Chem/fairchem).,4,False,['rep-learn'],ulissigroup/charge-density-models,https://github.com/ulissigroup/charge-density-models,2022-06-22 13:47:53,2023-11-29 15:07:42,2023-11-29 15:07:42,96.0,,2.0,2.0,16.0,1.0,2.0,10.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+367,paper-data-redundancy,,datasets,BSD-3-Clause,https://github.com/mathsphy/paper-data-redundancy,Repo for the paper Exploiting redundancy in large materials datasets for efficient machine learning with less data.,4,False,"['small-data', 'single-paper']",mathsphy/paper-data-redundancy,https://github.com/mathsphy/paper-data-redundancy,2023-06-10 15:00:28,2024-03-22 20:24:35,2024-03-22 20:24:34,17.0,,,1.0,,,,7.0,2023-10-11 14:09:07,1.0,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+368,TensorPotential,,ml-iap,https://github.com/ICAMS/TensorPotential/blob/main/LICENSE.md,https://cortner.github.io/ACEweb/software/,"Tensorpotential is a TensorFlow based tool for development, fitting ML interatomic potentials from electronic..",4,False,,ICAMS/TensorPotential,https://github.com/ICAMS/TensorPotential,2021-12-08 12:10:04,2023-07-10 16:37:18,2023-07-10 16:37:18,18.0,,4.0,2.0,2.0,,,7.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+369,Mapping out phase diagrams with generative classifiers,,generative,MIT,https://github.com/arnoldjulian/Mapping-out-phase-diagrams-with-generative-classifiers,Repository for our ``Mapping out phase diagrams with generative models paper.,4,False,['phase-transition'],arnoldjulian/Mapping-out-phase-diagrams-with-generative-classifiers,https://github.com/arnoldjulian/Mapping-out-phase-diagrams-with-generative-classifiers,2023-06-07 21:43:14,2023-06-27 08:12:29,2023-06-27 08:12:29,39.0,,2.0,1.0,,,,7.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+370,chemrev-gpr,,educational,,https://github.com/gabor1/chemrev-gpr,Notebooks accompanying the paper on GPR in materials and molecules in Chemical Reviews 2020.,4,False,,gabor1/chemrev-gpr,https://github.com/gabor1/chemrev-gpr,2020-12-18 23:48:06,2021-05-04 19:21:34,2021-05-04 19:21:30,10.0,,6.0,4.0,,,,6.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+371,automl-materials,,rep-eng,MIT,https://github.com/mm-tud/automl-materials,AutoML for Regression Tasks on Small Tabular Data in Materials Design.,4,False,"['automl', 'benchmarking', 'single-paper']",mm-tud/automl-materials,https://github.com/mm-tud/automl-materials,2022-10-07 09:49:18,2022-11-15 15:22:54,2022-11-15 15:22:45,6.0,,1.0,2.0,,,,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+372,gkx: Green-Kubo Method in JAX,,rep-learn,MIT,https://github.com/sirmarcel/gkx,Green-Kubo + JAX + MLPs = Anharmonic Thermal Conductivities Done Fast.,4,False,['transport-phenomena'],sirmarcel/gkx,https://github.com/sirmarcel/gkx,2023-04-30 12:25:16,2024-03-20 09:05:20,2024-03-20 09:05:14,3.0,,,1.0,,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+373,ML-atomate,,materials-discovery,GPL-3.0,https://github.com/takahashi-akira-36m/ml_atomate,Machine learning-assisted Atomate code for autonomous computational materials screening.,4,False,"['active-learning', 'workflows']",takahashi-akira-36m/ml_atomate,https://github.com/takahashi-akira-36m/ml_atomate,2023-09-21 08:45:10,2023-11-17 09:54:23,2023-11-17 09:51:02,6.0,,1.0,1.0,,,,3.0,2023-09-29 03:52:46,stam_m_2023_fix,2.0,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+374,ACEatoms,,general-tool,https://github.com/ACEsuit/ACEatoms.jl/blob/main/ASL.md,https://github.com/ACEsuit/ACEatoms.jl,Generic code for modelling atomic properties using ACE.,4,False,['lang-julia'],ACEsuit/ACEatoms.jl,https://github.com/ACEsuit/ACEatoms.jl,2021-03-23 23:50:03,2023-01-13 21:35:06,2023-01-13 21:28:08,134.0,,1.0,3.0,14.0,4.0,3.0,2.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+375,halex,,ml-esm,,https://github.com/ecignoni/halex,Hamiltonian Learning for Excited States https://doi.org/10.48550/arXiv.2311.00844.,4,False,['excited-states'],ecignoni/halex,https://github.com/ecignoni/halex,2023-09-04 06:54:15,2024-02-08 10:20:53,2024-02-08 10:20:49,169.0,,,3.0,,1.0,,2.