From b2d7e65fb5682476d86f603241b94e29eceadf29 Mon Sep 17 00:00:00 2001 From: Irratzo Date: Thu, 15 Aug 2024 10:06:16 +0000 Subject: [PATCH] Update best-of list for version 2024.08.15 --- README.md | 814 ++++++++++++++++++++++---------- history/2024-08-15_changes.md | 72 +++ history/2024-08-15_projects.csv | 426 +++++++++++++++++ latest-changes.md | 67 ++- 4 files changed, 1112 insertions(+), 267 deletions(-) create mode 100644 history/2024-08-15_changes.md create mode 100644 history/2024-08-15_projects.csv diff --git a/README.md b/README.md index cbf9eb9..0e7e4ca 100644 --- a/README.md +++ b/README.md @@ -20,13 +20,13 @@

- + DOI

-This curated list contains 360 awesome open-source projects with a total of 190K stars grouped into 23 categories. All projects are ranked by a [project-quality score](https://github.com/best-of-lists/best-of-generator#project-quality-score), which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an [issue](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/issues/new/choose), submit a [pull request](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/pulls), or directly edit the [projects.yaml](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/edit/main/projects.yaml). +This curated list contains 420 awesome open-source projects with a total of 190K stars grouped into 23 categories. All projects are ranked by a [project-quality score](https://github.com/best-of-lists/best-of-generator#project-quality-score), which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an [issue](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/issues/new/choose), submit a [pull request](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/pulls), or directly edit the [projects.yaml](https://github.com/JuDFTteam/best-of-atomistic-machine-learning/edit/main/projects.yaml). The current focus of this list is more on simulation data rather than experimental data, and more on materials rather than drug design. Nevertheless, contributions from other fields are warmly welcome! @@ -34,29 +34,29 @@ The current focus of this list is more on simulation data rather than experiment ## Contents -- [Active learning](#active-learning) _5 projects_ +- [Active learning](#active-learning) _6 projects_ - [Biomolecules](#biomolecules) _2 projects_ -- [Community resources](#community-resources) _21 projects_ -- [Datasets](#datasets) _35 projects_ +- [Community resources](#community-resources) _30 projects_ +- [Datasets](#datasets) _45 projects_ - [Data Structures](#data-structures) _4 projects_ -- [Density functional theory (ML-DFT)](#density-functional-theory-ml-dft) _26 projects_ -- [Educational Resources](#educational-resources) _24 projects_ +- [Density functional theory (ML-DFT)](#density-functional-theory-ml-dft) _32 projects_ +- [Educational Resources](#educational-resources) _28 projects_ - [Explainable Artificial intelligence (XAI)](#explainable-artificial-intelligence-xai) _4 projects_ -- [Electronic structure methods (ML-ESM)](#electronic-structure-methods-ml-esm) _3 projects_ +- [Electronic structure methods (ML-ESM)](#electronic-structure-methods-ml-esm) _5 projects_ - [General Tools](#general-tools) _22 projects_ -- [Generative Models](#generative-models) _11 projects_ -- [Interatomic Potentials (ML-IAP)](#interatomic-potentials-ml-iap) _63 projects_ -- [Language Models](#language-models) _17 projects_ -- [Materials Discovery](#materials-discovery) _9 projects_ +- [Generative Models](#generative-models) _14 projects_ +- [Interatomic Potentials (ML-IAP)](#interatomic-potentials-ml-iap) _69 projects_ +- [Language Models](#language-models) _20 projects_ +- [Materials Discovery](#materials-discovery) _12 projects_ - [Mathematical tools](#mathematical-tools) _11 projects_ - [Molecular Dynamics](#molecular-dynamics) _10 projects_ - [Reinforcement Learning](#reinforcement-learning) _2 projects_ -- [Representation Engineering](#representation-engineering) _23 projects_ -- [Representation Learning](#representation-learning) _54 projects_ -- [Universal Potentials](#universal-potentials) _2 projects_ +- [Representation Engineering](#representation-engineering) _25 projects_ +- [Representation Learning](#representation-learning) _58 projects_ +- [Universal Potentials](#universal-potentials) _9 projects_ - [Unsupervised Learning](#unsupervised-learning) _7 projects_ - [Visualization](#visualization) _3 projects_ -- [Wavefunction methods (ML-WFT)](#wavefunction-methods-ml-wft) _4 projects_ +- [Wavefunction methods (ML-WFT)](#wavefunction-methods-ml-wft) _5 projects_ - [Others](#others) _2 projects_ ## Explanation @@ -90,19 +90,19 @@ _Projects that focus on enabling active learning, iterative learning schemes for git clone https://github.com/mir-group/flare ``` -
IPSuite (🥈17 · ⭐ 16 · 📈) - A Python toolkit for FAIR development and deployment of machine-learned interatomic potentials. EPL-2.0 ML-IAP MD workflows HTC FAIR +
IPSuite (🥈16 · ⭐ 17) - A Python toolkit for FAIR development and deployment of machine-learned interatomic potentials. EPL-2.0 ML-IAP MD workflows HTC FAIR -- [GitHub](https://github.com/zincware/IPSuite) (👨‍💻 8 · 🔀 7 · 📦 6 · 📋 130 - 50% open · ⏱️ 09.08.2024): +- [GitHub](https://github.com/zincware/IPSuite) (👨‍💻 8 · 🔀 8 · 📦 6 · 📋 130 - 50% open · ⏱️ 09.08.2024): ``` git clone https://github.com/zincware/IPSuite ``` -- [PyPi](https://pypi.org/project/ipsuite) (📥 120 / month): +- [PyPi](https://pypi.org/project/ipsuite) (📥 140 / month): ``` pip install ipsuite ```
-
Finetuna (🥉9 · ⭐ 42) - Active Learning for Machine Learning Potentials. MIT +
Finetuna (🥈10 · ⭐ 42) - Active Learning for Machine Learning Potentials. MIT - [GitHub](https://github.com/ulissigroup/finetuna) (👨‍💻 11 · 🔀 11 · 📋 20 - 25% open · ⏱️ 15.05.2024): @@ -118,9 +118,10 @@ _Projects that focus on enabling active learning, iterative learning schemes for git clone https://github.com/ACEsuit/ACEHAL ```
-
Show 1 hidden projects... +
Show 2 hidden projects... -- flare++ (🥉10 · ⭐ 35 · 💀) - A many-body extension of the FLARE code. MIT C++ ML-IAP +- flare++ (🥈10 · ⭐ 35 · 💀) - A many-body extension of the FLARE code. MIT C++ ML-IAP +- ALEBREW (🥉3 · ⭐ 9 · 🐣) - Official repository for the paper Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic.. Custom ML-IAP MD

@@ -132,10 +133,10 @@ _Projects that focus on biomolecules, protein structure, protein folding, etc. u
AlphaFold (🥇23 · ⭐ 12K) - Open source code for AlphaFold. Apache-2 -- [GitHub](https://github.com/google-deepmind/alphafold) (👨‍💻 20 · 🔀 2.1K · 📦 14 · 📋 840 - 28% open · ⏱️ 08.05.2024): +- [GitHub](https://github.com/google-deepmind/alphafold) (👨‍💻 20 · 🔀 2.1K · 📦 14 · 📋 850 - 28% open · ⏱️ 08.05.2024): ``` - git clone https://github.com/deepmind/alphafold + git clone https://github.com/google-deepmind/alphafold ```
Uni-Fold (🥉16 · ⭐ 360 · 💤) - An open-source platform for developing protein models beyond AlphaFold. Apache-2 @@ -160,11 +161,13 @@ _Projects that collect atomistic ML resources or foster communication within com 🔗 CrystaLLM - Generate a crystal structure from a composition. language-models generative pretrained transformer +🔗 GAP-ML.org community homepage ML-IAP + 🔗 matsci.org - A community forum for the discussion of anything materials science, with a focus on computational materials science.. 🔗 Matter Modeling Stack Exchange - Machine Learning - Forum StackExchange, site Matter Modeling, ML-tagged questions. -
Best-of Machine Learning with Python (🥇22 · ⭐ 16K) - A ranked list of awesome machine learning Python libraries. Updated weekly. CC-BY-4.0 general-ml Python +
Best-of Machine Learning with Python (🥇21 · ⭐ 16K · 📉) - A ranked list of awesome machine learning Python libraries. Updated weekly. CC-BY-4.0 general-ml Python - [GitHub](https://github.com/ml-tooling/best-of-ml-python) (👨‍💻 46 · 🔀 2.3K · 📋 53 - 35% open · ⏱️ 22.07.2024): @@ -182,26 +185,22 @@ _Projects that collect atomistic ML resources or foster communication within com
MatBench (🥇18 · ⭐ 100 · 💤) - Matbench: Benchmarks for materials science property prediction. MIT datasets benchmarking model-repository -- [GitHub](https://github.com/materialsproject/matbench) (👨‍💻 25 · 🔀 42 · 📦 15 · 📋 57 - 54% open · ⏱️ 20.01.2024): +- [GitHub](https://github.com/materialsproject/matbench) (👨‍💻 25 · 🔀 42 · 📦 16 · 📋 57 - 54% open · ⏱️ 20.01.2024): ``` git clone https://github.com/materialsproject/matbench ``` -- [PyPi](https://pypi.org/project/matbench) (📥 570 / month): +- [PyPi](https://pypi.org/project/matbench) (📥 500 / month): ``` pip install matbench ```
-
MatBench Discovery (🥈17 · ⭐ 82) - An evaluation framework for machine learning models simulating high-throughput materials discovery. MIT datasets benchmarking model-repository +
OpenML (🥈16 · ⭐ 660 · 💤) - Open Machine Learning. BSD-3 datasets -- [GitHub](https://github.com/janosh/matbench-discovery) (👨‍💻 7 · 🔀 11 · 📦 2 · 📋 34 - 5% open · ⏱️ 07.08.2024): +- [GitHub](https://github.com/openml/OpenML) (👨‍💻 35 · 🔀 90 · 📋 930 - 39% open · ⏱️ 12.01.2024): ``` - git clone https://github.com/janosh/matbench-discovery - ``` -- [PyPi](https://pypi.org/project/matbench-discovery) (📥 180 / month): - ``` - pip install matbench-discovery + git clone https://github.com/openml/OpenML ```
GT4SD - Generative Toolkit for Scientific Discovery (🥈16 · ⭐ 330) - Gradio apps of generative models in GT4SD. MIT generative pretrained drug-discovery model-repository @@ -212,7 +211,19 @@ _Projects that collect atomistic ML resources or foster communication within com git clone https://github.com/GT4SD/gt4sd-core ```
-
AI for Science Resources (🥈12 · ⭐ 470) - List of resources for AI4Science research, including learning resources. GPL-3.0 license +
MatBench Discovery (🥈16 · ⭐ 82 · 📉) - An evaluation framework for machine learning models simulating high-throughput materials discovery. MIT datasets benchmarking model-repository + +- [GitHub](https://github.com/janosh/matbench-discovery) (👨‍💻 7 · 🔀 11 · 📦 2 · 📋 34 - 5% open · ⏱️ 11.08.2024): + + ``` + git clone https://github.com/janosh/matbench-discovery + ``` +- [PyPi](https://pypi.org/project/matbench-discovery) (📥 140 / month): + ``` + pip install matbench-discovery + ``` +
+
AI for Science Resources (🥈12 · ⭐ 480) - List of resources for AI4Science research, including learning resources. GPL-3.0 license - [GitHub](https://github.com/divelab/AIRS) (👨‍💻 28 · 🔀 57 · 📋 14 - 14% open · ⏱️ 12.07.2024): @@ -220,7 +231,15 @@ _Projects that collect atomistic ML resources or foster communication within com git clone https://github.com/divelab/AIRS ```
-
GNoME Explorer (🥉10 · ⭐ 850 · 💤) - Graph Networks for Materials Exploration Database. Apache-2 datasets materials-discovery +
Neural-Network-Models-for-Chemistry (🥈11 · ⭐ 59 · ➕) - A collection of Nerual Network Models for chemistry. Unlicensed rep-learn + +- [GitHub](https://github.com/Eipgen/Neural-Network-Models-for-Chemistry) (👨‍💻 3 · 🔀 8 · 📋 2 - 50% open · ⏱️ 08.08.2024): + + ``` + git clone https://github.com/Eipgen/Neural-Network-Models-for-Chemistry + ``` +
+
GNoME Explorer (🥈10 · ⭐ 850 · 💤) - Graph Networks for Materials Exploration Database. Apache-2 datasets materials-discovery - [GitHub](https://github.com/google-deepmind/materials_discovery) (👨‍💻 2 · 🔀 130 · 📋 21 - 80% open · ⏱️ 02.12.2023): @@ -228,9 +247,9 @@ _Projects that collect atomistic ML resources or foster communication within com git clone https://github.com/google-deepmind/materials_discovery ```
-
Awesome Materials Informatics (🥉10 · ⭐ 360) - Curated list of known efforts in materials informatics, i.e. in modern materials science. Custom +
Awesome Materials Informatics (🥈10 · ⭐ 360) - Curated list of known efforts in materials informatics, i.e. in modern materials science. Custom -- [GitHub](https://github.com/tilde-lab/awesome-materials-informatics) (👨‍💻 19 · 🔀 79 · ⏱️ 12.07.2024): +- [GitHub](https://github.com/tilde-lab/awesome-materials-informatics) (👨‍💻 19 · 🔀 80 · ⏱️ 12.07.2024): ``` git clone https://github.com/tilde-lab/awesome-materials-informatics @@ -244,6 +263,14 @@ _Projects that collect atomistic ML resources or foster communication within com git clone https://github.com/IBM/molformer ```
+
AI for Science paper collection (🥉9 · ⭐ 43 · 🐣) - List the AI for Science papers accepted by top conferences. Apache-2 + +- [GitHub](https://github.com/sherrylixuecheng/AI_for_Science_paper_collection) (👨‍💻 5 · 🔀 5 · ⏱️ 04.08.2024): + + ``` + git clone https://github.com/sherrylixuecheng/AI_for_Science_paper_collection + ``` +
optimade.science (🥉9 · ⭐ 8) - A sky-scanner Optimade browser-only GUI. MIT datasets - [GitHub](https://github.com/tilde-lab/optimade.science) (👨‍💻 8 · 🔀 2 · 📋 26 - 26% open · ⏱️ 10.06.2024): @@ -252,15 +279,39 @@ _Projects that collect atomistic ML resources or foster communication within com git clone https://github.com/tilde-lab/optimade.science ```
-
Awesome Neural Geometry (🥉8 · ⭐ 880) - A curated collection of resources and research related to the geometry of representations in the brain, deep networks,.. Unlicensed educational rep-learn +
Awesome Neural Geometry (🥉8 · ⭐ 890) - A curated collection of resources and research related to the geometry of representations in the brain, deep networks,.. Unlicensed educational rep-learn -- [GitHub](https://github.com/neurreps/awesome-neural-geometry) (👨‍💻 11 · 🔀 55 · ⏱️ 17.07.2024): +- [GitHub](https://github.com/neurreps/awesome-neural-geometry) (👨‍💻 11 · 🔀 56 · ⏱️ 17.07.2024): ``` git clone https://github.com/neurreps/awesome-neural-geometry ```
-
The Collection of Database and Dataset Resources in Materials Science (🥉6 · ⭐ 240) - A list of databases, datasets and books/handbooks where you can find materials properties for machine learning.. Unlicensed datasets +
Awesome-Graph-Generation (🥉8 · ⭐ 260 · ➕) - A curated list of up-to-date graph generation papers and resources. Unlicensed rep-learn + +- [GitHub](https://github.com/yuanqidu/awesome-graph-generation) (👨‍💻 4 · 🔀 16 · ⏱️ 17.03.2024): + + ``` + git clone https://github.com/yuanqidu/awesome-graph-generation + ``` +
+
Awesome Neural SBI (🥉8 · ⭐ 80 · ➕) - Community-sourced list of papers and resources on neural simulation-based inference. MIT active-learning + +- [GitHub](https://github.com/smsharma/awesome-neural-sbi) (👨‍💻 3 · 🔀 4 · 📋 2 - 50% open · ⏱️ 17.06.2024): + + ``` + git clone https://github.com/smsharma/awesome-neural-sbi + ``` +
+
Awesome-Crystal-GNNs (🥉7 · ⭐ 54 · ➕) - This repository contains a collection of resources and papers on GNN Models on Crystal Solid State Materials. MIT + +- [GitHub](https://github.com/kdmsit/Awesome-Crystal-GNNs) (👨‍💻 2 · 🔀 7 · ⏱️ 16.06.2024): + + ``` + git clone https://github.com/kdmsit/Awesome-Crystal-GNNs + ``` +
+
The Collection of Database and Dataset Resources in Materials Science (🥉6 · ⭐ 250) - A list of databases, datasets and books/handbooks where you can find materials properties for machine learning.. Unlicensed datasets - [GitHub](https://github.com/sedaoturak/data-resources-for-materials-science) (👨‍💻 2 · 🔀 40 · 📋 2 - 50% open · ⏱️ 07.06.2024): @@ -276,11 +327,13 @@ _Projects that collect atomistic ML resources or foster communication within com git clone https://github.com/ml-evs/this-material-does-not-exist ```
-
Show 3 hidden projects... +
Show 5 hidden projects... +- MADICES Awesome Interoperability (🥉9 · ⭐ 1 · ➕) - Linked data interoperability resources of the Machine-actionable data interoperability for the chemical sciences.. MIT datasets - A Highly Opinionated List of Open-Source Materials Informatics Resources (🥉8 · ⭐ 120 · 💀) - A Highly Opinionated List of Open Source Materials Informatics Resources. MIT +- Geometric-GNNs (🥉4 · ⭐ 85 · ➕) - List of Geometric GNNs for 3D atomic systems. Unlicensed datasets educational rep-learn +- GitHub topic materials-informatics (🥉1) - GitHub topic materials-informatics. Unlicensed - MateriApps (🥉1) - A Portal Site of Materials Science Simulation. Unlicensed -- GitHub topic materials-informatics - Unlicensed