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+376,AI4ChemMat Hands-On Series,,educational,MPL-2.0,https://github.com/ai4chemmat/ai4chemmat.github.io,Hands-On Series organized by Chemistry and Materials working group at Argonne Nat Lab.,4,False,,ai4chemmat/ai4chemmat.github.io,https://github.com/ai4chemmat/ai4chemmat.github.io,2023-03-24 21:25:21,2024-04-24 16:32:18,2024-04-24 16:32:18,40.0,,,2.0,,,,1.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+377,magnetism-prediction,,rep-eng,Apache-2.0,https://github.com/dppant/magnetism-prediction,DFT-aided Machine Learning Search for Magnetism in Fe-based Bimetallic Chalcogenides.,4,False,"['magnetism', 'single-paper']",dppant/magnetism-prediction,https://github.com/dppant/magnetism-prediction,2022-09-13 03:58:10,2023-07-19 13:25:49,2023-07-19 13:25:49,46.0,,,3.0,,,,1.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+378,ACE Workflows,,ml-iap,,https://github.com/ACEsuit/ACEworkflows,Workflow Examples for ACE Models.,4,False,"['lang-julia', 'workflows']",ACEsuit/ACEworkflows,https://github.com/ACEsuit/ACEworkflows,2023-04-04 16:57:36,2023-10-12 18:01:00,2023-10-12 18:00:39,45.0,,1.0,3.0,7.0,1.0,,,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+379,MLatom,,general-tool,https://creativecommons.org/licenses/by-nc-nd/4.0/,http://mlatom.com/,Machine learning for atomistic simulations.,4,False,,,,,,,,,,,,,,,,,,,MLatom,,,,https://pypi.org/project/MLatom,848.0,848.0,,,,3.0,,,,,,,,,,,,,,,,,http://mlatom.com/manual/,
+380,gprep,,ml-dft,MIT,https://gitlab.com/jmargraf/gprep,Fitting DFTB repulsive potentials with GPR.,4,False,['single-paper'],,,2019-09-30 09:15:04,2019-09-30 09:15:04,,,,0.0,,,,,,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,jmargraf/gprep,https://gitlab.com/jmargraf/gprep,,
+381,closed-loop-acceleration-benchmarks,,materials-discovery,MIT,https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks,Data and scripts in support of the publication By how much can closed-loop frameworks accelerate computational..,4,False,"['materials-discovery', 'active-learning', 'single-paper']",aced-differentiate/closed-loop-acceleration-benchmarks,https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks,2022-11-10 20:22:30,2023-07-25 21:25:42,2023-05-02 17:07:48,17.0,,1.0,4.0,3.0,,,,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+382,PeriodicPotentials,,ml-iap,MIT,https://github.com/AaltoRSE/PeriodicPotentials,A Periodic table app that displays potentials based on the selected elements.,4,False,"['community', 'visualization', 'lang-js']",AaltoRSE/PeriodicPotentials,https://github.com/AaltoRSE/PeriodicPotentials,2022-10-14 09:03:59,2022-10-18 17:10:22,2022-10-18 17:10:22,17.0,,1.0,3.0,3.0,,,,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+383,CatBERTa,,language-models,,https://github.com/hoon-ock/CatBERTa,Large Language Model for Catalyst Property Prediction.,3,False,"['transformer', 'catalysis']",hoon-ock/CatBERTa,https://github.com/hoon-ock/CatBERTa,2023-05-19 18:23:17,2024-03-08 02:59:22,2024-03-08 02:59:22,93.0,,2.0,1.0,2.0,,,19.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+384,ALEBREW,,active-learning,https://github.com/nec-research/alebrew/blob/main/LICENSE.txt,https://github.com/nec-research/alebrew,Official repository for the paper Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic..,3,False,"['ml-iap', 'md']",nec-research/alebrew,https://github.com/nec-research/alebrew,2024-02-27 07:32:23,2024-03-17 13:51:57,2024-03-17 13:51:52,2.0,,3.0,1.0,,1.0,,9.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+385,atom_by_atom,,rep-learn,,https://github.com/learningmatter-mit/atom_by_atom,Atom-by-atom design of metal oxide catalysts for the oxygen evolution reaction with Machine Learning.,3,False,"['surface-science', 'single-paper']",learningmatter-mit/atom_by_atom,https://github.com/learningmatter-mit/atom_by_atom,2023-05-30 20:18:00,2023-10-19 15:59:08,2023-10-19 15:35:49,74.0,,,2.0,,,,6.