@@ -290,6 +343,8 @@ _Projects that collect atomistic ML resources or foster communication within com _Datasets, databases and trained models for atomistic ML._ +🔗 Alexandria Materials Database - A database of millions of theoretical crystal structures (3D, 2D and 1D) discovered by machine learning accelerated.. + 🔗 Catalysis Hub - A web-platform for sharing data and software for computational catalysis research!. 🔗 Citrination Datasets - AI-Powered Materials Data Platform. Open Citrination has been decommissioned. @@ -298,12 +353,20 @@ _Datasets, databases and trained models for atomistic ML._ 🔗 DeepChem Models - DeepChem models on HuggingFace. model-repository pretrained language-models +🔗 Graphs of Materials Project 20190401 - The dataset used to train the MEGNet interatomic potential. ML-IAP + +🔗 HME21 Dataset - High-temperature multi-element 2021 dataset for the PreFerred Potential (PFP).. UIP + 🔗 JARVIS-Leaderboard ( ⭐ 55) - Explore State-of-the-Art Materials Design Methods: https://www.nature.com/articles/s41524-024-01259-w. model-repository benchmarking community-resource educational 🔗 Materials Project - Charge Densities - Materials Project has started offering charge density information available for download via their public API. +🔗 Materials Project Trajectory (MPtrj) Dataset - The dataset used to train the CHGNet universal potential. UIP + 🔗 matterverse.ai - Database of yet-to-be-sythesized materials predicted using state-of-the-art machine learning algorithms. +🔗 MPF.2021.2.8 - The dataset used to train the M3GNet universal potential. UIP + 🔗 NRELMatDB - Computational materials database with the specific focus on materials for renewable energy applications including, but.. 🔗 Quantum-Machine.org Datasets - Collection of datasets, including QM7, QM9, etc. MD, DFT. Small organic molecules, mostly. @@ -318,23 +381,23 @@ _Datasets, databases and trained models for atomistic ML._
OPTIMADE Python tools (🥇26 · ⭐ 64) - Tools for implementing and consuming OPTIMADE APIs in Python. MIT -- [GitHub](https://github.com/Materials-Consortia/optimade-python-tools) (👨‍💻 28 · 🔀 41 · 📦 48 · 📋 440 - 20% open · ⏱️ 06.08.2024): +- [GitHub](https://github.com/Materials-Consortia/optimade-python-tools) (👨‍💻 28 · 🔀 41 · 📦 48 · 📋 440 - 20% open · ⏱️ 12.08.2024): ``` git clone https://github.com/Materials-Consortia/optimade-python-tools ``` -- [PyPi](https://pypi.org/project/optimade) (📥 6.6K / month): +- [PyPi](https://pypi.org/project/optimade) (📥 6.4K / month): ``` pip install optimade ``` -- [Conda](https://anaconda.org/conda-forge/optimade) (📥 83K · ⏱️ 20.07.2024): +- [Conda](https://anaconda.org/conda-forge/optimade) (📥 84K · ⏱️ 20.07.2024): ``` conda install -c conda-forge optimade ```
MPContribs (🥇22 · ⭐ 34) - Platform for materials scientists to contribute and disseminate their materials data through Materials Project. MIT -- [GitHub](https://github.com/materialsproject/MPContribs) (👨‍💻 25 · 🔀 19 · 📦 38 · 📋 98 - 20% open · ⏱️ 05.08.2024): +- [GitHub](https://github.com/materialsproject/MPContribs) (👨‍💻 25 · 🔀 19 · 📦 38 · 📋 98 - 20% open · ⏱️ 12.08.2024): ``` git clone https://github.com/materialsproject/MPContribs @@ -344,15 +407,15 @@ _Datasets, databases and trained models for atomistic ML._ pip install mpcontribs-client ```
-
FAIR Chemistry datasets (🥇21 · ⭐ 740) - Datasets OC20, OC22, etc. Formerly known as Open Catalyst Project. MIT catalysis +
FAIR Chemistry datasets (🥇21 · ⭐ 750) - Datasets OC20, OC22, etc. Formerly known as Open Catalyst Project. MIT catalysis -- [GitHub](https://github.com/FAIR-Chem/fairchem) (👨‍💻 41 · 🔀 230 · 📋 190 - 4% open · ⏱️ 09.08.2024): +- [GitHub](https://github.com/FAIR-Chem/fairchem) (👨‍💻 41 · 🔀 230 · 📋 200 - 4% open · ⏱️ 14.08.2024): ``` git clone https://github.com/FAIR-Chem/fairchem ```
-
Open Databases Integration for Materials Design (OPTIMADE) (🥈18 · ⭐ 76) - Specification of a common REST API for access to materials databases. CC-BY-4.0 +
Open Databases Integration for Materials Design (OPTIMADE) (🥈17 · ⭐ 76 · 📉) - Specification of a common REST API for access to materials databases. CC-BY-4.0 - [GitHub](https://github.com/Materials-Consortia/OPTIMADE) (👨‍💻 21 · 🔀 35 · 📋 230 - 27% open · ⏱️ 12.06.2024): @@ -360,7 +423,7 @@ _Datasets, databases and trained models for atomistic ML._ git clone https://github.com/Materials-Consortia/OPTIMADE ```
-
QH9 (🥈12 · ⭐ 470 · ➕) - A Quantum Hamiltonian Prediction Benchmark. CC-BY-NC-SA 4.0 ML-DFT +
QH9 (🥈12 · ⭐ 480) - A Quantum Hamiltonian Prediction Benchmark. CC-BY-NC-SA-4.0 ML-DFT - [GitHub](https://github.com/divelab/AIRS) (👨‍💻 28 · 🔀 57 · 📋 14 - 14% open · ⏱️ 12.07.2024): @@ -376,6 +439,18 @@ _Datasets, databases and trained models for atomistic ML._ git clone https://github.com/openmm/spice-dataset ```
+
load-atoms (🥈11 · ⭐ 37 · ➕) - download and manipulate atomistic datasets. MIT data-structures + +- [GitHub](https://github.com/jla-gardner/load-atoms) (👨‍💻 3 · 🔀 2 · 📦 3 · 📋 31 - 6% open · ⏱️ 06.04.2024): + + ``` + git clone https://github.com/jla-gardner/load-atoms + ``` +- [PyPi](https://pypi.org/project/load-atoms) (📥 460 / month): + ``` + pip install load-atoms + ``` +
Materials Data Facility (MDF) (🥈9 · ⭐ 10) - A simple way to publish, discover, and access materials datasets. Publication of very large datasets supported (e.g.,.. Apache-2 - [GitHub](https://github.com/materials-data-facility/connect_client) (👨‍💻 7 · 🔀 1 · 📋 7 - 14% open · ⏱️ 05.02.2024): @@ -392,6 +467,22 @@ _Datasets, databases and trained models for atomistic ML._ git clone https://github.com/HSE-LAMBDA/ai4material_design ```
+
AIS Square (🥉7 · ⭐ 10 · 💤) - A collaborative and open-source platform for sharing AI for Science datasets, models, and workflows. Home of the.. LGPL-3.0 community-resource model-repository + +- [GitHub](https://github.com/deepmodeling/AIS-Square) (👨‍💻 8 · 🔀 8 · 📋 6 - 83% open · ⏱️ 06.12.2023): + + ``` + git clone https://github.com/deepmodeling/AIS-Square + ``` +
+
The Perovskite Database Project (🥉5 · ⭐ 58 · ➕) - Perovskite Database Project aims at making all perovskite device data, both past and future, available in a form.. Unlicensed community-resource + +- [GitHub](https://github.com/Jesperkemist/perovskitedatabase) (👨‍💻 2 · 🔀 18 · ⏱️ 07.03.2024): + + ``` + git clone https://github.com/Jesperkemist/perovskitedatabase + ``` +
3DSC Database (🥉5 · ⭐ 15 · 💤) - Repo for the paper publishing the superconductor database with 3D crystal structures. Custom superconductors materials-discovery - [GitHub](https://github.com/aimat-lab/3DSC) (🔀 4 · ⏱️ 08.01.2024): @@ -408,20 +499,29 @@ _Datasets, databases and trained models for atomistic ML._ git clone https://github.com/drcassar/SciGlass ```
-
Show 12 hidden projects... +
GDB-9-Ex9 and ORNL_AISD-Ex (🥉5 · ⭐ 6 · 💤) - Distributed computing workflow for generation and analysis of large scale molecular datasets obtained running multi-.. Unlicensed + +- [GitHub](https://github.com/ORNL/Analysis-of-Large-Scale-Molecular-Datasets-with-Python) (👨‍💻 7 · 🔀 5 · ⏱️ 11.08.2023): + + ``` + git clone https://github.com/ORNL/Analysis-of-Large-Scale-Molecular-Datasets-with-Python + ``` +
+
Show 13 hidden projects... - ATOM3D (🥈18 · ⭐ 290 · 💀) - ATOM3D: tasks on molecules in three dimensions. MIT biomolecules benchmarking - OpenKIM (🥈10 · ⭐ 31 · 💀) - The Open Knowledgebase of Interatomic Models (OpenKIM) aims to be an online resource for standardized testing, long-.. LGPL-2.1 model-repository knowledge-base pretrained -- ANI-1 Dataset (🥉8 · ⭐ 95 · 💀) - A data set of 20 million calculated off-equilibrium conformations for organic molecules. MIT +- ANI-1 Dataset (🥉8 · ⭐ 96 · 💀) - A data set of 20 million calculated off-equilibrium conformations for organic molecules. MIT - MoleculeNet Leaderboard (🥉8 · ⭐ 87 · 💀) - MIT benchmarking - GEOM (🥉7 · ⭐ 190 · 💀) - GEOM: Energy-annotated molecular conformations. Unlicensed drug-discovery - ANI-1x Datasets (🥉6 · ⭐ 53 · 💀) - The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for organic molecules. MIT - COMP6 Benchmark dataset (🥉6 · ⭐ 39 · 💀) - COMP6 Benchmark dataset for ML potentials. MIT - OPTIMADE providers dashboard (🥉6 · ⭐ 1) - A dashboard of known providers. Unlicensed -- Visual Graph Datasets (🥉5 · ⭐ 1) - Datasets for the training of graph neural networks (GNNs) and subsequent visualization of attributional explanations.. MIT +- Visual Graph Datasets (🥉5 · ⭐ 1) - Datasets for the training of graph neural networks (GNNs) and subsequent visualization of attributional explanations.. MIT XAI rep-learn - linear-regression-benchmarks (🥉5 · ⭐ 1 · 💀) - Data sets used for linear regression benchmarks. MIT benchmarking single-paper - paper-data-redundancy (🥉4 · ⭐ 7) - Repo for the paper Exploiting redundancy in large materials datasets for efficient machine learning with less data. BSD-3 small-data single-paper - nep-data (🥉2 · ⭐ 12 · 💀) - Data related to the NEP machine-learned potential of GPUMD. Unlicensed ML-IAP MD transport-phenomena +- tmQM_wB97MV Dataset (🥉2 · ⭐ 5 · ➕) - Code for Applying Large Graph Neural Networks to Predict Transition Metal Complex Energies Using the tmQM_wB97MV.. Unlicensed catalysis rep-learn

@@ -431,14 +531,14 @@ _Datasets, databases and trained models for atomistic ML._ _Projects that focus on providing data structures used in atomistic machine learning._ -
dpdata (🥇24 · ⭐ 190) - Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc. LGPL-3.0 +
dpdata (🥇23 · ⭐ 200 · 📉) - Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc. LGPL-3.0 - [GitHub](https://github.com/deepmodeling/dpdata) (👨‍💻 60 · 🔀 120 · 📦 120 · 📋 96 - 16% open · ⏱️ 06.06.2024): ``` git clone https://github.com/deepmodeling/dpdata ``` -- [PyPi](https://pypi.org/project/dpdata) (📥 35K / month): +- [PyPi](https://pypi.org/project/dpdata) (📥 31K / month): ``` pip install dpdata ``` @@ -449,7 +549,7 @@ _Projects that focus on providing data structures used in atomistic machine lear
Metatensor (🥈21 · ⭐ 47) - Self-describing sparse tensor data format for atomistic machine learning and beyond. BSD-3 Rust C-lang C++ Python -- [GitHub](https://github.com/lab-cosmo/metatensor) (👨‍💻 21 · 🔀 15 · 📥 24K · 📦 11 · 📋 200 - 37% open · ⏱️ 01.08.2024): +- [GitHub](https://github.com/lab-cosmo/metatensor) (👨‍💻 21 · 🔀 15 · 📥 24K · 📦 11 · 📋 200 - 36% open · ⏱️ 15.08.2024): ``` git clone https://github.com/lab-cosmo/metatensor @@ -462,7 +562,7 @@ _Projects that focus on providing data structures used in atomistic machine lear ``` git clone https://github.com/materialsproject/pyrho ``` -- [PyPi](https://pypi.org/project/mp-pyrho) (📥 6.8K / month): +- [PyPi](https://pypi.org/project/mp-pyrho) (📥 6.5K / month): ``` pip install mp-pyrho ``` @@ -483,9 +583,11 @@ _Projects that focus on providing data structures used in atomistic machine lear _Projects and models that focus on quantities of DFT, such as density functional approximations (ML-DFA), the charge density, density of states, the Hamiltonian, etc._ +🔗 IKS-PIML - Code and generated data for the paper Inverting the Kohn-Sham equations with physics-informed machine learning.. neural-operator pinn datasets single-paper +
JAX-DFT (🥇25 · ⭐ 34K) - This library provides basic building blocks that can construct DFT calculations as a differentiable program. Apache-2 -- [GitHub](https://github.com/google-research/google-research) (👨‍💻 800 · 🔀 7.7K · 📋 1.2K - 73% open · ⏱️ 08.08.2024): +- [GitHub](https://github.com/google-research/google-research) (👨‍💻 800 · 🔀 7.7K · 📋 1.2K - 73% open · ⏱️ 14.08.2024): ``` git clone https://github.com/google-research/google-research @@ -493,7 +595,7 @@ _Projects and models that focus on quantities of DFT, such as density functional
MALA (🥇19 · ⭐ 80) - Materials Learning Algorithms. A framework for machine learning materials properties from first-principles data. BSD-3 -- [GitHub](https://github.com/mala-project/mala) (👨‍💻 44 · 🔀 23 · 📦 1 · 📋 260 - 12% open · ⏱️ 04.07.2024): +- [GitHub](https://github.com/mala-project/mala) (👨‍💻 44 · 🔀 23 · 📦 1 · 📋 270 - 13% open · ⏱️ 04.07.2024): ``` git clone https://github.com/mala-project/mala @@ -507,7 +609,7 @@ _Projects and models that focus on quantities of DFT, such as density functional git clone https://github.com/andreagrisafi/SALTED ```
-
QHNet (🥈12 · ⭐ 470) - Artificial Intelligence Research for Science (AIRS). GPL-3.0 rep-learn +
QHNet (🥈12 · ⭐ 480) - Artificial Intelligence Research for Science (AIRS). GPL-3.0 rep-learn - [GitHub](https://github.com/divelab/AIRS) (👨‍💻 28 · 🔀 57 · 📋 14 - 14% open · ⏱️ 12.07.2024): @@ -525,7 +627,7 @@ _Projects and models that focus on quantities of DFT, such as density functional
DeePKS-kit (🥈10 · ⭐ 96) - a package for developing machine learning-based chemically accurate energy and density functional models. LGPL-3.0 -- [GitHub](https://github.com/deepmodeling/deepks-kit) (👨‍💻 7 · 🔀 34 · 📋 19 - 26% open · ⏱️ 13.04.2024): +- [GitHub](https://github.com/deepmodeling/deepks-kit) (👨‍💻 7 · 🔀 35 · 📋 19 - 26% open · ⏱️ 13.04.2024): ``` git clone https://github.com/deepmodeling/deepks-kit @@ -539,16 +641,49 @@ _Projects and models that focus on quantities of DFT, such as density functional git clone https://github.com/XanaduAI/GradDFT ```
-
Show 19 hidden projects... +
HamGNN (🥈9 · ⭐ 49 · ➕) - An E(3) equivariant Graph Neural Network for predicting electronic Hamiltonian matrix. GPL-3.0 rep-learn magnetism C-lang + +- [GitHub](https://github.com/QuantumLab-ZY/HamGNN) (🔀 12 · 📋 24 - 83% open · ⏱️ 06.08.2024): + + ``` + git clone https://github.com/QuantumLab-ZY/HamGNN + ``` +
+
Q-stack (🥈9 · ⭐ 14 · ➕) - Stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML). MIT excited-states general-tool -- DM21 (🥇20 · ⭐ 13K · 💀) - This package provides a PySCF interface to the DM21 (DeepMind 21) family of exchange-correlation functionals described.. Apache-2 +- [GitHub](https://github.com/lcmd-epfl/Q-stack) (👨‍💻 7 · 🔀 5 · 📋 29 - 31% open · ⏱️ 19.07.2024): + + ``` + git clone https://github.com/lcmd-epfl/Q-stack + ``` +
+
ChargE3Net (🥉6 · ⭐ 28 · ➕) - Higher-order equivariant neural networks for charge density prediction in materials. MIT rep-learn + +- [GitHub](https://github.com/AIforGreatGood/charge3net) (👨‍💻 2 · 🔀 6 · 📋 2 - 50% open · ⏱️ 29.07.2024): + + ``` + git clone https://github.com/AIforGreatGood/charge3net + ``` +
+
InfGCN for Electron Density Estimation (🥉5 · ⭐ 10 · 💤) - Official implementation of the NeurIPS 23 spotlight paper of InfGCN. MIT rep-learn + +- [GitHub](https://github.com/ccr-cheng/InfGCN-pytorch) (🔀 3 · ⏱️ 05.12.2023): + + ``` + git clone https://github.com/ccr-cheng/infgcn-pytorch + ``` +
+
Show 20 hidden projects... + +- DM21 (🥇20 · ⭐ 13K · 💀) - This package provides a PySCF interface to the DM21 (DeepMind 21) family of exchange-correlation functionals described.. Apache-2 - NeuralXC (🥈11 · ⭐ 33 · 💀) - Implementation of a machine learned density functional. BSD-3 - ACEhamiltonians (🥈10 · ⭐ 12 · 💀) - Provides tools for constructing, fitting, and predicting self-consistent Hamiltonian and overlap matrices in solid-.. MIT Julia -- PROPhet (🥉9 · ⭐ 62 · 💀) - PROPhet is a code to integrate machine learning techniques with first-principles quantum chemistry approaches. GPL-3.0 ML-IAP MD single-paper C++ +- PROPhet (🥈9 · ⭐ 62 · 💀) - PROPhet is a code to integrate machine learning techniques with first-principles quantum chemistry approaches. GPL-3.0 ML-IAP MD single-paper C++ +- Mat2Spec (🥉7 · ⭐ 27 · 💀) - Density of States Prediction for Materials Discovery via Contrastive Learning from Probabilistic Embeddings. MIT spectroscopy - Libnxc (🥉7 · ⭐ 16 · 💀) - A library for using machine-learned exchange-correlation functionals for density-functional theory. MPL-2.0 C++ Fortran +- rho_learn (🥉7 · ⭐ 3 · ➕) - A proof-of-concept framework for torch-based learning of the electron density and related scalar fields. MIT - DeepH-E3 (🥉6 · ⭐ 60 · 💀) - General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian. MIT magnetism - DeepDFT (🥉6 · ⭐ 54 · 💀) - Official implementation of DeepDFT model. MIT -- Mat2Spec (🥉6 · ⭐ 27 · 💀) - MIT spectroscopy - xDeepH (🥉5 · ⭐ 31 · 💀) - Extended DeepH (xDeepH) method for magnetic materials. LGPL-3.0 magnetism Julia - ML-DFT (🥉5 · ⭐ 23 · 💀) - A package for density functional approximation using machine learning. MIT - charge-density-models (🥉4 · ⭐ 10 · 💤) - Tools to build charge density models using [fairchem](https://github.com/FAIR-Chem/fairchem). MIT rep-learn @@ -557,7 +692,7 @@ _Projects and models that focus on quantities of DFT, such as density functional - APET (🥉3 · ⭐ 4 · 💤) - Atomic Positional Embedding-based Transformer. GPL-3.0 density-of-states transformer - CSNN (🥉3 · ⭐ 2 · 💀) - Primary codebase of CSNN - Concentric Spherical Neural Network for 3D Representation Learning. BSD-3 - MALADA (🥉3 · ⭐ 1 · 💀) - MALA Data Acquisition: Helpful tools to build data for MALA. BSD-3 -- A3MD (🥉2 · ⭐ 8 · 💀) - MPNN-like + Analytic Density Model = Accurate electron densities. Unlicensed representation-learning single-paper +- A3MD (🥉2 · ⭐ 8 · 💀) - MPNN-like + Analytic Density Model = Accurate electron densities. Unlicensed rep-learn single-paper - kdft (🥉1 · ⭐ 2 · 💀) - The Kernel Density Functional (KDF) code allows generating ML based DFT functionals. Unlicensed - MLDensity ( ⭐ 2 · 💀) - Linear Jacobi-Legendre expansion of the charge density for machine learning-accelerated electronic structure.. Unlicensed
@@ -569,18 +704,28 @@ _Projects and models that focus on quantities of DFT, such as density functional _Tutorials, guides, cookbooks, recipes, etc._ -🔗 Quantum Chemistry in the Age of Machine Learning - Book, 2022. +🔗 AI for Science 101 community-resource rep-learn 🔗 AL4MS 2023 workshop tutorials active-learning -
jarvis-tools-notebooks (🥇12 · ⭐ 56) - A Google-Colab Notebook Collection for Materials Design: https://jarvis.nist.gov/. NIST +🔗 Quantum Chemistry in the Age of Machine Learning - Book, 2022. + +
jarvis-tools-notebooks (🥇12 · ⭐ 58) - A Google-Colab Notebook Collection for Materials Design: https://jarvis.nist.gov/. NIST -- [GitHub](https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks) (👨‍💻 5 · 🔀 25 · ⏱️ 02.07.2024): +- [GitHub](https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks) (👨‍💻 5 · 🔀 26 · ⏱️ 14.08.2024): ``` git clone https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks ```
+
AI4Chemistry course (🥈10 · ⭐ 130 · ➕) - EPFL AI for chemistry course, Spring 2023. https://schwallergroup.github.io/ai4chem_course. MIT chemistry + +- [GitHub](https://github.com/schwallergroup/ai4chem_course) (👨‍💻 6 · 🔀 30 · 📋 4 - 25% open · ⏱️ 02.05.2024): + + ``` + git clone https://github.com/schwallergroup/ai4chem_course + ``` +
DSECOP (🥈10 · ⭐ 43) - This repository contains data science educational materials developed by DSECOP Fellows. CCO-1.0 - [GitHub](https://github.com/GDS-Education-Community-of-Practice/DSECOP) (👨‍💻 13 · 🔀 25 · 📋 8 - 12% open · ⏱️ 26.06.2024): @@ -613,23 +758,23 @@ _Tutorials, guides, cookbooks, recipes, etc._ git clone https://github.com/anthony-wang/BestPractices ```
-
MACE-tutorials (🥉6 · ⭐ 31) - Another set of tutorials for the MACE interatomic potential by one of the authors. MIT ML-IAP rep-learn MD +
COSMO Software Cookbook (🥉7 · ⭐ 12) - The COSMO cookbook contains recipes for atomic-scale modelling for materials and molecules. BSD-3 -- [GitHub](https://github.com/ilyes319/mace-tutorials) (👨‍💻 2 · 🔀 9 · ⏱️ 16.07.2024): +- [GitHub](https://github.com/lab-cosmo/atomistic-cookbook) (👨‍💻 9 · 🔀 1 · 📋 12 - 16% open · ⏱️ 14.08.2024): ``` - git clone https://github.com/ilyes319/mace-tutorials + git clone https://github.com/lab-cosmo/software-cookbook ```
-
COSMO Software Cookbook (🥉6 · ⭐ 11) - The COSMO cookbook contains recipes for atomic-scale modelling for materials and molecules. BSD-3 +
MACE-tutorials (🥉6 · ⭐ 31) - Another set of tutorials for the MACE interatomic potential by one of the authors. MIT ML-IAP rep-learn MD -- [GitHub](https://github.com/lab-cosmo/software-cookbook) (👨‍💻 9 · 🔀 1 · 📋 12 - 16% open · ⏱️ 29.06.2024): +- [GitHub](https://github.com/ilyes319/mace-tutorials) (👨‍💻 2 · 🔀 9 · ⏱️ 16.07.2024): ``` - git clone https://github.com/lab-cosmo/software-cookbook + git clone https://github.com/ilyes319/mace-tutorials ```
-
Show 15 hidden projects... +
Show 17 hidden projects... - Geometric GNN Dojo (🥇12 · ⭐ 450 · 💀) - New to geometric GNNs: try our practical notebook, prepared for MPhil students at the University of Cambridge. MIT rep-learn - Deep Learning for Molecules and Materials Book (🥇11 · ⭐ 600 · 💀) - Deep learning for molecules and materials book. Custom @@ -637,15 +782,17 @@ _Tutorials, guides, cookbooks, recipes, etc._ - RDKit Tutorials (🥈8 · ⭐ 250 · 💀) - Tutorials to learn how to work with the RDKit. Custom - MAChINE (🥉7 · ⭐ 1 · 💤) - Client-Server Web App to introduce usage of ML in materials science to beginners. MIT - Applied AI for Materials (🥉6 · ⭐ 58 · 💀) - Course materials for Applied AI for Materials Science and Engineering. Unlicensed +- ML for catalysis tutorials (🥉6 · ⭐ 8 · 💀) - A jupyter book repo for tutorial on how to use OCP ML models for catalysis. MIT - AI4Science101 (🥉5 · ⭐ 83 · 💀) - AI for Science. Unlicensed - Machine Learning for Materials Hard and Soft (🥉5 · ⭐ 34 · 💀) - ESI-DCAFM-TACO-VDSP Summer School on Machine Learning for Materials Hard and Soft. Unlicensed - Data Handling, DoE and Statistical Analysis for Material Chemists (🥉5 · ⭐ 1 · 💀) - Notebooks for workshops of DoE course, hosted by the Computational Materials Chemistry group at Uppsala University. GPL-3.0 - ML-in-chemistry-101 (🥉4 · ⭐ 67 · 💀) - The course materials for Machine Learning in Chemistry 101. Unlicensed - chemrev-gpr (🥉4 · ⭐ 6 · 💀) - Notebooks accompanying the paper on GPR in materials and molecules in Chemical Reviews 2020. Unlicensed +- AI4ChemMat Hands-On Series (🥉4 · ⭐ 1 · ➕) - Hands-On Series organized by Chemistry and Materials working group at Argonne Nat Lab. MPL-2.0 +- PiNN Lab (🥉3 · ⭐ 2 · 💀) - Material for running a lab session on atomic neural networks. GPL-3.0 - MLDensity_tutorial (🥉2 · ⭐ 7 · 💀) - Tutorial files to work with ML for the charge density in molecules and solids. Unlicensed - LAMMPS-style pair potentials with GAP (🥉2 · ⭐ 4 · 💀) - A tutorial on how to create LAMMPS-style pair potentials and use them in combination with GAP potentials to run MD.. Unlicensed ML-IAP MD rep-eng - MALA Tutorial (🥉2 · ⭐ 2 · 💤) - A full MALA hands-on tutorial. Unlicensed -- PiNN Lab (🥉2 · ⭐ 2 · 💀) - GPL-3.0

@@ -662,7 +809,7 @@ _Projects that focus on explainability and model interpretability in atomistic M ``` git clone https://github.com/ur-whitelab/exmol ``` -- [PyPi](https://pypi.org/project/exmol) (📥 630 / month): +- [PyPi](https://pypi.org/project/exmol) (📥 640 / month): ``` pip install exmol ``` @@ -695,10 +842,12 @@ _Projects that focus on explainability and model interpretability in atomistic M _Projects and models that focus on quantities of electronic structure methods, which do not fit into either of the categories ML-WFT or ML-DFT._ -
Show 3 hidden projects... +
Show 5 hidden projects... - QDF for molecule (🥇9 · ⭐ 200 · 💀) - Quantum deep field: data-driven wave function, electron density generation, and energy prediction and extrapolation.. MIT -- halex (🥈4 · ⭐ 2) - Hamiltonian Learning for Excited States https://doi.org/10.48550/arXiv.2311.00844. Unlicensed excited-states +- QMLearn (🥈5 · ⭐ 11 · 💀) - Quantum Machine Learning by learning one-body reduced density matrices in the AO basis... MIT +- q-pac (🥈5 · ⭐ 4 · 💀) - Kernel charge equilibration method. MIT electrostatics +- halex (🥉4 · ⭐ 2) - Hamiltonian Learning for Excited States https://doi.org/10.48550/arXiv.2311.00844. Unlicensed excited-states - e3psi (🥉3 · ⭐ 3 · 💤) - Equivariant machine learning library for learning from electronic structures. LGPL-3.0

@@ -711,12 +860,12 @@ _General tools for atomistic machine learning._
DeepChem (🥇36 · ⭐ 5.3K) - Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, Materials Science and Biology. MIT -- [GitHub](https://github.com/deepchem/deepchem) (👨‍💻 250 · 🔀 1.6K · 📦 410 · 📋 1.7K - 27% open · ⏱️ 09.08.2024): +- [GitHub](https://github.com/deepchem/deepchem) (👨‍💻 250 · 🔀 1.6K · 📦 420 · 📋 1.7K - 27% open · ⏱️ 12.08.2024): ``` git clone https://github.com/deepchem/deepchem ``` -- [PyPi](https://pypi.org/project/deepchem) (📥 41K / month): +- [PyPi](https://pypi.org/project/deepchem) (📥 44K / month): ``` pip install deepchem ``` @@ -724,19 +873,19 @@ _General tools for atomistic machine learning._ ``` conda install -c conda-forge deepchem ``` -- [Docker Hub](https://hub.docker.com/r/deepchemio/deepchem) (📥 7.4K · ⭐ 5 · ⏱️ 09.08.2024): +- [Docker Hub](https://hub.docker.com/r/deepchemio/deepchem) (📥 7.4K · ⭐ 5 · ⏱️ 12.08.2024): ``` docker pull deepchemio/deepchem ```
RDKit (🥇32 · ⭐ 2.6K) - BSD-3 C++ -- [GitHub](https://github.com/rdkit/rdkit) (👨‍💻 230 · 🔀 830 · 📥 1.2K · 📦 3 · 📋 3.2K - 28% open · ⏱️ 10.08.2024): +- [GitHub](https://github.com/rdkit/rdkit) (👨‍💻 230 · 🔀 830 · 📥 1.2K · 📦 3 · 📋 3.2K - 28% open · ⏱️ 13.08.2024): ``` git clone https://github.com/rdkit/rdkit ``` -- [PyPi](https://pypi.org/project/rdkit) (📥 870K / month): +- [PyPi](https://pypi.org/project/rdkit) (📥 950K / month): ``` pip install rdkit ``` @@ -763,12 +912,12 @@ _General tools for atomistic machine learning._
QUIP (🥈25 · ⭐ 350) - libAtoms/QUIP molecular dynamics framework: https://libatoms.github.io. GPL-2.0 MD ML-IAP rep-eng Fortran -- [GitHub](https://github.com/libAtoms/QUIP) (👨‍💻 84 · 🔀 120 · 📥 530 · 📦 41 · 📋 460 - 22% open · ⏱️ 05.08.2024): +- [GitHub](https://github.com/libAtoms/QUIP) (👨‍💻 85 · 🔀 120 · 📥 530 · 📦 41 · 📋 460 - 22% open · ⏱️ 15.08.2024): ``` git clone https://github.com/libAtoms/QUIP ``` -- [PyPi](https://pypi.org/project/quippy-ase) (📥 3.8K / month): +- [PyPi](https://pypi.org/project/quippy-ase) (📥 4.4K / month): ``` pip install quippy-ase ``` @@ -820,7 +969,7 @@ _General tools for atomistic machine learning._ ``` git clone https://github.com/scikit-learn-contrib/scikit-matter ``` -- [PyPi](https://pypi.org/project/skmatter) (📥 1.2K / month): +- [PyPi](https://pypi.org/project/skmatter) (📥 1.1K / month): ``` pip install skmatter ``` @@ -836,12 +985,12 @@ _General tools for atomistic machine learning._ ``` git clone https://github.com/yoshida-lab/XenonPy ``` -- [PyPi](https://pypi.org/project/xenonpy) (📥 220 / month): +- [PyPi](https://pypi.org/project/xenonpy) (📥 210 / month): ``` pip install xenonpy ```
-
Artificial Intelligence for Science (AIRS) (🥉12 · ⭐ 470) - Artificial Intelligence Research for Science (AIRS). GPL-3.0 license rep-learn generative ML-IAP MD ML-DFT ML-WFT biomolecules +
Artificial Intelligence for Science (AIRS) (🥉12 · ⭐ 480) - Artificial Intelligence Research for Science (AIRS). GPL-3.0 license rep-learn generative ML-IAP MD ML-DFT ML-WFT biomolecules - [GitHub](https://github.com/divelab/AIRS) (👨‍💻 28 · 🔀 57 · 📋 14 - 14% open · ⏱️ 12.07.2024): @@ -860,7 +1009,7 @@ _General tools for atomistic machine learning._
Show 11 hidden projects... - QML (🥉15 · ⭐ 200 · 💀) - QML: Quantum Machine Learning. MIT -- Automatminer (🥉15 · ⭐ 130 · 💀) - An automatic engine for predicting materials properties. Custom +- Automatminer (🥉15 · ⭐ 130 · 💀) - An automatic engine for predicting materials properties. Custom autoML - AMPtorch (🥉11 · ⭐ 58 · 💀) - AMPtorch: Atomistic Machine Learning Package (AMP) - PyTorch. GPL-3.0 - OpenChem (🥉10 · ⭐ 670 · 💀) - OpenChem: Deep Learning toolkit for Computational Chemistry and Drug Design Research. MIT - JAXChem (🥉7 · ⭐ 76 · 💀) - JAXChem is a JAX-based deep learning library for complex and versatile chemical modeling. MIT @@ -886,19 +1035,31 @@ _Projects that implement generative models for atomistic ML._ ``` git clone https://github.com/GT4SD/gt4sd-core ``` -- [PyPi](https://pypi.org/project/gt4sd) (📥 620 / month): +- [PyPi](https://pypi.org/project/gt4sd) (📥 660 / month): ``` pip install gt4sd ```
-
MoLeR (🥇15 · ⭐ 250 · 💤) - Implementation of MoLeR: a generative model of molecular graphs which supports scaffold-constrained generation. MIT +
PMTransformer (🥇16 · ⭐ 82 · ➕) - Universal Transfer Learning in Porous Materials, including MOFs. MIT transfer-learning pretrained transformer + +- [GitHub](https://github.com/hspark1212/MOFTransformer) (👨‍💻 2 · 🔀 11 · 📦 6 · ⏱️ 20.06.2024): + + ``` + git clone https://github.com/hspark1212/MOFTransformer + ``` +- [PyPi](https://pypi.org/project/moftransformer) (📥 300 / month): + ``` + pip install moftransformer + ``` +
+
MoLeR (🥈15 · ⭐ 250 · 💤) - Implementation of MoLeR: a generative model of molecular graphs which supports scaffold-constrained generation. MIT - [GitHub](https://github.com/microsoft/molecule-generation) (👨‍💻 5 · 🔀 38 · 📋 38 - 26% open · ⏱️ 03.01.2024): ``` git clone https://github.com/microsoft/molecule-generation ``` -- [PyPi](https://pypi.org/project/molecule-generation) (📥 260 / month): +- [PyPi](https://pypi.org/project/molecule-generation) (📥 230 / month): ``` pip install molecule-generation ``` @@ -911,6 +1072,18 @@ _Projects that implement generative models for atomistic ML._ git clone https://github.com/atomistic-machine-learning/schnetpack-gschnet ```
+
SiMGen (🥉8 · ⭐ 11 · ➕) - Zero Shot Molecular Generation via Similarity Kernels. MIT viz + +- [GitHub](https://github.com/RokasEl/simgen) (👨‍💻 4 · 📦 1 · 📋 4 - 25% open · ⏱️ 15.02.2024): + + ``` + git clone https://github.com/RokasEl/simgen + ``` +- [PyPi](https://pypi.org/project/simgen) (📥 20 / month): + ``` + pip install simgen + ``` +
COATI (🥉5 · ⭐ 89) - COATI: multi-modal contrastive pre-training for representing and traversing chemical space. Apache-2 drug-discovery multimodal pretrained rep-learn - [GitHub](https://github.com/terraytherapeutics/COATI) (👨‍💻 5 · 🔀 5 · 📋 3 - 33% open · ⏱️ 23.03.2024): @@ -919,15 +1092,16 @@ _Projects that implement generative models for atomistic ML._ git clone https://github.com/terraytherapeutics/COATI ```
-
Show 7 hidden projects... +
Show 8 hidden projects... - synspace (🥈12 · ⭐ 35 · 💀) - Synthesis generative model. MIT - EDM (🥈10 · ⭐ 420 · 💀) - E(3) Equivariant Diffusion Model for Molecule Generation in 3D. MIT - G-SchNet (🥉8 · ⭐ 130 · 💀) - G-SchNet - a generative model for 3d molecular structures. MIT -- cG-SchNet (🥉8 · ⭐ 49 · 💀) - cG-SchNet - a conditional generative neural network for 3d molecular structures. MIT +- cG-SchNet (🥉8 · ⭐ 50 · 💀) - cG-SchNet - a conditional generative neural network for 3d molecular structures. MIT - bVAE-IM (🥉8 · ⭐ 11 · 💀) - Implementation of Chemical Design with GPU-based Ising Machine. MIT QML single-paper - rxngenerator (🥉7 · ⭐ 11 · 💀) - A generative model for molecular generation via multi-step chemical reactions. MIT - MolSLEPA (🥉5 · ⭐ 5 · 💀) - Interpretable Fragment-based Molecule Design with Self-learning Entropic Population Annealing. MIT XAI +- Mapping out phase diagrams with generative classifiers (🥉4 · ⭐ 7 · 💀) - Repository for our ``Mapping out phase diagrams with generative models paper. MIT phase-transition

@@ -939,7 +1113,7 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc
DeePMD-kit (🥇27 · ⭐ 1.4K) - A deep learning package for many-body potential energy representation and molecular dynamics. LGPL-3.0 C++ -- [GitHub](https://github.com/deepmodeling/deepmd-kit) (👨‍💻 69 · 🔀 480 · 📥 38K · 📦 16 · 📋 740 - 10% open · ⏱️ 06.07.2024): +- [GitHub](https://github.com/deepmodeling/deepmd-kit) (👨‍💻 69 · 🔀 480 · 📥 38K · 📦 16 · 📋 750 - 10% open · ⏱️ 06.07.2024): ``` git clone https://github.com/deepmodeling/deepmd-kit @@ -964,16 +1138,16 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc ``` git clone https://github.com/mir-group/nequip ``` -- [PyPi](https://pypi.org/project/nequip) (📥 2.8K / month): +- [PyPi](https://pypi.org/project/nequip) (📥 3K / month): ``` pip install nequip ``` -- [Conda](https://anaconda.org/conda-forge/nequip) (📥 5.2K · ⏱️ 10.07.2024): +- [Conda](https://anaconda.org/conda-forge/nequip) (📥 5.3K · ⏱️ 10.07.2024): ``` conda install -c conda-forge nequip ```
-
TorchMD-NET (🥇23 · ⭐ 300) - Training neural network potentials. MIT MD rep-learn transformer pretrained +
TorchMD-NET (🥇23 · ⭐ 310) - Training neural network potentials. MIT MD rep-learn transformer pretrained - [GitHub](https://github.com/torchmd/torchmd-net) (👨‍💻 16 · 🔀 69 · 📋 100 - 19% open · ⏱️ 29.07.2024): @@ -992,7 +1166,7 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc ``` git clone https://github.com/aiqm/torchani ``` -- [PyPi](https://pypi.org/project/torchani) (📥 4.3K / month): +- [PyPi](https://pypi.org/project/torchani) (📥 3.9K / month): ``` pip install torchani ``` @@ -1003,15 +1177,15 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc
MACE (🥇22 · ⭐ 440) - MACE - Fast and accurate machine learning interatomic potentials with higher order equivariant message passing. MIT -- [GitHub](https://github.com/ACEsuit/mace) (👨‍💻 35 · 🔀 170 · 📋 210 - 21% open · ⏱️ 25.07.2024): +- [GitHub](https://github.com/ACEsuit/mace) (👨‍💻 35 · 🔀 170 · 📋 210 - 21% open · ⏱️ 12.08.2024): ``` git clone https://github.com/ACEsuit/mace ```
-