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+386,DeepCDP,,ml-dft,,https://github.com/siddarthachar/deepcdp,DeepCDP: Deep learning Charge Density Prediction.,3,False,,siddarthachar/deepcdp,https://github.com/siddarthachar/deepcdp,2021-12-18 14:26:56,2023-06-16 20:38:23,2023-06-16 20:38:23,96.0,,1.0,2.0,27.0,,,6.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+387,Element encoder,,rep-learn,GPL-3.0,https://github.com/jeherr/element-encoder,Autoencoder neural network to compress properties of atomic species into a vector representation.,3,False,['single-paper'],jeherr/element-encoder,https://github.com/jeherr/element-encoder,2019-03-27 17:11:30,2020-01-09 15:54:27,2020-01-09 15:54:26,8.0,,2.0,4.0,,,1.0,6.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+388,interface-lammps-mlip-3,,md,GPL-2.0,https://gitlab.com/ivannovikov/interface-lammps-mlip-3,An interface between LAMMPS and MLIP (version 3).,3,False,,,,2023-04-24 12:48:51,2023-04-24 12:48:51,,,,5.0,,,4.0,1.0,5.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,ivannovikov/interface-lammps-mlip-3,https://gitlab.com/ivannovikov/interface-lammps-mlip-3,,
+389,sl_discovery,,materials-discovery,Apache-2.0,https://github.com/CitrineInformatics-ERD-public/sl_discovery,Data processing and models related to Quantifying the performance of machine learning models in materials discovery.,3,False,"['materials-discovery', 'single-paper']",CitrineInformatics-ERD-public/sl_discovery,https://github.com/CitrineInformatics-ERD-public/sl_discovery,2022-10-24 18:10:14,2022-12-20 23:46:05,2022-12-20 23:45:57,5.0,,2.0,2.0,,,,5.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+390,APET,,ml-dft,GPL-3.0,https://github.com/emotionor/APET,Atomic Positional Embedding-based Transformer.,3,False,"['density-of-states', 'transformer']",emotionor/APET,https://github.com/emotionor/APET,2023-03-06 01:53:16,2024-04-24 03:43:39,2023-09-28 03:16:11,11.0,,,2.0,,,,4.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+391,e3psi,,ml-esm,LGPL-3.0,https://github.com/muhrin/e3psi,Equivariant machine learning library for learning from electronic structures.,3,False,,muhrin/e3psi,https://github.com/muhrin/e3psi,2022-08-08 10:48:30,2024-01-05 12:59:56,2024-01-05 12:59:09,19.0,,,2.0,,,,3.0,,,,,,,1.0,1.0,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+392,torch_spex,,math,,https://github.com/lab-cosmo/torch_spex,Spherical expansions in PyTorch.,3,False,,lab-cosmo/torch_spex,https://github.com/lab-cosmo/torch_spex,2023-03-28 09:48:36,2024-03-28 05:33:01,2024-03-28 05:33:01,77.0,,2.0,18.0,35.0,7.0,2.0,3.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+393,PiNN Lab,,educational,GPL-3.0,https://github.com/Teoroo-CMC/PiNN_lab,Material for running a lab session on atomic neural networks.,3,False,,Teoroo-CMC/PiNN_lab,https://github.com/Teoroo-CMC/PiNN_lab,2019-03-17 22:09:30,2023-05-01 15:59:56,2023-05-01 15:59:22,9.0,,1.0,3.0,1.0,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+394,CSNN,,ml-dft,BSD-3-Clause,https://github.com/foxjas/CSNN,Primary codebase of CSNN - Concentric Spherical Neural Network for 3D Representation Learning.,3,False,,foxjas/CSNN,https://github.com/foxjas/CSNN,2022-05-19 15:40:49,2022-10-11 04:27:40,2022-10-11 04:27:40,6.0,,,1.0,,,,2.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+395,Linear vs blackbox,,xai,MIT,https://github.com/CitrineInformatics-ERD-public/linear-vs-blackbox,Code and data related to the publication: Interpretable models for extrapolation in scientific machine learning.,3,False,"['xai', 'single-paper', 'rep-eng']",CitrineInformatics-ERD-public/linear-vs-blackbox,https://github.com/CitrineInformatics-ERD-public/linear-vs-blackbox,2022-12-02 20:32:53,2022-12-16 18:48:12,2022-12-16 18:48:12,4.0,,,1.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+396,MALADA,,ml-dft,BSD-3-Clause,https://github.com/mala-project/malada,MALA Data Acquisition: Helpful tools to build data for MALA.,3,False,,mala-project/malada,https://github.com/mala-project/malada,2021-07-26 05:46:08,2024-07-26 14:19:51,2023-05-24 09:18:24,111.0,,1.0,2.0,4.0,17.0,2.0,1.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+397,ML-for-CurieTemp-Predictions,,rep-eng,MIT,https://github.com/msg-byu/ML-for-CurieTemp-Predictions,Machine Learning Predictions of High-Curie-Temperature Materials.,3,False,"['single-paper', 'magnetism']",msg-byu/ML-for-CurieTemp-Predictions,https://github.com/msg-byu/ML-for-CurieTemp-Predictions,2023-06-05 22:46:47,2023-06-14 19:05:50,2023-06-14 19:05:47,25.0,,,1.0,,,,1.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+398,MEGNetSparse,,ml-iap,MIT,https://github.com/HSE-LAMBDA/MEGNetSparse,"A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,..",3,False,['material-defect'],HSE-LAMBDA/MEGNetSparse,https://github.com/HSE-LAMBDA/MEGNetSparse,2023-07-19 08:17:42,2023-08-21 17:11:34,2023-08-21 17:11:25,19.0,,1.0,2.0,,,,1.0,,,,2.0,MEGNetSparse,,1.0,1.0,https://pypi.org/project/MEGNetSparse,23.0,23.0,,,,3.0,,,,,,,,,,,,,,,,,,
+399,Magpie,,general-tool,MIT,https://bitbucket.org/wolverton/magpie/,Materials Agnostic Platform for Informatics and Exploration (Magpie).,3,False,['lang-java'],,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+400,PyFLAME,,ml-iap,,https://gitlab.com/flame-code/PyFLAME,An automated approach for developing neural network interatomic potentials with FLAME..,3,False,"['active-learning', 'structure-prediction', 'structure-optimization', 'rep-eng', 'lang-fortran']",,,2021-04-07 09:16:07,2021-04-07 09:16:07,,,,4.0,,,,,,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,flame-code/PyFLAME,https://gitlab.com/flame-code/PyFLAME,,
+401,nep-data,,datasets,,https://gitlab.com/brucefan1983/nep-data,Data related to the NEP machine-learned potential of GPUMD.,2,False,"['ml-iap', 'md', 'transport-phenomena']",,,2021-11-22 19:43:01,2021-11-22 19:43:01,,,,4.0,,,1.0,1.0,12.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,brucefan1983/nep-data,https://gitlab.com/brucefan1983/nep-data,,
+402,SingleNN,,ml-iap,,https://github.com/lmj1029123/SingleNN,An efficient package for training and executing neural-network interatomic potentials.,2,False,['lang-cpp'],lmj1029123/SingleNN,https://github.com/lmj1029123/SingleNN,2020-03-11 18:36:16,2021-11-09 00:40:18,2021-11-09 00:40:10,17.0,,1.0,1.0,,1.0,,8.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+403,A3MD,,ml-dft,,https://github.com/brunocuevas/a3md,MPNN-like + Analytic Density Model = Accurate electron densities.,2,False,"['rep-learn', 'single-paper']",brunocuevas/a3md,https://github.com/brunocuevas/a3md,2021-06-02 07:23:17,2021-12-02 17:10:39,2021-12-02 17:10:34,4.0,,1.0,2.0,,,,8.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+404,MLDensity_tutorial,,educational,,https://github.com/bfocassio/MLDensity_tutorial,Tutorial files to work with ML for the charge density in molecules and solids.,2,False,,bfocassio/MLDensity_tutorial,https://github.com/bfocassio/MLDensity_tutorial,2023-01-31 10:33:23,2023-02-22 19:20:32,2023-02-22 19:20:32,8.0,,1.0,1.0,,,,7.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+405,tmQM_wB97MV Dataset,,datasets,,https://github.com/ulissigroup/tmQM_wB97MV,Code for Applying Large Graph Neural Networks to Predict Transition Metal Complex Energies Using the tmQM_wB97MV..,2,False,"['catalysis', 'rep-learn']",ulissigroup/tmqm_wB97MV,https://github.com/ulissigroup/tmQM_wB97MV,2023-07-17 21:40:20,2024-04-09 22:01:26,2024-04-09 22:01:26,17.0,,1.0,3.0,,,2.0,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+406,LAMMPS-style pair potentials with GAP,,educational,,https://github.com/victorprincipe/pair_potentials,A tutorial on how to create LAMMPS-style pair potentials and use them in combination with GAP potentials to run MD..,2,False,"['ml-iap', 'md', 'rep-eng']",victorprincipe/pair_potentials,https://github.com/victorprincipe/pair_potentials,2022-09-21 09:45:03,2022-10-03 08:06:22,2022-10-03 08:05:53,36.0,,,1.0,1.0,,,4.