GPUMD (🥇22 · ⭐ 420) - GPUMD is a highly efficient general-purpose molecular dynamic (MD) package and enables machine-learned potentials.. GPL-3.0 MD C++ electrostatics +
GPUMD (🥇22 · ⭐ 430) - GPUMD is a highly efficient general-purpose molecular dynamic (MD) package and enables machine-learned potentials.. GPL-3.0 MD C++ electrostatics -- [GitHub](https://github.com/brucefan1983/GPUMD) (👨‍💻 30 · 🔀 110 · 📋 180 - 11% open · ⏱️ 09.08.2024): +- [GitHub](https://github.com/brucefan1983/GPUMD) (👨‍💻 30 · 🔀 110 · 📋 180 - 8% open · ⏱️ 15.08.2024): ``` git clone https://github.com/brucefan1983/GPUMD @@ -1024,7 +1198,7 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc ``` git clone https://github.com/deepmodeling/dpgen ``` -- [PyPi](https://pypi.org/project/dpgen) (📥 340 / month): +- [PyPi](https://pypi.org/project/dpgen) (📥 320 / month): ``` pip install dpgen ``` @@ -1033,9 +1207,9 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc conda install -c deepmodeling dpgen ```
-
fairchem (🥈19 · ⭐ 740) - FAIR Chemistrys library of machine learning methods for chemistry. Formerly known as Open Catalyst Project (ocp). Unlicensed pretrained rep-learn catalysis +
fairchem (🥈19 · ⭐ 750) - FAIR Chemistrys library of machine learning methods for chemistry. Formerly known as Open Catalyst Project (ocp). Unlicensed pretrained rep-learn catalysis -- [GitHub](https://github.com/FAIR-Chem/fairchem) (👨‍💻 41 · 🔀 230 · 📋 190 - 4% open · ⏱️ 09.08.2024): +- [GitHub](https://github.com/FAIR-Chem/fairchem) (👨‍💻 41 · 🔀 230 · 📋 200 - 4% open · ⏱️ 14.08.2024): ``` git clone https://github.com/FAIR-Chem/fairchem @@ -1049,14 +1223,14 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc git clone https://github.com/learningmatter-mit/NeuralForceField ```
-
apax (🥈18 · ⭐ 14 · 📈) - A flexible and performant framework for training machine learning potentials. MIT +
apax (🥈18 · ⭐ 14) - A flexible and performant framework for training machine learning potentials. MIT -- [GitHub](https://github.com/apax-hub/apax) (👨‍💻 7 · 🔀 1 · 📦 2 · 📋 110 - 11% open · ⏱️ 09.08.2024): +- [GitHub](https://github.com/apax-hub/apax) (👨‍💻 7 · 🔀 1 · 📦 2 · 📋 120 - 12% open · ⏱️ 09.08.2024): ``` git clone https://github.com/apax-hub/apax ``` -- [PyPi](https://pypi.org/project/apax) (📥 300 / month): +- [PyPi](https://pypi.org/project/apax) (📥 310 / month): ``` pip install apax ``` @@ -1076,7 +1250,7 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc ``` git clone https://github.com/uf3/uf3 ``` -- [PyPi](https://pypi.org/project/uf3) (📥 33 / month): +- [PyPi](https://pypi.org/project/uf3) (📥 35 / month): ``` pip install uf3 ``` @@ -1088,23 +1262,23 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc ``` git clone https://github.com/openkim/kliff ``` -- [PyPi](https://pypi.org/project/kliff) (📥 61 / month): +- [PyPi](https://pypi.org/project/kliff) (📥 75 / month): ``` pip install kliff ``` -- [Conda](https://anaconda.org/conda-forge/kliff) (📥 94K · ⏱️ 18.12.2023): +- [Conda](https://anaconda.org/conda-forge/kliff) (📥 95K · ⏱️ 18.12.2023): ``` conda install -c conda-forge kliff ```
sGDML (🥈14 · ⭐ 140 · 💤) - sGDML - Reference implementation of the Symmetric Gradient Domain Machine Learning model. MIT -- [GitHub](https://github.com/stefanch/sGDML) (👨‍💻 8 · 🔀 36 · 📦 9 · 📋 17 - 35% open · ⏱️ 31.08.2023): +- [GitHub](https://github.com/stefanch/sGDML) (👨‍💻 8 · 🔀 35 · 📦 9 · 📋 17 - 35% open · ⏱️ 31.08.2023): ``` git clone https://github.com/stefanch/sGDML ``` -- [PyPi](https://pypi.org/project/sgdml) (📥 120 / month): +- [PyPi](https://pypi.org/project/sgdml) (📥 140 / month): ``` pip install sgdml ``` @@ -1116,7 +1290,7 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc ``` git clone https://github.com/MaterSim/PyXtal_FF ``` -- [PyPi](https://pypi.org/project/pyxtal_ff) (📥 100 / month): +- [PyPi](https://pypi.org/project/pyxtal_ff) (📥 71 / month): ``` pip install pyxtal_ff ``` @@ -1149,7 +1323,7 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc git clone https://github.com/deepmodeling/DMFF ```
-
So3krates (MLFF) (🥈12 · ⭐ 66) - Build neural networks for machine learning force fields with JAX. MIT +
So3krates (MLFF) (🥈12 · ⭐ 69) - Build neural networks for machine learning force fields with JAX. MIT - [GitHub](https://github.com/thorben-frank/mlff) (👨‍💻 4 · 🔀 13 · 📋 9 - 33% open · ⏱️ 06.08.2024): @@ -1177,14 +1351,14 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc git clone https://github.com/TinkerTools/tinker-hp ```
-
Pacemaker (🥈11 · ⭐ 62 · 📉) - Python package for fitting atomic cluster expansion (ACE) potentials. Custom +
Pacemaker (🥈11 · ⭐ 62) - Python package for fitting atomic cluster expansion (ACE) potentials. Custom -- [GitHub](https://github.com/ICAMS/python-ace) (👨‍💻 5 · 🔀 15 · 📋 48 - 31% open · ⏱️ 22.07.2024): +- [GitHub](https://github.com/ICAMS/python-ace) (👨‍💻 5 · 🔀 15 · 📋 49 - 32% open · ⏱️ 22.07.2024): ``` git clone https://github.com/ICAMS/python-ace ``` -- [PyPi](https://pypi.org/project/python-ace) (📥 19 / month): +- [PyPi](https://pypi.org/project/python-ace) (📥 18 / month): ``` pip install python-ace ``` @@ -1196,12 +1370,12 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc ``` git clone https://github.com/Teoroo-CMC/CCS ``` -- [PyPi](https://pypi.org/project/ccs_fit) (📥 360 / month): +- [PyPi](https://pypi.org/project/ccs_fit) (📥 260 / month): ``` pip install ccs_fit ```
-
Point Edge Transformer (PET) (🥉10 · ⭐ 17) - Point Edge Transformer. MIT rep-learn transformer +
Point Edge Transformer (PET) (🥉10 · ⭐ 18) - Point Edge Transformer. MIT rep-learn transformer - [GitHub](https://github.com/spozdn/pet) (👨‍💻 7 · 🔀 5 · ⏱️ 02.07.2024): @@ -1209,6 +1383,14 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc git clone https://github.com/spozdn/pet ```
+
ACEfit (🥉10 · ⭐ 8) - MIT Julia + +- [GitHub](https://github.com/ACEsuit/ACEfit.jl) (👨‍💻 7 · 🔀 5 · 📋 55 - 40% open · ⏱️ 13.08.2024): + + ``` + git clone https://github.com/ACEsuit/ACEfit.jl + ``` +
DimeNet (🥉9 · ⭐ 280 · 💤) - DimeNet and DimeNet++ models, as proposed in Directional Message Passing for Molecular Graphs (ICLR 2020) and Fast and.. Custom - [GitHub](https://github.com/gasteigerjo/dimenet) (👨‍💻 2 · 🔀 57 · 📦 1 · 📋 31 - 3% open · ⏱️ 03.10.2023): @@ -1217,7 +1399,7 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc git clone https://github.com/gasteigerjo/dimenet ```
-
ALF (🥉9 · ⭐ 28) - A framework for performing active learning for training machine-learned interatomic potentials. Custom active-learning +
ALF (🥉9 · ⭐ 29) - A framework for performing active learning for training machine-learned interatomic potentials. Custom active-learning - [GitHub](https://github.com/lanl/ALF) (👨‍💻 5 · 🔀 11 · ⏱️ 08.08.2024): @@ -1233,14 +1415,6 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc git clone https://github.com/mcaroba/turbogap ```
-
ACEfit (🥉9 · ⭐ 8) - MIT Julia - -- [GitHub](https://github.com/ACEsuit/ACEfit.jl) (👨‍💻 7 · 🔀 5 · 📋 55 - 40% open · ⏱️ 28.03.2024): - - ``` - git clone https://github.com/ACEsuit/ACEfit.jl - ``` -
MACE-Jax (🥉8 · ⭐ 58 · 💤) - Equivariant machine learning interatomic potentials in JAX. MIT - [GitHub](https://github.com/ACEsuit/mace-jax) (👨‍💻 2 · 🔀 4 · 📋 6 - 50% open · ⏱️ 04.10.2023): @@ -1265,6 +1439,14 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc git clone https://github.com/libAtoms/GAP ```
+
SIMPLE-NN v2 (🥉8 · ⭐ 39 · 💤) - SIMPLE-NN is an open package that constructs Behler-Parrinello-type neural-network interatomic potentials from ab.. GPL-3.0 + +- [GitHub](https://github.com/MDIL-SNU/SIMPLE-NN_v2) (👨‍💻 13 · 🔀 17 · 📋 13 - 30% open · ⏱️ 29.12.2023): + + ``` + git clone https://github.com/MDIL-SNU/SIMPLE-NN_v2 + ``` +
ACE1.jl (🥉8 · ⭐ 20) - Atomic Cluster Expansion for Modelling Invariant Atomic Properties. Custom Julia - [GitHub](https://github.com/ACEsuit/ACE1.jl) (👨‍💻 9 · 🔀 7 · 📋 46 - 47% open · ⏱️ 02.07.2024): @@ -1305,7 +1487,7 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc git clone https://github.com/mariogeiger/allegro-jax ```
-
Show 27 hidden projects... +
Show 32 hidden projects... - MEGNet (🥇22 · ⭐ 490 · 💀) - Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals. BSD-3 multifidelity - n2p2 (🥈13 · ⭐ 220 · 💀) - n2p2 - A Neural Network Potential Package. GPL-3.0 C++ @@ -1316,23 +1498,28 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc - SchNet (🥉9 · ⭐ 210 · 💀) - SchNet - a deep learning architecture for quantum chemistry. MIT - GemNet (🥉9 · ⭐ 180 · 💀) - GemNet model in PyTorch, as proposed in GemNet: Universal Directional Graph Neural Networks for Molecules (NeurIPS.. Custom - ACE.jl (🥉9 · ⭐ 66 · 💀) - Parameterisation of Equivariant Properties of Particle Systems. Custom Julia +- calorine (🥉9 · ⭐ 12 · 💀) - A Python package for constructing and sampling neuroevolution potential models. https://doi.org/10.21105/joss.06264. Custom - AIMNet (🥉8 · ⭐ 94 · 💀) - Atoms In Molecules Neural Network Potential. MIT single-paper - SNAP (🥉8 · ⭐ 36 · 💀) - Repository for spectral neighbor analysis potential (SNAP) model development. BSD-3 - Atomistic Adversarial Attacks (🥉8 · ⭐ 30 · 💀) - Code for performing adversarial attacks on atomistic systems using NN potentials. MIT probabilistic -- calorine (🥉8 · ⭐ 12 · 💀) - A Python package for constructing and sampling neuroevolution potential models. https://doi.org/10.21105/joss.06264. Custom -- PhysNet (🥉7 · ⭐ 89 · 💀) - Code for training PhysNet models. MIT electrostatics -- SIMPLE-NN v2 (🥉7 · ⭐ 39 · 💤) - GPL-3.0 +- PhysNet (🥉7 · ⭐ 88 · 💀) - Code for training PhysNet models. MIT electrostatics - MLIP-3 (🥉6 · ⭐ 25 · 💀) - MLIP-3: Active learning on atomic environments with Moment Tensor Potentials (MTP). BSD-2 C++ - testing-framework (🥉6 · ⭐ 11 · 💀) - The purpose of this repository is to aid the testing of a large number of interatomic potentials for a variety of.. Unlicensed benchmarking - PANNA (🥉6 · ⭐ 9 · 💀) - A package to train and validate all-to-all connected network models for BP[1] and modified-BP[2] type local atomic.. MIT benchmarking +- GN-MM (🥉5 · ⭐ 10 · 💀) - The Gaussian Moment Neural Network (GM-NN) package developed for large-scale atomistic simulations employing atomistic.. MIT active-learning MD rep-eng magnetism - Alchemical learning (🥉5 · ⭐ 2 · 💀) - Code for the Modeling high-entropy transition metal alloys with alchemical compression article. BSD-3 +- Allegro-Legato (🥉4 · ⭐ 19 · 💤) - An extension of Allegro with enhanced robustness and time-to-failure. MIT MD - glp (🥉4 · ⭐ 17) - tools for graph-based machine-learning potentials in jax. MIT - TensorPotential (🥉4 · ⭐ 7 · 💀) - Tensorpotential is a TensorFlow based tool for development, fitting ML interatomic potentials from electronic.. Custom - ACE Workflows (🥉4 · 💤) - Workflow Examples for ACE Models. Unlicensed Julia workflows - PeriodicPotentials (🥉4 · 💀) - A Periodic table app that displays potentials based on the selected elements. MIT community-resource viz JavaScript +- MEGNetSparse (🥉3 · ⭐ 1 · 💤) - A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,.. MIT material-defect +- PyFLAME (🥉3 · 💀) - An automated approach for developing neural network interatomic potentials with FLAME.. Unlicensed active-learning structure-prediction structure-optimization rep-eng Fortran - SingleNN (🥉2 · ⭐ 8 · 💀) - An efficient package for training and executing neural-network interatomic potentials. Unlicensed C++ -- MEGNetSparse (🥉2 · ⭐ 1 · 💤) - A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,.. MIT material-defect +- AisNet (🥉2 · ⭐ 3 · 💀) - A Universal Interatomic Potential Neural Network with Encoded Local Environment Features.. MIT - RuNNer (🥉2) - The RuNNer Neural Network Energy Representation is a Fortran-based framework for the construction of Behler-.. GPL-3.0 Fortran +- nnp-pre-training (🥉1 · ⭐ 6 · 💤) - Synthetic pre-training for neural-network interatomic potentials. Unlicensed pretrained MD +- mag-ace (🥉1 · ⭐ 2 · 💤) - Magnetic ACE potential. FORTRAN interface for LAMMPS SPIN package. Unlicensed magnetism MD Fortran - mlp (🥉1 · ⭐ 1 · 💀) - Proper orthogonal descriptors for efficient and accurate interatomic potentials... Unlicensed Julia

@@ -1343,42 +1530,54 @@ _Machine learning interatomic potentials (aka ML-IAP, MLIAP, MLIP, MLP) and forc _Projects that use (large) language models (LMs, LLMs) or natural language procesing (NLP) techniques for atomistic ML._ -
paper-qa (🥇26 · ⭐ 3.8K) - LLM Chain for answering questions from documents with citations. Apache-2 ai-agent +
paper-qa (🥇27 · ⭐ 3.8K · 📈) - LLM Chain for answering questions from documents with citations. Apache-2 ai-agent -- [GitHub](https://github.com/whitead/paper-qa) (👨‍💻 18 · 🔀 350 · 📦 65 · 📋 140 - 47% open · ⏱️ 08.08.2024): +- [GitHub](https://github.com/Future-House/paper-qa) (👨‍💻 18 · 🔀 350 · 📦 65 · 📋 140 - 47% open · ⏱️ 14.08.2024): ``` git clone https://github.com/whitead/paper-qa ``` -- [PyPi](https://pypi.org/project/paper-qa) (📥 7.4K / month): +- [PyPi](https://pypi.org/project/paper-qa) (📥 8.3K / month): ``` pip install paper-qa ```
-
ChemCrow (🥇16 · ⭐ 540) - Chemcrow. MIT ai-agent +
ChemCrow (🥇16 · ⭐ 550) - Open source package for the accurate solution of reasoning-intensive chemical tasks. MIT ai-agent -- [GitHub](https://github.com/ur-whitelab/chemcrow-public) (👨‍💻 3 · 🔀 75 · 📦 4 · 📋 17 - 17% open · ⏱️ 27.03.2024): +- [GitHub](https://github.com/ur-whitelab/chemcrow-public) (👨‍💻 3 · 🔀 75 · 📦 4 · 📋 18 - 22% open · ⏱️ 27.03.2024): ``` git clone https://github.com/ur-whitelab/chemcrow-public ``` -- [PyPi](https://pypi.org/project/chemcrow) (📥 510 / month): +- [PyPi](https://pypi.org/project/chemcrow) (📥 540 / month): ``` pip install chemcrow ```
-
ChemNLP project (🥈14 · ⭐ 140) - ChemNLP project. MIT datasets +
ChemNLP project (🥈15 · ⭐ 140) - ChemNLP project. MIT datasets -- [GitHub](https://github.com/OpenBioML/chemnlp) (👨‍💻 27 · 🔀 45 · 📋 250 - 44% open · ⏱️ 10.08.2024): +- [GitHub](https://github.com/OpenBioML/chemnlp) (👨‍💻 27 · 🔀 45 · 📋 250 - 44% open · ⏱️ 15.08.2024): ``` git clone https://github.com/OpenBioML/chemnlp ``` -- [PyPi](https://pypi.org/project/chemnlp) (📥 50 / month): +- [PyPi](https://pypi.org/project/chemnlp) (📥 58 / month): ``` pip install chemnlp ```
+
ChatMOF (🥈13 · ⭐ 53 · ➕) - Predict and Inverse design for metal-organic framework with large-language models (llms). MIT generative + +- [GitHub](https://github.com/Yeonghun1675/ChatMOF) (🔀 7 · 📦 2 · ⏱️ 01.07.2024): + + ``` + git clone https://github.com/Yeonghun1675/ChatMOF + ``` +- [PyPi](https://pypi.org/project/chatmof) (📥 240 / month): + ``` + pip install chatmof + ``` +
gptchem (🥈12 · ⭐ 220 · 💤) - Use GPT-3 to solve chemistry problems. MIT - [GitHub](https://github.com/kjappelbaum/gptchem) (👨‍💻 4 · 🔀 39 · 📋 21 - 90% open · ⏱️ 04.10.2023): @@ -1386,14 +1585,14 @@ _Projects that use (large) language models (LMs, LLMs) or natural language proce ``` git clone https://github.com/kjappelbaum/gptchem ``` -- [PyPi](https://pypi.org/project/gptchem) (📥 36 / month): +- [PyPi](https://pypi.org/project/gptchem) (📥 31 / month): ``` pip install gptchem ```
-
LLaMP (🥈11 · ⭐ 49) - A web app and Python API for multi-modal RAG framework to ground LLMs on high-fidelity materials informatics. An.. BSD-3 materials-discovery cheminformatics generative MD multimodal language-models Python general-tool +
LLaMP (🥉10 · ⭐ 49) - A web app and Python API for multi-modal RAG framework to ground LLMs on high-fidelity materials informatics. An.. BSD-3 materials-discovery cheminformatics generative MD multimodal language-models Python general-tool -- [GitHub](https://github.com/chiang-yuan/llamp) (👨‍💻 5 · 🔀 5 · 📋 25 - 32% open · ⏱️ 01.08.2024): +- [GitHub](https://github.com/chiang-yuan/llamp) (👨‍💻 5 · 🔀 6 · 📋 25 - 32% open · ⏱️ 01.08.2024): ``` git clone https://github.com/chiang-yuan/llamp @@ -1414,7 +1613,7 @@ _Projects that use (large) language models (LMs, LLMs) or natural language proce ``` git clone https://github.com/microsoft/molskill ``` -- [Conda](https://anaconda.org/msr-ai4science/molskill) (📥 270 · ⏱️ 18.06.2023): +- [Conda](https://anaconda.org/msr-ai4science/molskill) (📥 280 · ⏱️ 18.06.2023): ``` conda install -c msr-ai4science molskill ``` @@ -1443,6 +1642,22 @@ _Projects that use (large) language models (LMs, LLMs) or natural language proce git clone https://github.com/CFN-softbio/SciBot ```
+