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+407,KmdPlus,,unsupervised,,https://github.com/Minoru938/KmdPlus,"This module contains a class for treating kernel mean descriptor (KMD), and a function for generating descriptors with..",2,False,,Minoru938/KmdPlus,https://github.com/Minoru938/KmdPlus,2023-03-26 10:06:34,2023-10-17 08:28:01,2023-10-17 08:28:01,7.0,,1.0,1.0,,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+408,AisNet,,ml-iap,MIT,https://github.com/loilisxka/AisNet,A Universal Interatomic Potential Neural Network with Encoded Local Environment Features..,2,False,,loilisxka/AisNet,https://github.com/loilisxka/AisNet,2022-10-11 05:54:59,2022-10-11 06:02:47,2022-10-11 05:58:06,2.0,,,1.0,,,,3.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+409,MALA Tutorial,,educational,,https://github.com/mala-project/mala_tutorial,A full MALA hands-on tutorial.,2,False,,mala-project/mala_tutorial,https://github.com/mala-project/mala_tutorial,2023-03-09 14:01:54,2023-11-28 11:20:39,2023-11-28 11:17:01,24.0,,,2.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+410,Wigner Kernels,,math,,https://github.com/lab-cosmo/wigner_kernels,Collection of programs to benchmark Wigner kernels.,2,False,['benchmarking'],lab-cosmo/wigner_kernels,https://github.com/lab-cosmo/wigner_kernels,2022-12-08 12:28:26,2023-07-08 15:48:41,2023-07-08 15:48:37,109.0,,,1.0,,,,2.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+411,quantum-structure-ml,,general-tool,,https://github.com/hgheiberger/quantum-structure-ml,Multi-class classification model for predicting the magnetic order of magnetic structures and a binary classification..,2,False,"['magnetism', 'benchmarking']",hgheiberger/quantum-structure-ml,https://github.com/hgheiberger/quantum-structure-ml,2020-10-05 01:11:01,2022-12-22 21:45:40,2022-12-22 21:45:40,19.0,,,2.0,,,,2.0,2022-08-18 05:25:24,1.0.0,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+412,AMP,,rep-eng,,https://bitbucket.org/andrewpeterson/amp/,Amp is an open-source package designed to easily bring machine-learning to atomistic calculations.,2,False,,,,,,,,,,,,,,,,,,,amp-atomistics,,,,https://pypi.org/project/amp-atomistics,76.0,76.0,,,,3.0,,,,,,,,,,,,,,,,,https://amp.readthedocs.io/,
+413,RuNNer,,ml-iap,GPL-3.0,https://www.uni-goettingen.de/de/560580.html,The RuNNer Neural Network Energy Representation is a Fortran-based framework for the construction of Behler-..,2,False,['lang-fortran'],,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,https://theochemgoettingen.gitlab.io/RuNNer/,
+414,Point Edge Transformer,,rep-learn,CC-BY-4.0,https://zenodo.org/record/7967079,"Smooth, exact rotational symmetrization for deep learning on point clouds.",2,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+415,nnp-pre-training,,ml-iap,,https://github.com/jla-gardner/nnp-pre-training,Synthetic pre-training for neural-network interatomic potentials.,1,False,"['pretrained', 'md']",jla-gardner/nnp-pre-training,https://github.com/jla-gardner/nnp-pre-training,2023-07-12 11:58:29,2023-12-19 12:08:14,2023-12-19 12:08:14,11.0,,,1.0,,,,6.0,2023-12-19 12:02:35,1.0,1.0,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+416,SphericalNet,,rep-learn,,https://github.com/risilab/SphericalNet,Implementation of Clebsch-Gordan Networks (CGnet: https://arxiv.org/pdf/1806.09231.pdf) by GElib & cnine libraries in..,1,False,,risilab/SphericalNet,https://github.com/risilab/SphericalNet,2022-05-31 14:39:05,2022-06-07 03:57:10,2022-06-07 03:53:49,1.0,,,2.0,,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+417,kdft,,ml-dft,,https://gitlab.com/jmargraf/kdf,The Kernel Density Functional (KDF) code allows generating ML based DFT functionals.,1,False,,,,2020-11-07 21:50:22,2020-11-07 21:50:22,,,,0.0,,,,,2.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,jmargraf/kdf,https://gitlab.com/jmargraf/kdf,,
+418,mag-ace,,ml-iap,,https://github.com/mttrin93/mag-ace,Magnetic ACE potential. FORTRAN interface for LAMMPS SPIN package.,1,False,"['magnetism', 'md', 'lang-fortran']",mttrin93/mag-ace,https://github.com/mttrin93/mag-ace,2023-12-26 19:00:40,2023-12-26 22:34:27,2023-12-26 22:34:27,7.0,,,1.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,,
+419,mlp,,ml-iap,,https://github.com/cesmix-mit/MLP,Proper orthogonal descriptors for efficient and accurate interatomic potentials...,1,False,['lang-julia'],cesmix-mit/mlp,https://github.com/cesmix-mit/MLP,2022-02-25 23:03:09,2022-10-22 19:01:45,2022-10-22 19:01:42,12.0,,1.0,2.0,,,,1.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+420,GitHub topic materials-informatics,,community,,https://github.com/topics/materials-informatics,GitHub topic materials-informatics.,1,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+421,MateriApps,,community,,https://ma.issp.u-tokyo.ac.jp/en/,A Portal Site of Materials Science Simulation.,1,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,
+422,Allegro-JAX,,ml-iap,,https://github.com/mariogeiger/allegro-jax,JAX implementation of the Allegro interatomic potential.,0,True,,mariogeiger/allegro-jax,https://github.com/mariogeiger/allegro-jax,2023-07-02 19:00:00,2024-04-09 18:44:30,2024-04-09 18:44:30,7.0,,2.0,2.0,1.0,1.0,1.0,17.0,,,,2.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+423,Descriptor Embedding and Clustering for Atomisitic-environment Framework (DECAF),,unsupervised,,https://gitlab.mpcdf.mpg.de/klai/decaf,Provides a workflow to obtain clustering of local environments in dataset of structures.,0,False,,,,,,,41.0,,,,,,,2.0,,,,2.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
+424,MLDensity,,ml-dft,,https://github.com/StefanoSanvitoGroup/MLdensity,Linear Jacobi-Legendre expansion of the charge density for machine learning-accelerated electronic structure..,0,False,,StefanoSanvitoGroup/MLdensity,https://github.com/StefanoSanvitoGroup/MLdensity,2023-01-31 20:44:45,2024-05-27 12:28:57,2023-02-22 19:25:51,14.0,,,2.0,,,,2.0,,,,2.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
diff --git a/latest-changes.md b/latest-changes.md
index b3e6b03..9d053fa 100644
--- a/latest-changes.md
+++ b/latest-changes.md
@@ -2,24 +2,71 @@
_Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity._
-- apax (🥈18 · ⭐ 14 · 📈) - A flexible and performant framework for training machine learning potentials. MIT
-- IPSuite (🥈17 · ⭐ 16 · 📈) - A Python toolkit for FAIR development and deployment of machine-learned interatomic potentials. EPL-2.0
ML-IAP
MD
workflows
HTC
FAIR
-- rxngenerator (🥉7 · ⭐ 11 · 💀) - A generative model for molecular generation via multi-step chemical reactions. MIT
-- cnine (🥉6 · ⭐ 4 · 📈) - Cnine tensor library. Unlicensed
C++
-- NequIP-JAX (🥉5 · ⭐ 17 · 💤) - JAX implementation of the NequIP interatomic potential. Unlicensed
+- paper-qa (🥇27 · ⭐ 3.8K · 📈) - LLM Chain for answering questions from documents with citations. Apache-2
ai-agent
+- DScribe (🥇23 · ⭐ 390 · 📈) - DScribe is a python package for creating machine learning descriptors for atomistic systems. Apache-2
+- pymatviz (🥇21 · ⭐ 150 · 📈) - A toolkit for visualizations in materials informatics. MIT
general-tool
probabilistic
+- e3nn-jax (🥈20 · ⭐ 170 · 📈) - jax library for E3 Equivariant Neural Networks. Apache-2
## 📉 Trending Down
_Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity._
-- gpax (🥇16 · ⭐ 190 · 📉) - Gaussian Processes for Experimental Sciences. MIT
probabilistic
active-learning
-- OpenMM-ML (🥉13 · ⭐ 81 · 📉) - High level API for using machine learning models in OpenMM simulations. MIT
ML-IAP
-- Pacemaker (🥈11 · ⭐ 62 · 📉) - Python package for fitting atomic cluster expansion (ACE) potentials. Custom