Cephalo (🥉6 · ⭐ 5 · 🐣) - Multimodal Vision-Language Models for Bio-Inspired Materials Analysis and Design. Apache-2 generative multimodal pretrained + +- [GitHub](https://github.com/lamm-mit/Cephalo) (🔀 1 · ⏱️ 23.07.2024): + + ``` + git clone https://github.com/lamm-mit/Cephalo + ``` +
+
crystal-text-llm (🥉5 · ⭐ 63 · 🐣) - Large language models to generate stable crystals. CC-BY-NC-4.0 materials-discovery + +- [GitHub](https://github.com/facebookresearch/crystal-text-llm) (👨‍💻 3 · 🔀 10 · 📋 9 - 77% open · ⏱️ 18.06.2024): + + ``` + git clone https://github.com/facebookresearch/crystal-text-llm + ``` +
BERT-PSIE-TC (🥉5 · ⭐ 11 · 💤) - A dataset of Curie temperatures automatically extracted from scientific literature with the use of the BERT-PSIE.. MIT magnetism - [GitHub](https://github.com/StefanoSanvitoGroup/BERT-PSIE-TC) (👨‍💻 2 · 🔀 3 · ⏱️ 18.08.2023): @@ -1475,6 +1690,8 @@ _Projects that use (large) language models (LMs, LLMs) or natural language proce _Projects that implement materials discovery methods using atomistic ML._ +🔗 MatterGen - A generative model for inorganic materials design https://doi.org/10.48550/arXiv.2312.03687. generative proprietary +
aviary (🥇15 · ⭐ 45) - The Wren sits on its Roost in the Aviary. MIT - [GitHub](https://github.com/CompRhys/aviary) (👨‍💻 4 · 🔀 11 · 📋 26 - 7% open · ⏱️ 05.08.2024): @@ -1483,7 +1700,7 @@ _Projects that implement materials discovery methods using atomistic ML._ git clone https://github.com/CompRhys/aviary ```
-
Materials Discovery: GNoME (🥈10 · ⭐ 850 · 💤) - Graph Networks for Materials Science (GNoME) and dataset of 381,000 novel stable materials. Apache-2 UIP datasets rep-learn proprietary +
Materials Discovery: GNoME (🥇10 · ⭐ 850 · 💤) - Graph Networks for Materials Science (GNoME) and dataset of 381,000 novel stable materials. Apache-2 UIP datasets rep-learn proprietary - [GitHub](https://github.com/google-deepmind/materials_discovery) (👨‍💻 2 · 🔀 130 · 📋 21 - 80% open · ⏱️ 02.12.2023): @@ -1499,12 +1716,14 @@ _Projects that implement materials discovery methods using atomistic ML._ git clone https://github.com/minoru938/cspml ```
-
Show 6 hidden projects... +
Show 8 hidden projects... - BOSS (🥈7 · ⭐ 20 · 💀) - Bayesian Optimization Structure Search (BOSS). Unlicensed probabilistic - AGOX (🥈7 · ⭐ 13 · 💀) - AGOX is a package for global optimization of atomic system using e.g. the energy calculated from density functional.. GPL-3.0 structure-optimization -- Computational Autonomy for Materials Discovery (CAMD) (🥉6 · ⭐ 1 · 💀) - Agent-based sequential learning software for materials discovery. Apache-2 +- Computational Autonomy for Materials Discovery (CAMD) (🥈6 · ⭐ 1 · 💀) - Agent-based sequential learning software for materials discovery. Apache-2 +- MAGUS (🥉4 · ⭐ 56 · 💀) - Machine learning And Graph theory assisted Universal structure Searcher. Unlicensed structure-prediction active-learning - SPINNER (🥉4 · ⭐ 12 · 💀) - SPINNER (Structure Prediction of Inorganic crystals using Neural Network potentials with Evolutionary and Random.. GPL-3.0 C++ structure-prediction +- ML-atomate (🥉4 · ⭐ 3 · 💤) - Machine learning-assisted Atomate code for autonomous computational materials screening. GPL-3.0 active-learning workflows - closed-loop-acceleration-benchmarks (🥉4 · 💀) - Data and scripts in support of the publication By how much can closed-loop frameworks accelerate computational.. MIT materials-discovery active-learning single-paper - sl_discovery (🥉3 · ⭐ 5 · 💀) - Data processing and models related to Quantifying the performance of machine learning models in materials discovery. Apache-2 materials-discovery single-paper
@@ -1518,36 +1737,36 @@ _Projects that implement mathematical objects used in atomistic machine learning
KFAC-JAX (🥇19 · ⭐ 220) - Second Order Optimization and Curvature Estimation with K-FAC in JAX. Apache-2 -- [GitHub](https://github.com/google-deepmind/kfac-jax) (👨‍💻 13 · 🔀 16 · 📦 10 · 📋 13 - 30% open · ⏱️ 06.08.2024): +- [GitHub](https://github.com/google-deepmind/kfac-jax) (👨‍💻 13 · 🔀 16 · 📦 10 · 📋 14 - 35% open · ⏱️ 12.08.2024): ``` - git clone https://github.com/deepmind/kfac-jax + git clone https://github.com/google-deepmind/kfac-jax ``` -- [PyPi](https://pypi.org/project/kfac-jax) (📥 620 / month): +- [PyPi](https://pypi.org/project/kfac-jax) (📥 670 / month): ``` pip install kfac-jax ```
-
gpax (🥇16 · ⭐ 190 · 📉) - Gaussian Processes for Experimental Sciences. MIT probabilistic active-learning +
gpax (🥇16 · ⭐ 190) - Gaussian Processes for Experimental Sciences. MIT probabilistic active-learning -- [GitHub](https://github.com/ziatdinovmax/gpax) (👨‍💻 6 · 🔀 23 · 📦 1 · 📋 39 - 17% open · ⏱️ 21.05.2024): +- [GitHub](https://github.com/ziatdinovmax/gpax) (👨‍💻 6 · 🔀 22 · 📦 1 · 📋 39 - 17% open · ⏱️ 21.05.2024): ``` git clone https://github.com/ziatdinovmax/gpax ``` -- [PyPi](https://pypi.org/project/gpax) (📥 140 / month): +- [PyPi](https://pypi.org/project/gpax) (📥 130 / month): ``` pip install gpax ```
SpheriCart (🥇16 · ⭐ 62) - Multi-language library for the calculation of spherical harmonics in Cartesian coordinates. MIT -- [GitHub](https://github.com/lab-cosmo/sphericart) (👨‍💻 10 · 🔀 10 · 📥 60 · 📦 3 · 📋 30 - 56% open · ⏱️ 06.08.2024): +- [GitHub](https://github.com/lab-cosmo/sphericart) (👨‍💻 10 · 🔀 10 · 📥 60 · 📦 3 · 📋 32 - 59% open · ⏱️ 06.08.2024): ``` git clone https://github.com/lab-cosmo/sphericart ``` -- [PyPi](https://pypi.org/project/sphericart) (📥 160 / month): +- [PyPi](https://pypi.org/project/sphericart) (📥 200 / month): ``` pip install sphericart ``` @@ -1568,6 +1787,14 @@ _Projects that implement mathematical objects used in atomistic machine learning git clone https://github.com/risi-kondor/GElib ```
+
EquivariantOperators.jl (🥉6 · ⭐ 18 · 💤) - This package is deprecated. Functionalities are migrating to Porcupine.jl. MIT Julia + +- [GitHub](https://github.com/aced-differentiate/EquivariantOperators.jl) (⏱️ 27.09.2023): + + ``` + git clone https://github.com/aced-differentiate/EquivariantOperators.jl + ``` +
COSMO Toolbox (🥉6 · ⭐ 7) - Assorted libraries and utilities for atomistic simulation analysis. Unlicensed C++ - [GitHub](https://github.com/lab-cosmo/toolbox) (👨‍💻 9 · 🔀 5 · ⏱️ 19.03.2024): @@ -1576,11 +1803,10 @@ _Projects that implement mathematical objects used in atomistic machine learning git clone https://github.com/lab-cosmo/toolbox ```
-
Show 5 hidden projects... +
Show 4 hidden projects... - lie-nn (🥈9 · ⭐ 26 · 💀) - Tools for building equivariant polynomials on reductive Lie groups. MIT rep-learn -- cnine (🥉6 · ⭐ 4 · 📈) - Cnine tensor library. Unlicensed C++ -- EquivariantOperators.jl (🥉5 · ⭐ 18 · 💤) - MIT Julia +- cnine (🥉6 · ⭐ 4) - Cnine tensor library. Unlicensed C++ - torch_spex (🥉3 · ⭐ 3) - Spherical expansions in PyTorch. Unlicensed - Wigner Kernels (🥉2 · ⭐ 2 · 💀) - Collection of programs to benchmark Wigner kernels. Unlicensed benchmarking
@@ -1604,50 +1830,50 @@ _Projects that simplify the integration of molecular dynamics and atomistic mach pip install jax-md ```
-
mlcolvar (🥈18 · ⭐ 91) - A unified framework for machine learning collective variables for enhanced sampling simulations. MIT enhanced-sampling +
mlcolvar (🥈19 · ⭐ 91) - A unified framework for machine learning collective variables for enhanced sampling simulations. MIT enhanced-sampling - [GitHub](https://github.com/luigibonati/mlcolvar) (👨‍💻 8 · 🔀 23 · 📦 2 · 📋 70 - 18% open · ⏱️ 14.06.2024): ``` git clone https://github.com/luigibonati/mlcolvar ``` -- [PyPi](https://pypi.org/project/mlcolvar) (📥 130 / month): +- [PyPi](https://pypi.org/project/mlcolvar) (📥 150 / month): ``` pip install mlcolvar ```
-
openmm-torch (🥈17 · ⭐ 180) - OpenMM plugin to define forces with neural networks. Custom ML-IAP C++ +
FitSNAP (🥈17 · ⭐ 140) - Software for generating SNAP machine-learning interatomic potentials. GPL-2.0 -- [GitHub](https://github.com/openmm/openmm-torch) (👨‍💻 8 · 🔀 24 · 📋 89 - 26% open · ⏱️ 09.07.2024): +- [GitHub](https://github.com/FitSNAP/FitSNAP) (👨‍💻 24 · 🔀 48 · 📥 9 · 📦 2 · 📋 68 - 17% open · ⏱️ 09.08.2024): ``` - git clone https://github.com/openmm/openmm-torch + git clone https://github.com/FitSNAP/FitSNAP ``` -- [Conda](https://anaconda.org/conda-forge/openmm-torch) (📥 390K · ⏱️ 03.06.2024): +- [Conda](https://anaconda.org/conda-forge/fitsnap3) (📥 7.6K · ⏱️ 16.06.2023): ``` - conda install -c conda-forge openmm-torch + conda install -c conda-forge fitsnap3 ```
-
FitSNAP (🥈17 · ⭐ 140) - Software for generating SNAP machine-learning interatomic potentials. GPL-2.0 +
openmm-torch (🥈16 · ⭐ 180 · 📉) - OpenMM plugin to define forces with neural networks. Custom ML-IAP C++ -- [GitHub](https://github.com/FitSNAP/FitSNAP) (👨‍💻 24 · 🔀 48 · 📥 9 · 📦 2 · 📋 68 - 17% open · ⏱️ 09.08.2024): +- [GitHub](https://github.com/openmm/openmm-torch) (👨‍💻 8 · 🔀 24 · 📋 90 - 27% open · ⏱️ 09.07.2024): ``` - git clone https://github.com/FitSNAP/FitSNAP + git clone https://github.com/openmm/openmm-torch ``` -- [Conda](https://anaconda.org/conda-forge/fitsnap3) (📥 7.5K · ⏱️ 16.06.2023): +- [Conda](https://anaconda.org/conda-forge/openmm-torch) (📥 400K · ⏱️ 03.06.2024): ``` - conda install -c conda-forge fitsnap3 + conda install -c conda-forge openmm-torch ```
-
OpenMM-ML (🥉13 · ⭐ 81 · 📉) - High level API for using machine learning models in OpenMM simulations. MIT ML-IAP +
OpenMM-ML (🥉13 · ⭐ 80) - High level API for using machine learning models in OpenMM simulations. MIT ML-IAP -- [GitHub](https://github.com/openmm/openmm-ml) (👨‍💻 5 · 🔀 19 · 📋 53 - 37% open · ⏱️ 06.08.2024): +- [GitHub](https://github.com/openmm/openmm-ml) (👨‍💻 5 · 🔀 18 · 📋 54 - 37% open · ⏱️ 06.08.2024): ``` git clone https://github.com/openmm/openmm-ml ``` -- [Conda](https://anaconda.org/conda-forge/openmm-ml) (📥 4.5K · ⏱️ 07.06.2024): +- [Conda](https://anaconda.org/conda-forge/openmm-ml) (📥 4.6K · ⏱️ 07.06.2024): ``` conda install -c conda-forge openmm-ml ``` @@ -1718,14 +1944,14 @@ _Projects that offer implementations of representations aka descriptors, fingerp ```
-
DScribe (🥇22 · ⭐ 390) - DScribe is a python package for creating machine learning descriptors for atomistic systems. Apache-2 +
DScribe (🥇23 · ⭐ 390 · 📈) - DScribe is a python package for creating machine learning descriptors for atomistic systems. Apache-2 -- [GitHub](https://github.com/SINGROUP/dscribe) (👨‍💻 18 · 🔀 86 · 📦 190 · 📋 98 - 7% open · ⏱️ 28.05.2024): +- [GitHub](https://github.com/SINGROUP/dscribe) (👨‍💻 18 · 🔀 86 · 📦 190 · 📋 98 - 6% open · ⏱️ 28.05.2024): ``` git clone https://github.com/SINGROUP/dscribe ``` -- [PyPi](https://pypi.org/project/dscribe) (📥 260K / month): +- [PyPi](https://pypi.org/project/dscribe) (📥 190K / month): ``` pip install dscribe ``` @@ -1734,7 +1960,7 @@ _Projects that offer implementations of representations aka descriptors, fingerp conda install -c conda-forge dscribe ```
-
MODNet (🥈15 · ⭐ 73) - MODNet: a framework for machine learning materials properties. MIT pretrained small-data transfer-learning +
MODNet (🥈15 · ⭐ 74) - MODNet: a framework for machine learning materials properties. MIT pretrained small-data transfer-learning - [GitHub](https://github.com/ppdebreuck/modnet) (👨‍💻 8 · 🔀 31 · 📦 7 · 📋 42 - 35% open · ⏱️ 24.06.2024): @@ -1742,6 +1968,18 @@ _Projects that offer implementations of representations aka descriptors, fingerp git clone https://github.com/ppdebreuck/modnet ```
+
GlassPy (🥈14 · ⭐ 26 · 💤) - Python module for scientists working with glass materials. GPL-3.0 + +- [GitHub](https://github.com/drcassar/glasspy) (🔀 7 · 📦 5 · 📋 6 - 16% open · ⏱️ 21.01.2024): + + ``` + git clone https://github.com/drcassar/glasspy + ``` +- [PyPi](https://pypi.org/project/glasspy) (📥 160 / month): + ``` + pip install glasspy + ``` +
SISSO (🥈13 · ⭐ 230 · 💤) - A data-driven method combining symbolic regression and compressed sensing for accurate & interpretable models. Apache-2 Fortran - [GitHub](https://github.com/rouyang2017/SISSO) (👨‍💻 3 · 🔀 76 · 📋 65 - 12% open · ⏱️ 12.09.2023): @@ -1758,21 +1996,9 @@ _Projects that offer implementations of representations aka descriptors, fingerp git clone https://github.com/lab-cosmo/librascal ```
-
GlassPy (🥈13 · ⭐ 26 · 💤) - Python module for scientists working with glass materials. GPL-3.0 - -- [GitHub](https://github.com/drcassar/glasspy) (🔀 7 · 📦 5 · 📋 6 - 16% open · ⏱️ 21.01.2024): - - ``` - git clone https://github.com/drcassar/glasspy - ``` -- [PyPi](https://pypi.org/project/glasspy) (📥 120 / month): - ``` - pip install glasspy - ``` -
Rascaline (🥈12 · ⭐ 44) - Computing representations for atomistic machine learning. BSD-3 Rust C++ -- [GitHub](https://github.com/Luthaf/rascaline) (👨‍💻 14 · 🔀 13 · 📋 67 - 47% open · ⏱️ 30.07.2024): +- [GitHub](https://github.com/Luthaf/rascaline) (👨‍💻 14 · 🔀 13 · 📋 67 - 47% open · ⏱️ 14.08.2024): ``` git clone https://github.com/Luthaf/rascaline @@ -1786,7 +2012,7 @@ _Projects that offer implementations of representations aka descriptors, fingerp git clone https://github.com/lab-cosmo/nice ```
-
SA-GPR (🥉6 · ⭐ 18) - Public repository for symmetry-adapted Gaussian Process Regression (SA-GPR). LGPL-3.0 C-lang +
SA-GPR (🥉6 · ⭐ 19) - Public repository for symmetry-adapted Gaussian Process Regression (SA-GPR). LGPL-3.0 C-lang - [GitHub](https://github.com/dilkins/TENSOAP) (👨‍💻 5 · 🔀 13 · 📋 7 - 28% open · ⏱️ 23.07.2024): @@ -1794,19 +2020,21 @@ _Projects that offer implementations of representations aka descriptors, fingerp git clone https://github.com/dilkins/TENSOAP ```
-
Show 14 hidden projects... +
Show 16 hidden projects... -- CatLearn (🥇17 · ⭐ 98 · 💀) - GPL-3.0 surface-science +- CatLearn (🥇17 · ⭐ 99 · 💀) - GPL-3.0 surface-science - cmlkit (🥈10 · ⭐ 34 · 💀) - tools for machine learning in condensed matter physics and quantum chemistry. MIT benchmarking -- CBFV (🥉9 · ⭐ 23 · 💀) - Tool to quickly create a composition-based feature vector. Unlicensed -- BenchML (🥉9 · ⭐ 15 · 💀) - ML benchmarking and pipeling framework. Apache-2 benchmarking -- SkipAtom (🥉7 · ⭐ 23 · 💀) - Distributed representations of atoms, inspired by the Skip-gram model. MIT +- CBFV (🥈9 · ⭐ 23 · 💀) - Tool to quickly create a composition-based feature vector. Unlicensed +- BenchML (🥈9 · ⭐ 15 · 💀) - ML benchmarking and pipeling framework. Apache-2 benchmarking +- SkipAtom (🥉8 · ⭐ 23 · 💀) - Distributed representations of atoms, inspired by the Skip-gram model. MIT - milad (🥉6 · ⭐ 29 · 💀) - Moment Invariants Local Atomic Descriptor. GPL-3.0 generative - fplib (🥉6 · ⭐ 7 · 💀) - a fingerprint library. MIT C-lang single-paper - SOAPxx (🥉6 · ⭐ 7 · 💀) - A SOAP implementation. GPL-2.0 C++ - soap_turbo (🥉6 · ⭐ 4 · 💀) - soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP. Custom Fortran - pyLODE (🥉6 · ⭐ 3 · 💀) - Pythonic implementation of LOng Distance Equivariants. Apache-2 electrostatics +- MXenes4HER (🥉5 · ⭐ 5 · 💀) - Predicting hydrogen evolution (HER) activity over 4500 MXene materials https://doi.org/10.1039/D3TA00344B. GPL-3.0 materials-discovery catalysis scikit-learn single-paper - SISSO++ (🥉5 · ⭐ 3 · 💀) - C++ Implementation of SISSO with python bindings. Apache-2 C++ +- automl-materials (🥉4 · ⭐ 5 · 💀) - AutoML for Regression Tasks on Small Tabular Data in Materials Design. MIT autoML benchmarking single-paper - magnetism-prediction (🥉4 · ⭐ 1 · 💀) - DFT-aided Machine Learning Search for Magnetism in Fe-based Bimetallic Chalcogenides. Apache-2 magnetism single-paper - ML-for-CurieTemp-Predictions (🥉3 · ⭐ 1 · 💀) - Machine Learning Predictions of High-Curie-Temperature Materials. MIT single-paper magnetism - AMP (🥉2) - Amp is an open-source package designed to easily bring machine-learning to atomistic calculations. Unlicensed @@ -1821,7 +2049,7 @@ _General models that learn a representations aka embeddings of atomistic systems
Deep Graph Library (DGL) (🥇39 · ⭐ 13K) - Python package built to ease deep learning on graph, on top of existing DL frameworks. Apache-2 -- [GitHub](https://github.com/dmlc/dgl) (👨‍💻 300 · 🔀 2.9K · 📦 280 · 📋 2.7K - 14% open · ⏱️ 10.08.2024): +- [GitHub](https://github.com/dmlc/dgl) (👨‍💻 300 · 🔀 2.9K · 📦 280 · 📋 2.7K - 14% open · ⏱️ 15.08.2024): ``` git clone https://github.com/dmlc/dgl @@ -1837,7 +2065,7 @@ _General models that learn a representations aka embeddings of atomistic systems
PyG Models (🥇35 · ⭐ 21K) - Representation learning models implemented in PyTorch Geometric. MIT general-ml -- [GitHub](https://github.com/pyg-team/pytorch_geometric) (👨‍💻 510 · 🔀 3.5K · 📦 6.2K · 📋 3.5K - 24% open · ⏱️ 07.08.2024): +- [GitHub](https://github.com/pyg-team/pytorch_geometric) (👨‍💻 510 · 🔀 3.5K · 📦 6.3K · 📋 3.5K - 24% open · ⏱️ 14.08.2024): ``` git clone https://github.com/pyg-team/pytorch_geometric @@ -1850,7 +2078,7 @@ _General models that learn a representations aka embeddings of atomistic systems ``` git clone https://github.com/e3nn/e3nn ``` -- [PyPi](https://pypi.org/project/e3nn) (📥 380K / month): +- [PyPi](https://pypi.org/project/e3nn) (📥 320K / month): ``` pip install e3nn ``` @@ -1861,24 +2089,24 @@ _General models that learn a representations aka embeddings of atomistic systems
SchNetPack (🥇26 · ⭐ 760) - SchNetPack - Deep Neural Networks for Atomistic Systems. MIT -- [GitHub](https://github.com/atomistic-machine-learning/schnetpack) (👨‍💻 35 · 🔀 210 · 📦 84 · 📋 240 - 0% open · ⏱️ 22.07.2024): +- [GitHub](https://github.com/atomistic-machine-learning/schnetpack) (👨‍💻 35 · 🔀 200 · 📦 84 · 📋 240 - 0% open · ⏱️ 15.08.2024): ``` git clone https://github.com/atomistic-machine-learning/schnetpack ``` -- [PyPi](https://pypi.org/project/schnetpack) (📥 930 / month): +- [PyPi](https://pypi.org/project/schnetpack) (📥 830 / month): ``` pip install schnetpack ```
MatGL (Materials Graph Library) (🥇23 · ⭐ 250) - Graph deep learning library for materials. BSD-3 multifidelity -- [GitHub](https://github.com/materialsvirtuallab/matgl) (👨‍💻 17 · 🔀 58 · 📦 44 · 📋 86 - 2% open · ⏱️ 11.08.2024): +- [GitHub](https://github.com/materialsvirtuallab/matgl) (👨‍💻 17 · 🔀 58 · 📦 44 · 📋 87 - 2% open · ⏱️ 15.08.2024): ``` git clone https://github.com/materialsvirtuallab/matgl ``` -- [PyPi](https://pypi.org/project/m3gnet) (📥 590 / month): +- [PyPi](https://pypi.org/project/m3gnet) (📥 670 / month): ``` pip install m3gnet ``` @@ -1898,41 +2126,41 @@ _General models that learn a representations aka embeddings of atomistic systems ``` git clone https://github.com/divelab/DIG ``` -- [PyPi](https://pypi.org/project/dive-into-graphs) (📥 400 / month): +- [PyPi](https://pypi.org/project/dive-into-graphs) (📥 440 / month): ``` pip install dive-into-graphs ```
ALIGNN (🥈20 · ⭐ 200) - Atomistic Line Graph Neural Network https://scholar.google.com/citations?user=9Q-tNnwAAAAJ&hl=en. Custom -- [GitHub](https://github.com/usnistgov/alignn) (👨‍💻 7 · 🔀 77 · 📦 14 · 📋 55 - 56% open · ⏱️ 15.07.2024): +- [GitHub](https://github.com/usnistgov/alignn) (👨‍💻 7 · 🔀 77 · 📦 14 · 📋 57 - 57% open · ⏱️ 15.07.2024): ``` git clone https://github.com/usnistgov/alignn ``` -- [PyPi](https://pypi.org/project/alignn) (📥 730 / month): +- [PyPi](https://pypi.org/project/alignn) (📥 870 / month): ``` pip install alignn ```
-
Uni-Mol (🥈18 · ⭐ 640) - Official Repository for the Uni-Mol Series Methods. MIT pretrained +
e3nn-jax (🥈20 · ⭐ 170 · 📈) - jax library for E3 Equivariant Neural Networks. Apache-2 -- [GitHub](https://github.com/deepmodeling/Uni-Mol) (👨‍💻 16 · 🔀 120 · 📥 14K · 📋 150 - 40% open · ⏱️ 24.07.2024): +- [GitHub](https://github.com/e3nn/e3nn-jax) (👨‍💻 7 · 🔀 18 · 📦 36 · 📋 20 - 5% open · ⏱️ 14.08.2024): ``` - git clone https://github.com/dptech-corp/Uni-Mol + git clone https://github.com/e3nn/e3nn-jax + ``` +- [PyPi](https://pypi.org/project/e3nn-jax) (📥 2.7K / month): + ``` + pip install e3nn-jax ```
-
e3nn-jax (🥈18 · ⭐ 170) - jax library for E3 Equivariant Neural Networks. Apache-2 +
Uni-Mol (🥈18 · ⭐ 640) - Official Repository for the Uni-Mol Series Methods. MIT pretrained -- [GitHub](https://github.com/e3nn/e3nn-jax) (👨‍💻 7 · 🔀 18 · 📦 36 · 📋 20 - 5% open · ⏱️ 01.08.2024): +- [GitHub](https://github.com/deepmodeling/Uni-Mol) (👨‍💻 16 · 🔀 120 · 📥 15K · 📋 150 - 40% open · ⏱️ 14.08.2024): ``` - git clone https://github.com/e3nn/e3nn-jax - ``` -- [PyPi](https://pypi.org/project/e3nn-jax) (📥 2.5K / month): - ``` - pip install e3nn-jax + git clone https://github.com/deepmodeling/Uni-Mol ```
kgcnn (🥈18 · ⭐ 100) - Graph convolutions in Keras with TensorFlow, PyTorch or Jax. MIT @@ -1942,19 +2170,27 @@ _General models that learn a representations aka embeddings of atomistic systems ``` git clone https://github.com/aimat-lab/gcnn_keras ``` -- [PyPi](https://pypi.org/project/kgcnn) (📥 220 / month): +- [PyPi](https://pypi.org/project/kgcnn) (📥 230 / month): ``` pip install kgcnn ```
matsciml (🥈17 · ⭐ 130) - Open MatSci ML Toolkit is a framework for prototyping and scaling out deep learning models for materials discovery.. MIT workflows benchmarking -- [GitHub](https://github.com/IntelLabs/matsciml) (👨‍💻 11 · 🔀 17 · 📋 54 - 35% open · ⏱️ 09.08.2024): +- [GitHub](https://github.com/IntelLabs/matsciml) (👨‍💻 11 · 🔀 17 · 📋 54 - 35% open · ⏱️ 14.08.2024): ``` git clone https://github.com/IntelLabs/matsciml ```
+
Graphormer (🥈16 · ⭐ 2K · ➕) - Graphormer is a general-purpose deep learning backbone for molecular modeling. MIT transformer pretrained + +- [GitHub](https://github.com/microsoft/Graphormer) (👨‍💻 14 · 🔀 320 · 📋 150 - 57% open · ⏱️ 28.05.2024): + + ``` + git clone https://github.com/microsoft/Graphormer + ``` +
escnn (🥈14 · ⭐ 340 · 💤) - Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/. Custom - [GitHub](https://github.com/QUVA-Lab/escnn) (👨‍💻 10 · 🔀 42 · 📋 63 - 42% open · ⏱️ 17.10.2023): @@ -1962,20 +2198,28 @@ _General models that learn a representations aka embeddings of atomistic systems ``` git clone https://github.com/QUVA-Lab/escnn ``` -- [PyPi](https://pypi.org/project/escnn) (📥 490 / month): +- [PyPi](https://pypi.org/project/escnn) (📥 530 / month): ``` pip install escnn ```
+
HydraGNN (🥈14 · ⭐ 56 · ➕) - Distributed PyTorch implementation of multi-headed graph convolutional neural networks. BSD-3 + +- [GitHub](https://github.com/ORNL/HydraGNN) (👨‍💻 13 · 🔀 23 · 📦 1 · 📋 46 - 30% open · ⏱️ 06.08.2024): + + ``` + git clone https://github.com/ORNL/HydraGNN + ``` +
hippynn (🥈11 · ⭐ 65) - python library for atomistic machine learning. Custom workflows -- [GitHub](https://github.com/lanl/hippynn) (👨‍💻 14 · 🔀 23 · 📦 1 · 📋 14 - 42% open · ⏱️ 05.08.2024): +- [GitHub](https://github.com/lanl/hippynn) (👨‍💻 14 · 🔀 23 · 📦 1 · 📋 15 - 46% open · ⏱️ 14.08.2024): ``` git clone https://github.com/lanl/hippynn ```
-
Equiformer (🥈9 · ⭐ 180) - [ICLR23 Spotlight] Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs. MIT transformer +
Equiformer (🥉9 · ⭐ 190) - [ICLR23 Spotlight] Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs. MIT transformer - [GitHub](https://github.com/atomicarchitects/equiformer) (👨‍💻 2 · 🔀 36 · 📋 12 - 41% open · ⏱️ 18.07.2024): @@ -1983,7 +2227,19 @@ _General models that learn a representations aka embeddings of atomistic systems git clone https://github.com/atomicarchitects/equiformer ```
-
ai4material_design (🥈9 · ⭐ 6 · 💤) - Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of.. Apache-2 pretrained material-defect +
FAENet (🥉9 · ⭐ 25 · 💤) - Frame Averaging Equivariant GNN for materials modeling. MIT + +- [GitHub](https://github.com/vict0rsch/faenet) (👨‍💻 3 · 🔀 2 · 📦 2 · ⏱️ 12.10.2023): + + ``` + git clone https://github.com/vict0rsch/faenet + ``` +- [PyPi](https://pypi.org/project/faenet) (📥 62 / month): + ``` + pip install faenet + ``` +
+
ai4material_design (🥉9 · ⭐ 6 · 💤) - Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of.. Apache-2 pretrained material-defect - [GitHub](https://github.com/HSE-LAMBDA/ai4material_design) (👨‍💻 11 · 🔀 3 · ⏱️ 21.11.2023): @@ -1993,13 +2249,13 @@ _General models that learn a representations aka embeddings of atomistic systems
EquiformerV2 (🥉8 · ⭐ 180) - [ICLR24] EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations. MIT -- [GitHub](https://github.com/atomicarchitects/equiformer_v2) (👨‍💻 2 · 🔀 24 · 📋 16 - 87% open · ⏱️ 16.07.2024): +- [GitHub](https://github.com/atomicarchitects/equiformer_v2) (👨‍💻 2 · 🔀 24 · 📋 17 - 88% open · ⏱️ 16.07.2024): ``` git clone https://github.com/atomicarchitects/equiformer_v2 ```
-
graphite (🥉8 · ⭐ 53 · 📉) - A repository for implementing graph network models based on atomic structures. MIT +
graphite (🥉8 · ⭐ 53) - A repository for implementing graph network models based on atomic structures. MIT - [GitHub](https://github.com/LLNL/graphite) (👨‍💻 2 · 🔀 9 · 📦 11 · 📋 3 - 66% open · ⏱️ 08.08.2024): @@ -2015,37 +2271,38 @@ _General models that learn a representations aka embeddings of atomistic systems git clone https://github.com/usccolumbia/deeperGATGNN ```
-
Show 35 hidden projects... +
Show 36 hidden projects... - dgl-lifesci (🥇23 · ⭐ 700 · 💀) - Python package for graph neural networks in chemistry and biology. Apache-2 - benchmarking-gnns (🥈14 · ⭐ 2.5K · 💀) - Repository for benchmarking graph neural networks. MIT single-paper benchmarking - Crystal Graph Convolutional Neural Networks (CGCNN) (🥈12 · ⭐ 620 · 💀) - Crystal graph convolutional neural networks for predicting material properties. MIT - Neural fingerprint (nfp) (🥈12 · ⭐ 57 · 💀) - Keras layers for end-to-end learning with rdkit and pymatgen. Custom - Compositionally-Restricted Attention-Based Network (CrabNet) (🥈12 · ⭐ 12 · 💀) - Predict materials properties using only the composition information!. MIT +- pretrained-gnns (🥈10 · ⭐ 950 · 💀) - Strategies for Pre-training Graph Neural Networks. MIT pretrained - GDC (🥈10 · ⭐ 260 · 💀) - Graph Diffusion Convolution, as proposed in Diffusion Improves Graph Learning (NeurIPS 2019). MIT generative -- SE(3)-Transformers (🥈9 · ⭐ 480 · 💀) - code for the SE3 Transformers paper: https://arxiv.org/abs/2006.10503. MIT single-paper transformer -- molecularGNN_smiles (🥈9 · ⭐ 290 · 💀) - The code of a graph neural network (GNN) for molecules, which is based on learning representations of r-radius.. Apache-2 -- GATGNN: Global Attention Graph Neural Network (🥈9 · ⭐ 67 · 💀) - Pytorch Repository for our work: Graph convolutional neural networks with global attention for improved materials.. MIT -- UVVisML (🥈9 · ⭐ 21 · 💀) - Predict optical properties of molecules with machine learning. MIT optical-properties single-paper probabilistic +- SE(3)-Transformers (🥉9 · ⭐ 480 · 💀) - code for the SE3 Transformers paper: https://arxiv.org/abs/2006.10503. MIT single-paper transformer +- molecularGNN_smiles (🥉9 · ⭐ 290 · 💀) - The code of a graph neural network (GNN) for molecules, which is based on learning representations of r-radius.. Apache-2 +- GATGNN: Global Attention Graph Neural Network (🥉9 · ⭐ 67 · 💀) - Pytorch Repository for our work: Graph convolutional neural networks with global attention for improved materials.. MIT +- UVVisML (🥉9 · ⭐ 21 · 💀) - Predict optical properties of molecules with machine learning. MIT optical-properties single-paper probabilistic - CGAT (🥉8 · ⭐ 25 · 💀) - Crystal graph attention neural networks for materials prediction. MIT -- FAENet (🥉8 · ⭐ 25 · 💤) - MIT - T-e3nn (🥉8 · ⭐ 8 · 💀) - Time-reversal Euclidean neural networks based on e3nn. MIT magnetism +- tensorfieldnetworks (🥉7 · ⭐ 150 · 💀) - Rotation- and translation-equivariant neural networks for 3D point clouds. MIT - DTNN (🥉7 · ⭐ 76 · 💀) - Deep Tensor Neural Network. MIT - Cormorant (🥉7 · ⭐ 59 · 💀) - Codebase for Cormorant Neural Networks. Custom - AdsorbML (🥉7 · ⭐ 35 · 💀) - MIT surface-science single-paper - escnn_jax (🥉7 · ⭐ 26 · 💀) - Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/. Custom - ML4pXRDs (🥉7 · 💀) - Contains code to train neural networks based on simulated powder XRDs from synthetic crystals. MIT XRD single-paper -- tensorfieldnetworks (🥉6 · ⭐ 150 · 💀) - MIT - MACE-Layer (🥉6 · ⭐ 33 · 💀) - Higher order equivariant graph neural networks for 3D point clouds. MIT - charge_transfer_nnp (🥉6 · ⭐ 28 · 💀) - Graph neural network potential with charge transfer. MIT electrostatics - GLAMOUR (🥉6 · ⭐ 20 · 💀) - Graph Learning over Macromolecule Representations. MIT single-paper - Autobahn (🥉5 · ⭐ 30 · 💀) - Repository for Autobahn: Automorphism Based Graph Neural Networks. MIT +- FieldSchNet (🥉5 · ⭐ 16 · 💀) - Deep neural network for molecules in external fields. MIT - SCFNN (🥉5 · ⭐ 15 · 💀) - Self-consistent determination of long-range electrostatics in neural network potentials. MIT C++ electrostatics single-paper - CraTENet (🥉5 · ⭐ 13 · 💀) - An attention-based deep neural network for thermoelectric transport properties. MIT transport-phenomena +- EGraFFBench (🥉5 · ⭐ 8 · 💤) - Unlicensed single-paper benchmarking ML-IAP - Per-Site CGCNN (🥉5 · ⭐ 1 · 💀) - Crystal graph convolutional neural networks for predicting material properties. MIT pretrained single-paper - Per-site PAiNN (🥉5 · ⭐ 1 · 💀) - Fork of PaiNN for PerovskiteOrderingGCNNs. MIT probabilistic pretrained single-paper -- Atom2Vec (🥉4 · ⭐ 31) - Atom2Vec: a simple way to describe atoms for machine learning. Unlicensed -- FieldSchNet (🥉4 · ⭐ 16 · 💀) - MIT +- Atom2Vec (🥉4 · ⭐ 32) - Atom2Vec: a simple way to describe atoms for machine learning. Unlicensed - Graph Transport Network (🥉4 · ⭐ 16 · 💀) - Graph transport network (GTN), as proposed in Scalable Optimal Transport in High Dimensions for Graph Distances,.. Custom transport-phenomena - gkx: Green-Kubo Method in JAX (🥉4 · ⭐ 3) - Green-Kubo + JAX + MLPs = Anharmonic Thermal Conductivities Done Fast. MIT transport-phenomena - atom_by_atom (🥉3 · ⭐ 6 · 💤) - Atom-by-atom design of metal oxide catalysts for the oxygen evolution reaction with Machine Learning. Unlicensed surface-science single-paper @@ -2061,9 +2318,23 @@ _General models that learn a representations aka embeddings of atomistic systems _Machine-learned interatomic potentials (ML-IAP) that have been trained on large, chemically and structural diverse datasets. For materials, this means e.g. datasets that include a majority of the periodic table._ -
CHGNet (🥇22 · ⭐ 220) - Pretrained universal neural network potential for charge-informed atomistic modeling https://chgnet.lbl.gov. Custom ML-IAP MD pretrained electrostatics magnetism structure-relaxation +🔗 TeaNet - Universal neural network interatomic potential inspired by iterative electronic relaxations.. ML-IAP + +🔗 PreFerred Potential (PFP) - Universal neural network potential for material discovery https://doi.org/10.1038/s41467-022-30687-9. ML-IAP proprietary + +🔗 MatterSim - A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures https://doi.org/10.48550/arXiv.2405.04967. ML-IAP active-learning proprietary + +
DPA-2 (🥇26 · ⭐ 1.4K · ➕) - Towards a universal large atomic model for molecular and material simulation https://doi.org/10.48550/arXiv.2312.15492. LGPL-3.0 ML-IAP pretrained workflows datasets + +- [GitHub](https://github.com/deepmodeling/deepmd-kit) (👨‍💻 69 · 🔀 480 · 📥 38K · 📦 16 · 📋 750 - 10% open · ⏱️ 06.07.2024): + + ``` + git clone https://github.com/deepmodeling/deepmd-kit + ``` +
+
CHGNet (🥈22 · ⭐ 220) - Pretrained universal neural network potential for charge-informed atomistic modeling https://chgnet.lbl.gov. Custom ML-IAP MD pretrained electrostatics magnetism structure-relaxation -- [GitHub](https://github.com/CederGroupHub/chgnet) (👨‍💻 7 · 🔀 58 · 📦 29 · 📋 50 - 4% open · ⏱️ 01.08.2024): +- [GitHub](https://github.com/CederGroupHub/chgnet) (👨‍💻 7 · 🔀 58 · 📦 30 · 📋 51 - 5% open · ⏱️ 01.08.2024): ``` git clone https://github.com/CederGroupHub/chgnet @@ -2073,9 +2344,37 @@ _Machine-learned interatomic potentials (ML-IAP) that have been trained on large pip install chgnet ```
+
SevenNet (🥉14 · ⭐ 86 · ➕) - SevenNet (Scalable EquiVariance Enabled Neural Network) is a graph neural network interatomic potential package that.. GPL-3.0 ML-IAP MD pretrained + +- [GitHub](https://github.com/MDIL-SNU/SevenNet) (👨‍💻 6 · 🔀 9 · 📦 1 · 📋 8 - 25% open · ⏱️ 30.07.2024): + + ``` + git clone https://github.com/MDIL-SNU/SevenNet + ``` +
+
MACE-MP (🥉12 · ⭐ 33 · ➕) - Pretrained foundation models for materials chemistry. MIT ML-IAP pretrained rep-learn MD + +- [GitHub](https://github.com/ACEsuit/mace-mp) (👨‍💻 2 · 🔀 5 · 📥 21K · 📋 7 - 14% open · ⏱️ 24.04.2024): + + ``` + git clone https://github.com/ACEsuit/mace-mp + ``` +- [PyPi](https://pypi.org/project/mace-torch) (📥 11K / month): + ``` + pip install mace-torch + ``` +
+
Joint Multidomain Pre-Training (JMP) (🥉5 · ⭐ 32 · 🐣) - Code for From Molecules to Materials Pre-training Large Generalizable Models for Atomic Property Prediction. CC-BY-NC-4.0 pretrained ML-IAP general-tool + +- [GitHub](https://github.com/facebookresearch/JMP) (🔀 4 · ⏱️ 07.05.2024): + + ``` + git clone https://github.com/facebookresearch/JMP + ``` +