-- graphite (🥉8 · ⭐ 53 · 📉) - A repository for implementing graph network models based on atomic structures. MIT
+- dpdata (🥇23 · ⭐ 200 · 📉) - Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc. LGPL-3.0
+- Best-of Machine Learning with Python (🥇21 · ⭐ 16K · 📉) - A ranked list of awesome machine learning Python libraries. Updated weekly. CC-BY-4.0
general-ml
Python
+- Open Databases Integration for Materials Design (OPTIMADE) (🥈17 · ⭐ 76 · 📉) - Specification of a common REST API for access to materials databases. CC-BY-4.0
+- openmm-torch (🥈16 · ⭐ 180 · 📉) - OpenMM plugin to define forces with neural networks. Custom
ML-IAP
C++
+- MatBench Discovery (🥈16 · ⭐ 82 · 📉) - An evaluation framework for machine learning models simulating high-throughput materials discovery. MIT
datasets
benchmarking
model-repository
## ➕ Added Projects
_Projects that were recently added to this best-of list._
-- QH9 (🥈12 · ⭐ 470 · ➕) - A Quantum Hamiltonian Prediction Benchmark. CC-BY-NC-SA 4.0
ML-DFT
+- DPA-2 (🥇26 · ⭐ 1.4K · ➕) - Towards a universal large atomic model for molecular and material simulation https://doi.org/10.48550/arXiv.2312.15492. LGPL-3.0
ML-IAP
pretrained
workflows
datasets
+- Graphormer (🥈16 · ⭐ 2K · ➕) - Graphormer is a general-purpose deep learning backbone for molecular modeling. MIT
transformer
pretrained
+- OpenML (🥈16 · ⭐ 660 · 💤) - Open Machine Learning. BSD-3
datasets
+- PMTransformer (🥇16 · ⭐ 82 · ➕) - Universal Transfer Learning in Porous Materials, including MOFs. MIT
transfer-learning
pretrained
transformer
+- SevenNet (🥉14 · ⭐ 86 · ➕) - SevenNet (Scalable EquiVariance Enabled Neural Network) is a graph neural network interatomic potential package that.. GPL-3.0
ML-IAP
MD
pretrained
+- HydraGNN (🥈14 · ⭐ 56 · ➕) - Distributed PyTorch implementation of multi-headed graph convolutional neural networks. BSD-3
+- ChatMOF (🥈13 · ⭐ 53 · ➕) - Predict and Inverse design for metal-organic framework with large-language models (llms). MIT
generative
+- MACE-MP (🥉12 · ⭐ 33 · ➕) - Pretrained foundation models for materials chemistry. MIT
ML-IAP
pretrained
rep-learn
MD
+- Neural-Network-Models-for-Chemistry (🥈11 · ⭐ 59 · ➕) - A collection of Nerual Network Models for chemistry. Unlicensed
rep-learn
+- load-atoms (🥈11 · ⭐ 37 · ➕) - download and manipulate atomistic datasets. MIT
data-structures
+- AI4Chemistry course (🥈10 · ⭐ 130 · ➕) - EPFL AI for chemistry course, Spring 2023. https://schwallergroup.github.io/ai4chem_course. MIT
chemistry
+- HamGNN (🥈9 · ⭐ 49 · ➕) - An E(3) equivariant Graph Neural Network for predicting electronic Hamiltonian matrix. GPL-3.0
rep-learn
magnetism
C-lang
+- AI for Science paper collection (🥉9 · ⭐ 43 · 🐣) - List the AI for Science papers accepted by top conferences. Apache-2
+- Q-stack (🥈9 · ⭐ 14 · ➕) - Stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML). MIT
excited-states
general-tool
+- MADICES Awesome Interoperability (🥉9 · ⭐ 1 · ➕) - Linked data interoperability resources of the Machine-actionable data interoperability for the chemical sciences.. MIT
datasets
+- Awesome-Graph-Generation (🥉8 · ⭐ 260 · ➕) - A curated list of up-to-date graph generation papers and resources. Unlicensed
rep-learn
+- Awesome Neural SBI (🥉8 · ⭐ 80 · ➕) - Community-sourced list of papers and resources on neural simulation-based inference. MIT
active-learning
+- SiMGen (🥉8 · ⭐ 11 · ➕) - Zero Shot Molecular Generation via Similarity Kernels. MIT
viz
+- Awesome-Crystal-GNNs (🥉7 · ⭐ 54 · ➕) - This repository contains a collection of resources and papers on GNN Models on Crystal Solid State Materials. MIT
+- AIS Square (🥉7 · ⭐ 10 · 💤) - A collaborative and open-source platform for sharing AI for Science datasets, models, and workflows. Home of the.. LGPL-3.0
community-resource
model-repository
+- rho_learn (🥉7 · ⭐ 3 · ➕) - A proof-of-concept framework for torch-based learning of the electron density and related scalar fields. MIT