Show 1 hidden projects... -- M3GNet (🥉17 · ⭐ 220 · 💀) - Materials graph network with 3-body interactions featuring a DFT surrogate crystal relaxer and a state-of-the-art.. BSD-3 ML-IAP pretrained +- M3GNet (🥈17 · ⭐ 220 · 💀) - Materials graph network with 3-body interactions featuring a DFT surrogate crystal relaxer and a state-of-the-art.. BSD-3 ML-IAP pretrained

@@ -2092,7 +2391,7 @@ _Projects that focus on unsupervised learning (USL) for atomistic ML, such as di ``` git clone https://github.com/sissa-data-science/DADApy ``` -- [PyPi](https://pypi.org/project/dadapy) (📥 150 / month): +- [PyPi](https://pypi.org/project/dadapy) (📥 130 / month): ``` pip install dadapy ``` @@ -2108,8 +2407,8 @@ _Projects that focus on unsupervised learning (USL) for atomistic ML, such as di
Show 5 hidden projects... - Sketchmap (🥈8 · ⭐ 44 · 💀) - Suite of programs to perform non-linear dimensionality reduction -- sketch-map in particular. GPL-3.0 C++ -- Coarse-Graining-Auto-encoders (🥉4 · ⭐ 21 · 💀) - Unlicensed single-paper -- paper-ml-robustness-material-property (🥉4 · ⭐ 4 · 💀) - BSD-3 datasets single-paper +- Coarse-Graining-Auto-encoders (🥉5 · ⭐ 21 · 💀) - Implementation of coarse-graining Autoencoders. Unlicensed single-paper +- paper-ml-robustness-material-property (🥉5 · ⭐ 4 · 💀) - A critical examination of robustness and generalizability of machine learning prediction of materials properties. BSD-3 datasets single-paper - KmdPlus (🥉2 · ⭐ 3 · 💤) - This module contains a class for treating kernel mean descriptor (KMD), and a function for generating descriptors with.. Unlicensed - Descriptor Embedding and Clustering for Atomisitic-environment Framework (DECAF) ( ⭐ 2) - Provides a workflow to obtain clustering of local environments in dataset of structures. Unlicensed
@@ -2121,33 +2420,33 @@ _Projects that focus on unsupervised learning (USL) for atomistic ML, such as di _Projects that focus on visualization (viz.) for atomistic ML._ -
pymatviz (🥇20 · ⭐ 150) - A toolkit for visualizations in materials informatics. MIT general-tool probabilistic +
pymatviz (🥇21 · ⭐ 150 · 📈) - A toolkit for visualizations in materials informatics. MIT general-tool probabilistic - [GitHub](https://github.com/janosh/pymatviz) (👨‍💻 7 · 🔀 12 · 📦 8 · 📋 41 - 24% open · ⏱️ 07.08.2024): ``` git clone https://github.com/janosh/pymatviz ``` -- [PyPi](https://pypi.org/project/pymatviz) (📥 2.5K / month): +- [PyPi](https://pypi.org/project/pymatviz) (📥 2.1K / month): ``` pip install pymatviz ```
Chemiscope (🥉19 · ⭐ 120) - An interactive structure/property explorer for materials and molecules. BSD-3 JavaScript -- [GitHub](https://github.com/lab-cosmo/chemiscope) (👨‍💻 22 · 🔀 29 · 📥 240 · 📦 6 · 📋 120 - 27% open · ⏱️ 05.08.2024): +- [GitHub](https://github.com/lab-cosmo/chemiscope) (👨‍💻 22 · 🔀 29 · 📥 250 · 📦 6 · 📋 120 - 27% open · ⏱️ 05.08.2024): ``` git clone https://github.com/lab-cosmo/chemiscope ``` -- [npm](https://www.npmjs.com/package/chemiscope) (📥 45 / month): +- [npm](https://www.npmjs.com/package/chemiscope) (📥 46 / month): ``` npm install chemiscope ```
-
ZnDraw (🥉18 · ⭐ 27) - A powerful tool for visualizing, modifying, and analysing atomistic systems. EPL-2.0 MD generative JavaScript +
ZnDraw (🥉19 · ⭐ 29) - A powerful tool for visualizing, modifying, and analysing atomistic systems. EPL-2.0 MD generative JavaScript -- [GitHub](https://github.com/zincware/ZnDraw) (👨‍💻 7 · 🔀 2 · 📦 3 · 📋 270 - 25% open · ⏱️ 09.08.2024): +- [GitHub](https://github.com/zincware/ZnDraw) (👨‍💻 7 · 🔀 2 · 📦 3 · 📋 280 - 24% open · ⏱️ 14.08.2024): ``` git clone https://github.com/zincware/ZnDraw @@ -2167,12 +2466,12 @@ _Projects and models that focus on quantities of wavefunction theory methods, su
DeepQMC (🥇17 · ⭐ 340) - Deep learning quantum Monte Carlo for electrons in real space. MIT -- [GitHub](https://github.com/deepqmc/deepqmc) (👨‍💻 13 · 🔀 59 · 📦 2 · 📋 43 - 13% open · ⏱️ 23.02.2024): +- [GitHub](https://github.com/deepqmc/deepqmc) (👨‍💻 13 · 🔀 58 · 📦 2 · 📋 44 - 11% open · ⏱️ 14.08.2024): ``` git clone https://github.com/deepqmc/deepqmc ``` -- [PyPi](https://pypi.org/project/deepqmc) (📥 82 / month): +- [PyPi](https://pypi.org/project/deepqmc) (📥 100 / month): ``` pip install deepqmc ``` @@ -2182,7 +2481,7 @@ _Projects and models that focus on quantities of wavefunction theory methods, su - [GitHub](https://github.com/google-deepmind/ferminet) (👨‍💻 18 · 🔀 110 · 📋 45 - 2% open · ⏱️ 04.06.2024): ``` - git clone https://github.com/deepmind/ferminet + git clone https://github.com/google-deepmind/ferminet ```
DeepErwin (🥉11 · ⭐ 46) - DeepErwin is a python 3.8+ package that implements and optimizes JAX 2.x wave function models for numerical solutions.. Custom @@ -2192,13 +2491,14 @@ _Projects and models that focus on quantities of wavefunction theory methods, su ``` git clone https://github.com/mdsunivie/deeperwin ``` -- [PyPi](https://pypi.org/project/deeperwin) (📥 38 / month): +- [PyPi](https://pypi.org/project/deeperwin) (📥 46 / month): ``` pip install deeperwin ```
-
Show 1 hidden projects... +
Show 2 hidden projects... +- ACEpsi.jl (🥉6 · ⭐ 2 · 💤) - ACE wave function parameterizations. MIT rep-eng Julia - SchNOrb (🥉5 · ⭐ 58 · 💀) - Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions. MIT

@@ -2209,7 +2509,7 @@ _Projects and models that focus on quantities of wavefunction theory methods, su
Show 2 hidden projects... -- pretrained-gnns (🥇10 · ⭐ 950 · 💀) - Strategies for Pre-training Graph Neural Networks. MIT pretrained +- KSR-DFT (🥇6 · ⭐ 4 · 💀) - Kohn-Sham regularizer for machine-learned DFT functionals. Apache-2
diff --git a/history/2024-08-15_changes.md b/history/2024-08-15_changes.md new file mode 100644 index 0000000..9d053fa --- /dev/null +++ b/history/2024-08-15_changes.md @@ -0,0 +1,72 @@ +## 📈 Trending Up + +_Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity._ + +- paper-qa (🥇27 · ⭐ 3.8K · 📈) - LLM Chain for answering questions from documents with citations. Apache-2 ai-agent +- DScribe (🥇23 · ⭐ 390 · 📈) - DScribe is a python package for creating machine learning descriptors for atomistic systems. Apache-2 +- pymatviz (🥇21 · ⭐ 150 · 📈) - A toolkit for visualizations in materials informatics. MIT general-tool probabilistic +- e3nn-jax (🥈20 · ⭐ 170 · 📈) - jax library for E3 Equivariant Neural Networks. Apache-2 + +## 📉 Trending Down + +_Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity._ + +- dpdata (🥇23 · ⭐ 200 · 📉) - Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc. LGPL-3.0 +- Best-of Machine Learning with Python (🥇21 · ⭐ 16K · 📉) - A ranked list of awesome machine learning Python libraries. Updated weekly. CC-BY-4.0 general-ml Python +- Open Databases Integration for Materials Design (OPTIMADE) (🥈17 · ⭐ 76 · 📉) - Specification of a common REST API for access to materials databases. CC-BY-4.0 +- openmm-torch (🥈16 · ⭐ 180 · 📉) - OpenMM plugin to define forces with neural networks. Custom ML-IAP C++ +- MatBench Discovery (🥈16 · ⭐ 82 · 📉) - An evaluation framework for machine learning models simulating high-throughput materials discovery. MIT datasets benchmarking model-repository + +## ➕ Added Projects + +_Projects that were recently added to this best-of list._ + +- DPA-2 (🥇26 · ⭐ 1.4K · ➕) - Towards a universal large atomic model for molecular and material simulation https://doi.org/10.48550/arXiv.2312.15492. LGPL-3.0 ML-IAP pretrained workflows datasets +- Graphormer (🥈16 · ⭐ 2K · ➕) - Graphormer is a general-purpose deep learning backbone for molecular modeling. MIT transformer pretrained +- OpenML (🥈16 · ⭐ 660 · 💤) - Open Machine Learning. BSD-3 datasets +- PMTransformer (🥇16 · ⭐ 82 · ➕) - Universal Transfer Learning in Porous Materials, including MOFs. MIT transfer-learning pretrained transformer +- SevenNet (🥉14 · ⭐ 86 · ➕) - SevenNet (Scalable EquiVariance Enabled Neural Network) is a graph neural network interatomic potential package that.. GPL-3.0 ML-IAP MD pretrained +- HydraGNN (🥈14 · ⭐ 56 · ➕) - Distributed PyTorch implementation of multi-headed graph convolutional neural networks. BSD-3 +- ChatMOF (🥈13 · ⭐ 53 · ➕) - Predict and Inverse design for metal-organic framework with large-language models (llms). MIT generative +- MACE-MP (🥉12 · ⭐ 33 · ➕) - Pretrained foundation models for materials chemistry. MIT ML-IAP pretrained rep-learn MD +- Neural-Network-Models-for-Chemistry (🥈11 · ⭐ 59 · ➕) - A collection of Nerual Network Models for chemistry. Unlicensed rep-learn +- load-atoms (🥈11 · ⭐ 37 · ➕) - download and manipulate atomistic datasets. MIT data-structures +- AI4Chemistry course (🥈10 · ⭐ 130 · ➕) - EPFL AI for chemistry course, Spring 2023. https://schwallergroup.github.io/ai4chem_course. MIT chemistry +- HamGNN (🥈9 · ⭐ 49 · ➕) - An E(3) equivariant Graph Neural Network for predicting electronic Hamiltonian matrix. GPL-3.0 rep-learn magnetism C-lang +- AI for Science paper collection (🥉9 · ⭐ 43 · 🐣) - List the AI for Science papers accepted by top conferences. Apache-2 +- Q-stack (🥈9 · ⭐ 14 · ➕) - Stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML). MIT excited-states general-tool +- MADICES Awesome Interoperability (🥉9 · ⭐ 1 · ➕) - Linked data interoperability resources of the Machine-actionable data interoperability for the chemical sciences.. MIT datasets +- Awesome-Graph-Generation (🥉8 · ⭐ 260 · ➕) - A curated list of up-to-date graph generation papers and resources. Unlicensed rep-learn +- Awesome Neural SBI (🥉8 · ⭐ 80 · ➕) - Community-sourced list of papers and resources on neural simulation-based inference. MIT active-learning +- SiMGen (🥉8 · ⭐ 11 · ➕) - Zero Shot Molecular Generation via Similarity Kernels. MIT viz +- Awesome-Crystal-GNNs (🥉7 · ⭐ 54 · ➕) - This repository contains a collection of resources and papers on GNN Models on Crystal Solid State Materials. MIT +- AIS Square (🥉7 · ⭐ 10 · 💤) - A collaborative and open-source platform for sharing AI for Science datasets, models, and workflows. Home of the.. LGPL-3.0 community-resource model-repository +- rho_learn (🥉7 · ⭐ 3 · ➕) - A proof-of-concept framework for torch-based learning of the electron density and related scalar fields. MIT +- ChargE3Net (🥉6 · ⭐ 28 · ➕) - Higher-order equivariant neural networks for charge density prediction in materials. MIT rep-learn +- ML for catalysis tutorials (🥉6 · ⭐ 8 · 💀) - A jupyter book repo for tutorial on how to use OCP ML models for catalysis. MIT +- Cephalo (🥉6 · ⭐ 5 · 🐣) - Multimodal Vision-Language Models for Bio-Inspired Materials Analysis and Design. Apache-2 generative multimodal pretrained +- KSR-DFT (🥇6 · ⭐ 4 · 💀) - Kohn-Sham regularizer for machine-learned DFT functionals. Apache-2 +- ACEpsi.jl (🥉6 · ⭐ 2 · 💤) - ACE wave function parameterizations. MIT rep-eng Julia +- crystal-text-llm (🥉5 · ⭐ 63 · 🐣) - Large language models to generate stable crystals. CC-BY-NC-4.0 materials-discovery +- The Perovskite Database Project (🥉5 · ⭐ 58 · ➕) - Perovskite Database Project aims at making all perovskite device data, both past and future, available in a form.. Unlicensed community-resource +- Joint Multidomain Pre-Training (JMP) (🥉5 · ⭐ 32 · 🐣) - Code for From Molecules to Materials Pre-training Large Generalizable Models for Atomic Property Prediction. CC-BY-NC-4.0 pretrained ML-IAP general-tool +- QMLearn (🥈5 · ⭐ 11 · 💀) - Quantum Machine Learning by learning one-body reduced density matrices in the AO basis... MIT +- InfGCN for Electron Density Estimation (🥉5 · ⭐ 10 · 💤) - Official implementation of the NeurIPS 23 spotlight paper of InfGCN. MIT rep-learn +- GN-MM (🥉5 · ⭐ 10 · 💀) - The Gaussian Moment Neural Network (GM-NN) package developed for large-scale atomistic simulations employing atomistic.. MIT active-learning MD rep-eng magnetism +- EGraFFBench (🥉5 · ⭐ 8 · 💤) - Unlicensed single-paper benchmarking ML-IAP +- GDB-9-Ex9 and ORNL_AISD-Ex (🥉5 · ⭐ 6 · 💤) - Distributed computing workflow for generation and analysis of large scale molecular datasets obtained running multi-.. Unlicensed +- MXenes4HER (🥉5 · ⭐ 5 · 💀) - Predicting hydrogen evolution (HER) activity over 4500 MXene materials https://doi.org/10.1039/D3TA00344B. GPL-3.0 materials-discovery catalysis scikit-learn single-paper +- Geometric-GNNs (🥉4 · ⭐ 85 · ➕) - List of Geometric GNNs for 3D atomic systems. Unlicensed datasets educational rep-learn +- MAGUS (🥉4 · ⭐ 56 · 💀) - Machine learning And Graph theory assisted Universal structure Searcher. Unlicensed structure-prediction active-learning +- Allegro-Legato (🥉4 · ⭐ 19 · 💤) - An extension of Allegro with enhanced robustness and time-to-failure. MIT MD +- Mapping out phase diagrams with generative classifiers (🥉4 · ⭐ 7 · 💀) - Repository for our ``Mapping out phase diagrams with generative models paper. MIT phase-transition +- automl-materials (🥉4 · ⭐ 5 · 💀) - AutoML for Regression Tasks on Small Tabular Data in Materials Design. MIT autoML benchmarking single-paper +- ML-atomate (🥉4 · ⭐ 3 · 💤) - Machine learning-assisted Atomate code for autonomous computational materials screening. GPL-3.0 active-learning workflows +- AI4ChemMat Hands-On Series (🥉4 · ⭐ 1 · ➕) - Hands-On Series organized by Chemistry and Materials working group at Argonne Nat Lab. MPL-2.0 +- ALEBREW (🥉3 · ⭐ 9 · 🐣) - Official repository for the paper Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic.. Custom ML-IAP MD +- PyFLAME (🥉3 · 💀) - An automated approach for developing neural network interatomic potentials with FLAME.. Unlicensed active-learning structure-prediction structure-optimization rep-eng Fortran +- tmQM_wB97MV Dataset (🥉2 · ⭐ 5 · ➕) - Code for Applying Large Graph Neural Networks to Predict Transition Metal Complex Energies Using the tmQM_wB97MV.. Unlicensed catalysis rep-learn +- AisNet (🥉2 · ⭐ 3 · 💀) - A Universal Interatomic Potential Neural Network with Encoded Local Environment Features.. MIT +- nnp-pre-training (🥉1 · ⭐ 6 · 💤) - Synthetic pre-training for neural-network interatomic potentials. Unlicensed pretrained MD +- mag-ace (🥉1 · ⭐ 2 · 💤) - Magnetic ACE potential. FORTRAN interface for LAMMPS SPIN package. Unlicensed magnetism MD Fortran + diff --git a/history/2024-08-15_projects.csv b/history/2024-08-15_projects.csv new file mode 100644 index 0000000..8e68f5e --- /dev/null +++ b/history/2024-08-15_projects.csv @@ -0,0 +1,426 @@ +,name,resource,category,license,homepage,description,projectrank,show,labels,github_id,github_url,created_at,updated_at,last_commit_pushed_at,commit_count,recent_commit_count,fork_count,watchers_count,pr_count,open_issue_count,closed_issue_count,star_count,latest_stable_release_published_at,latest_stable_release_number,release_count,contributor_count,pypi_id,conda_id,dependent_project_count,github_dependent_project_count,pypi_url,pypi_monthly_downloads,monthly_downloads,conda_url,conda_latest_release_published_at,conda_total_downloads,projectrank_placing,dockerhub_id,dockerhub_url,dockerhub_latest_release_published_at,dockerhub_stars,dockerhub_pulls,github_release_downloads,updated_github_id,trending,new_addition,maven_id,maven_url,npm_id,npm_url,npm_monthly_downloads,gitlab_id,gitlab_url,docs_url,ignore +0,AI for Science Map,True,community,GPL-3.0 license,https://www.air4.science/map,"Interactive mindmap of the AI4Science research field, including atomistic machine learning, including papers,..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +1,Atomic Cluster Expansion,True,community,,https://cortner.github.io/ACEweb/,Atomic Cluster Expansion (ACE) community homepage.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +2,CrystaLLM,True,community,https://materialis.ai/terms.html,https://crystallm.com,Generate a crystal structure from a composition.,0,True,"['language-models', 'generative', 'pretrained', 'transformer']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +3,GAP-ML.org community homepage,True,community,,https://gap-ml.org/,,0,True,['ml-iap'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +4,matsci.org,True,community,,https://matsci.org/,"A community forum for the discussion of anything materials science, with a focus on computational materials science..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +5,Matter Modeling Stack Exchange - Machine Learning,True,community,,https://mattermodeling.stackexchange.com/questions/tagged/machine-learning,"Forum StackExchange, site Matter Modeling, ML-tagged questions.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +6,Alexandria Materials Database,True,datasets,CC-BY-4.0,https://alexandria.icams.rub.de/,"A database of millions of theoretical crystal structures (3D, 2D and 1D) discovered by machine learning accelerated..