+- ChargE3Net (🥉6 · ⭐ 28 · ➕) - Higher-order equivariant neural networks for charge density prediction in materials. MIT
rep-learn
+- ML for catalysis tutorials (🥉6 · ⭐ 8 · 💀) - A jupyter book repo for tutorial on how to use OCP ML models for catalysis. MIT
+- Cephalo (🥉6 · ⭐ 5 · 🐣) - Multimodal Vision-Language Models for Bio-Inspired Materials Analysis and Design. Apache-2
generative
multimodal
pretrained
+- KSR-DFT (🥇6 · ⭐ 4 · 💀) - Kohn-Sham regularizer for machine-learned DFT functionals. Apache-2
+- ACEpsi.jl (🥉6 · ⭐ 2 · 💤) - ACE wave function parameterizations. MIT
rep-eng
Julia
+- crystal-text-llm (🥉5 · ⭐ 63 · 🐣) - Large language models to generate stable crystals. CC-BY-NC-4.0
materials-discovery
+- The Perovskite Database Project (🥉5 · ⭐ 58 · ➕) - Perovskite Database Project aims at making all perovskite device data, both past and future, available in a form.. Unlicensed
community-resource
+- Joint Multidomain Pre-Training (JMP) (🥉5 · ⭐ 32 · 🐣) - Code for From Molecules to Materials Pre-training Large Generalizable Models for Atomic Property Prediction. CC-BY-NC-4.0
pretrained
ML-IAP
general-tool
+- QMLearn (🥈5 · ⭐ 11 · 💀) - Quantum Machine Learning by learning one-body reduced density matrices in the AO basis... MIT
+- InfGCN for Electron Density Estimation (🥉5 · ⭐ 10 · 💤) - Official implementation of the NeurIPS 23 spotlight paper of InfGCN. MIT
rep-learn
+- GN-MM (🥉5 · ⭐ 10 · 💀) - The Gaussian Moment Neural Network (GM-NN) package developed for large-scale atomistic simulations employing atomistic.. MIT
active-learning
MD
rep-eng
magnetism
+- EGraFFBench (🥉5 · ⭐ 8 · 💤) - Unlicensed
single-paper
benchmarking
ML-IAP
+- GDB-9-Ex9 and ORNL_AISD-Ex (🥉5 · ⭐ 6 · 💤) - Distributed computing workflow for generation and analysis of large scale molecular datasets obtained running multi-.. Unlicensed
+- MXenes4HER (🥉5 · ⭐ 5 · 💀) - Predicting hydrogen evolution (HER) activity over 4500 MXene materials https://doi.org/10.1039/D3TA00344B. GPL-3.0
materials-discovery
catalysis
scikit-learn
single-paper
+- Geometric-GNNs (🥉4 · ⭐ 85 · ➕) - List of Geometric GNNs for 3D atomic systems. Unlicensed
datasets
educational
rep-learn
+- MAGUS (🥉4 · ⭐ 56 · 💀) - Machine learning And Graph theory assisted Universal structure Searcher. Unlicensed
structure-prediction
active-learning
+- Allegro-Legato (🥉4 · ⭐ 19 · 💤) - An extension of Allegro with enhanced robustness and time-to-failure. MIT
MD
+- Mapping out phase diagrams with generative classifiers (🥉4 · ⭐ 7 · 💀) - Repository for our ``Mapping out phase diagrams with generative models paper. MIT
phase-transition
+- automl-materials (🥉4 · ⭐ 5 · 💀) - AutoML for Regression Tasks on Small Tabular Data in Materials Design. MIT
autoML
benchmarking
single-paper
+- ML-atomate (🥉4 · ⭐ 3 · 💤) - Machine learning-assisted Atomate code for autonomous computational materials screening. GPL-3.0
active-learning
workflows
+- AI4ChemMat Hands-On Series (🥉4 · ⭐ 1 · ➕) - Hands-On Series organized by Chemistry and Materials working group at Argonne Nat Lab. MPL-2.0
+- ALEBREW (🥉3 · ⭐ 9 · 🐣) - Official repository for the paper Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic.. Custom
ML-IAP
MD
+- PyFLAME (🥉3 · 💀) - An automated approach for developing neural network interatomic potentials with FLAME.. Unlicensed
active-learning
structure-prediction
structure-optimization
rep-eng
Fortran
+- tmQM_wB97MV Dataset (🥉2 · ⭐ 5 · ➕) - Code for Applying Large Graph Neural Networks to Predict Transition Metal Complex Energies Using the tmQM_wB97MV.. Unlicensed
catalysis
rep-learn
+- AisNet (🥉2 · ⭐ 3 · 💀) - A Universal Interatomic Potential Neural Network with Encoded Local Environment Features.. MIT
+- nnp-pre-training (🥉1 · ⭐ 6 · 💤) - Synthetic pre-training for neural-network interatomic potentials. Unlicensed
pretrained
MD
+- mag-ace (🥉1 · ⭐ 2 · 💤) - Magnetic ACE potential. FORTRAN interface for LAMMPS SPIN package. Unlicensed
magnetism
MD
Fortran