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +7,Catalysis Hub,True,datasets,,https://www.catalysis-hub.org/,A web-platform for sharing data and software for computational catalysis research!.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +8,Citrination Datasets,True,datasets,MIT,https://citrination.com/,AI-Powered Materials Data Platform. Open Citrination has been decommissioned.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +9,crystals.ai,True,datasets,,https://crystals.ai/,Curated datasets for reproducible AI in materials science.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +10,DeepChem Models,True,datasets,,https://huggingface.co/DeepChem,DeepChem models on HuggingFace.,0,True,"['model-repository', 'pretrained', 'language-models']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +11,Graphs of Materials Project 20190401,True,datasets,MIT,https://figshare.com/articles/dataset/Graphs_of_Materials_Project_20190401/8097992,The dataset used to train the MEGNet interatomic potential.,0,True,['ml-iap'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +12,HME21 Dataset,True,datasets,,https://doi.org/10.6084/m9.figshare.19658538,High-temperature multi-element 2021 dataset for the PreFerred Potential (PFP)..,0,True,['uip'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +13,JARVIS-Leaderboard,True,datasets,https://github.com/usnistgov/jarvis_leaderboard/blob/main/LICENSE.rst,https://pages.nist.gov/jarvis_leaderboard/,Explore State-of-the-Art Materials Design Methods: https://www.nature.com/articles/s41524-024-01259-w.,0,True,"['model-repository', 'benchmarking', 'community', 'educational']",usnistgov/jarvis_leaderboard,https://github.com/usnistgov/jarvis_leaderboard,2022-07-15 16:48:33,2024-08-14 17:30:42,2024-08-14 04:18:28,823.0,11.0,42.0,5.0,320.0,6.0,2.0,55.0,2024-05-16 16:20:41,2024.4.26,28.0,33.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +14,Materials Project - Charge Densities,True,datasets,,https://materialsproject.org/ml/charge_densities,Materials Project has started offering charge density information available for download via their public API.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +15,Materials Project Trajectory (MPtrj) Dataset,True,datasets,MIT,https://figshare.com/articles/dataset/Materials_Project_Trjectory_MPtrj_Dataset/23713842,The dataset used to train the CHGNet universal potential.,0,True,['uip'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +16,matterverse.ai,True,datasets,,https://matterverse.ai/,Database of yet-to-be-sythesized materials predicted using state-of-the-art machine learning algorithms.,0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +17,MPF.2021.2.8,True,datasets,,https://figshare.com/articles/dataset/MPF_2021_2_8/19470599,The dataset used to train the M3GNet universal potential.,0,True,['uip'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +18,NRELMatDB,True,datasets,,https://materials.nrel.gov/,"Computational materials database with the specific focus on materials for renewable energy applications including, but..",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +19,Quantum-Machine.org Datasets,True,datasets,,http://quantum-machine.org/datasets/,"Collection of datasets, including QM7, QM9, etc. MD, DFT. Small organic molecules, mostly.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +20,sGDML Datasets,True,datasets,,http://sgdml.org/#datasets,"MD17, MD22, DFT datasets.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +21,MoleculeNet,True,datasets,,https://moleculenet.org/,A Benchmark for Molecular Machine Learning.,0,True,['benchmarking'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +22,ZINC15,True,datasets,,https://zinc15.docking.org/,A free database of commercially-available compounds for virtual screening. ZINC contains over 230 million purchasable..,0,True,"['graph', 'biomolecules']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +23,ZINC20,True,datasets,,https://zinc.docking.org/,A free database of commercially-available compounds for virtual screening. ZINC contains over 230 million purchasable..,0,True,"['graph', 'biomolecules']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +24,AI for Science 101,True,educational,,https://ai4science101.github.io/,,0,True,"['community', 'rep-learn']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +25,AL4MS 2023 workshop tutorials,True,educational,,https://sites.utu.fi/al4ms2023/media-and-tutorials/,,0,True,['active-learning'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +26,Quantum Chemistry in the Age of Machine Learning,True,educational,,https://www.elsevier.com/books-and-journals/book-companion/9780323900492,"Book, 2022.",0,True,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +27,MatterGen,True,materials-discovery,,https://www.microsoft.com/en-us/research/blog/mattergen-property-guided-materials-design/,A generative model for inorganic materials design https://doi.org/10.48550/arXiv.2312.03687.,0,True,"['generative', 'proprietary']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +28,IKS-PIML,True,ml-dft,,https://rodare.hzdr.de/record/2720,Code and generated data for the paper Inverting the Kohn-Sham equations with physics-informed machine learning..,0,True,"['neural-operator', 'pinn', 'datasets', 'single-paper']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +29,TeaNet,True,uip,,https://doi.org/10.24433/CO.0749085.v1,Universal neural network interatomic potential inspired by iterative electronic relaxations..,0,True,['ml-iap'],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +30,PreFerred Potential (PFP),True,uip,,https://www.nature.com/articles/s41467-022-30687-9#code-availability,Universal neural network potential for material discovery https://doi.org/10.1038/s41467-022-30687-9.,0,True,"['ml-iap', 'proprietary']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +31,MatterSim,True,uip,,https://www.microsoft.com/en-us/research/blog/mattersim-a-deep-learning-model-for-materials-under-real-world-conditions/,"A Deep Learning Atomistic Model Across Elements, Temperatures and Pressures https://doi.org/10.48550/arXiv.2405.04967.",0,True,"['ml-iap', 'active-learning', 'proprietary']",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +32,Deep Graph Library (DGL),,rep-learn,Apache-2.0,https://github.com/dmlc/dgl,"Python package built to ease deep learning on graph, on top of existing DL frameworks.",39,True,,dmlc/dgl,https://github.com/dmlc/dgl,2018-04-20 14:49:09,2024-08-15 08:19:13,2024-08-15 08:19:13,4328.0,221.0,2920.0,172.0,4948.0,402.0,2340.0,13294.0,2024-06-28 00:16:49,2.3.0,106.0,295.0,dgl,dglteam/dgl,282.0,282.0,https://pypi.org/project/dgl,124311.0,129676.0,https://anaconda.org/dglteam/dgl,2024-06-28 00:12:10.120,364859.0,1.0,,,,,,,,,,,,,,,,,, +33,DeepChem,,general-tool,MIT,https://github.com/deepchem/deepchem,"Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, Materials Science and Biology.",36,True,,deepchem/deepchem,https://github.com/deepchem/deepchem,2015-09-24 23:20:28,2024-08-15 01:10:20,2024-08-12 17:31:56,10519.0,53.0,1596.0,145.0,2404.0,460.0,1236.0,5346.0,2024-04-03 16:21:23,2.8.0,20.0,247.0,deepchem,conda-forge/deepchem,415.0,415.0,https://pypi.org/project/deepchem,44420.0,46660.0,https://anaconda.org/conda-forge/deepchem,2024-04-05 16:46:45.105,108565.0,1.0,deepchemio/deepchem,https://hub.docker.com/r/deepchemio/deepchem,2024-08-12 21:19:09.208650,5.0,7413.0,,,,,,,,,,,,, +34,PyG Models,,rep-learn,MIT,https://github.com/pyg-team/pytorch_geometric/tree/master/torch_geometric/nn/models,Representation learning models implemented in PyTorch Geometric.,35,True,['general-ml'],pyg-team/pytorch_geometric,https://github.com/pyg-team/pytorch_geometric,2017-10-06 16:03:03,2024-08-15 09:07:02,2024-08-14 13:04:40,7594.0,74.0,3511.0,252.0,3085.0,850.0,2644.0,20787.0,2024-04-19 11:37:44,2.5.3,40.0,513.0,,,6260.0,6260.0,,,,,,,1.0,,,,,,,,,,,,,,,,,, +35,RDKit,,general-tool,BSD-3-Clause,https://github.com/rdkit/rdkit,,32,True,['lang-cpp'],rdkit/rdkit,https://github.com/rdkit/rdkit,2013-05-12 06:19:15,2024-08-15 04:49:59,2024-08-13 13:39:06,7813.0,77.0,831.0,82.0,3189.0,923.0,2290.0,2565.0,2024-07-19 09:34:37,Release_2024_03_5,100.0,228.0,rdkit,rdkit/rdkit,3.0,3.0,https://pypi.org/project/rdkit,949635.0,970706.0,https://anaconda.org/rdkit/rdkit,2023-06-16 12:54:07.547,2569473.0,1.0,,,,,,1247.0,,,,,,,,,,,, +36,e3nn,,rep-learn,MIT,https://github.com/e3nn/e3nn,A modular framework for neural networks with Euclidean symmetry.,28,True,,e3nn/e3nn,https://github.com/e3nn/e3nn,2020-01-31 13:06:42,2024-08-15 07:18:36,2024-07-26 23:00:39,2173.0,12.0,132.0,19.0,222.0,19.0,133.0,923.0,2024-07-27 03:01:58,0.5.2,29.0,31.0,e3nn,conda-forge/e3nn,281.0,281.0,https://pypi.org/project/e3nn,316367.0,317108.0,https://anaconda.org/conda-forge/e3nn,2023-06-18 08:41:30.723,20014.0,1.0,,,,,,,,,,,,,,,,,, +37,paper-qa,,language-models,Apache-2.0,https://github.com/Future-House/paper-qa,LLM Chain for answering questions from documents with citations.,27,True,['ai-agent'],whitead/paper-qa,https://github.com/Future-House/paper-qa,2023-02-05 01:07:25,2024-08-14 21:02:09,2024-08-14 21:02:03,249.0,17.0,354.0,40.0,149.0,67.0,74.0,3824.0,2024-06-28 07:40:54,4.9.0,100.0,18.0,paper-qa,,65.0,65.0,https://pypi.org/project/paper-qa,8283.0,8283.0,,,,1.0,,,,,,,Future-House/paper-qa,1.0,,,,,,,,,, +38,DeePMD-kit,,ml-iap,LGPL-3.0,https://github.com/deepmodeling/deepmd-kit,A deep learning package for many-body potential energy representation and molecular dynamics.,27,True,['lang-cpp'],deepmodeling/deepmd-kit,https://github.com/deepmodeling/deepmd-kit,2017-12-12 15:23:44,2024-08-14 02:32:59,2024-07-06 15:29:41,2533.0,32.0,476.0,47.0,1984.0,79.0,667.0,1429.0,2024-07-03 19:22:15,2.2.11,49.0,69.0,deepmd-kit,deepmodeling/deepmd-kit,16.0,16.0,https://pypi.org/project/deepmd-kit,1372.0,2095.0,https://anaconda.org/deepmodeling/deepmd-kit,2024-04-06 21:22:08.456,1208.0,1.0,deepmodeling/deepmd-kit,https://hub.docker.com/r/deepmodeling/deepmd-kit,2024-07-27 08:24:51.741318,1.0,2714.0,38192.0,,,,,,,,,,,, +39,Matminer,,general-tool,https://github.com/hackingmaterials/matminer/blob/main/LICENSE,https://github.com/hackingmaterials/matminer,Data mining for materials science.,27,True,,hackingmaterials/matminer,https://github.com/hackingmaterials/matminer,2015-09-24 20:37:00,2024-08-12 08:05:29,2024-07-30 12:11:47,4157.0,2.0,184.0,29.0,721.0,23.0,197.0,457.0,2024-03-27 14:45:47,0.9.2,68.0,54.0,matminer,conda-forge/matminer,305.0,305.0,https://pypi.org/project/matminer,11837.0,13289.0,https://anaconda.org/conda-forge/matminer,2024-03-28 11:24:38.014,66804.0,1.0,,,,,,,,,,,,,,,,,, +40,DPA-2,,uip,LGPL-3.0,https://github.com/deepmodeling/deepmd-kit,Towards a universal large atomic model for molecular and material simulation https://doi.org/10.48550/arXiv.2312.15492.,26,True,"['ml-iap', 'pretrained', 'workflows', 'datasets']",deepmodeling/deepmd-kit,https://github.com/deepmodeling/deepmd-kit,2017-12-12 15:23:44,2024-08-14 02:32:59,2024-07-06 15:29:41,2533.0,32.0,476.0,47.0,1984.0,79.0,667.0,1428.0,2024-07-03 19:22:15,2.2.11,49.0,69.0,,,16.0,16.0,,,670.0,,,,1.0,,,,,,38192.0,,,True,,,,,,,,, +41,SchNetPack,,rep-learn,MIT,https://github.com/atomistic-machine-learning/schnetpack,SchNetPack - Deep Neural Networks for Atomistic Systems.,26,True,,atomistic-machine-learning/schnetpack,https://github.com/atomistic-machine-learning/schnetpack,2018-09-03 15:44:35,2024-08-15 09:45:25,2024-08-15 09:45:22,1677.0,21.0,205.0,32.0,409.0,2.0,241.0,758.0,2023-09-29 14:31:19,2.0.4,8.0,35.0,schnetpack,,84.0,84.0,https://pypi.org/project/schnetpack,830.0,830.0,,,,1.0,,,,,,,,,,,,,,,,,, +42,OPTIMADE Python tools,,datasets,MIT,https://github.com/Materials-Consortia/optimade-python-tools,Tools for implementing and consuming OPTIMADE APIs in Python.,26,True,,Materials-Consortia/optimade-python-tools,https://github.com/Materials-Consortia/optimade-python-tools,2018-06-05 21:00:07,2024-08-14 16:22:48,2024-08-12 10:25:07,1647.0,40.0,41.0,7.0,1692.0,88.0,348.0,64.0,2024-07-20 12:06:05,1.1.1,86.0,28.0,optimade,conda-forge/optimade,48.0,48.0,https://pypi.org/project/optimade,6388.0,8250.0,https://anaconda.org/conda-forge/optimade,2024-07-20 16:43:01.881,83813.0,1.0,,,,,,,,,,,,,,,,,, +43,JAX-DFT,,ml-dft,Apache-2.0,https://github.com/google-research/google-research/tree/master/jax_dft,This library provides basic building blocks that can construct DFT calculations as a differentiable program.,25,True,,google-research/google-research,https://github.com/google-research/google-research,2018-10-04 18:42:48,2024-08-14 16:02:31,2024-08-14 16:02:23,4620.0,108.0,7712.0,748.0,860.0,902.0,324.0,33616.0,,,,796.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +44,JAX-MD,,md,Apache-2.0,https://github.com/jax-md/jax-md,"Differentiable, Hardware Accelerated, Molecular Dynamics.",25,True,,jax-md/jax-md,https://github.com/jax-md/jax-md,2019-05-13 21:03:37,2024-08-02 20:06:09,2024-08-02 20:06:09,920.0,30.0,182.0,48.0,169.0,69.0,79.0,1146.0,2022-11-27 12:42:00,jax-md-v0.2.24,7.0,33.0,jax-md,,53.0,53.0,https://pypi.org/project/jax-md,3223.0,3223.0,,,,1.0,,,,,,,,,,,,,,,,,, +45,QUIP,,general-tool,GPL-2.0,https://github.com/libAtoms/QUIP,libAtoms/QUIP molecular dynamics framework: https://libatoms.github.io.,25,True,"['md', 'ml-iap', 'rep-eng', 'lang-fortran']",libAtoms/QUIP,https://github.com/libAtoms/QUIP,2013-07-02 15:21:59,2024-08-15 08:19:16,2024-08-15 08:10:51,10864.0,25.0,124.0,26.0,176.0,103.0,358.0,350.0,2023-06-15 19:11:24,0.9.14,15.0,85.0,quippy-ase,,41.0,41.0,https://pypi.org/project/quippy-ase,4383.0,4465.0,,,,2.0,libatomsquip/quip,https://hub.docker.com/r/libatomsquip/quip,2023-04-24 21:25:17.345957,4.0,9905.0,532.0,,,,,,,,,,,, +46,MAML,,general-tool,BSD-3-Clause,https://github.com/materialsvirtuallab/maml,"Python for Materials Machine Learning, Materials Descriptors, Machine Learning Force Fields, Deep Learning, etc.",25,True,,materialsvirtuallab/maml,https://github.com/materialsvirtuallab/maml,2020-01-25 15:04:21,2024-08-12 13:32:30,2024-07-03 18:08:37,1747.0,48.0,74.0,21.0,580.0,7.0,61.0,345.0,2024-06-13 15:24:45,2024.6.13,14.0,32.0,maml,,10.0,10.0,https://pypi.org/project/maml,175.0,175.0,,,,2.0,,,,,,,,,,,,,,,,,, +47,NequIP,,ml-iap,MIT,https://github.com/mir-group/nequip,NequIP is a code for building E(3)-equivariant interatomic potentials.,24,True,,mir-group/nequip,https://github.com/mir-group/nequip,2021-03-15 23:44:39,2024-07-25 22:18:07,2024-07-09 15:58:45,1873.0,32.0,127.0,23.0,161.0,22.0,66.0,579.0,2024-07-09 16:05:06,0.6.1,16.0,11.0,nequip,conda-forge/nequip,23.0,23.0,https://pypi.org/project/nequip,3045.0,3240.0,https://anaconda.org/conda-forge/nequip,2024-07-10 05:13:00.157,5276.0,1.0,,,,,,,,,,,,,,,,,, +48,cdk,,rep-eng,LGPL-2.1,https://github.com/cdk/cdk,The Chemistry Development Kit.,24,True,"['cheminformatics', 'lang-java']",cdk/cdk,https://github.com/cdk/cdk,2010-05-11 08:30:07,2024-08-09 05:46:33,2024-08-07 15:06:18,17638.0,51.0,154.0,40.0,813.0,31.0,255.0,485.0,2023-08-21 19:50:47,cdk-2.9,20.0,165.0,,,,,,,178.0,,,,1.0,,,,,,21228.0,,,,org.openscience.cdk:cdk-bundle,https://search.maven.org/artifact/org.openscience.cdk/cdk-bundle,,,,,,, +49,AlphaFold,,biomolecules,Apache-2.0,https://github.com/google-deepmind/alphafold,Open source code for AlphaFold.,23,True,,google-deepmind/alphafold,https://github.com/google-deepmind/alphafold,2021-06-17 14:06:06,2024-06-27 04:19:33,2024-05-08 14:04:54,143.0,,2089.0,223.0,104.0,245.0,601.0,12204.0,2023-04-05 09:45:53,2.3.2,13.0,20.0,,,14.0,14.0,,,,,,,1.0,,,,,,,,,,,,,,,,,, +50,dgl-lifesci,,rep-learn,Apache-2.0,https://github.com/awslabs/dgl-lifesci,Python package for graph neural networks in chemistry and biology.,23,False,,awslabs/dgl-lifesci,https://github.com/awslabs/dgl-lifesci,2020-04-23 07:14:21,2023-11-01 19:32:07,2023-04-16 03:55:52,236.0,,141.0,17.0,141.0,26.0,57.0,703.0,2023-02-13 08:45:17,0.3.2,8.0,22.0,dgllife,,225.0,225.0,https://pypi.org/project/dgllife,34603.0,34603.0,,,,1.0,,,,,,,,,,,,,,,,,, +51,DScribe,,rep-eng,Apache-2.0,https://github.com/SINGROUP/dscribe,DScribe is a python package for creating machine learning descriptors for atomistic systems.,23,True,,SINGROUP/dscribe,https://github.com/SINGROUP/dscribe,2017-05-08 08:29:51,2024-08-13 20:50:00,2024-05-28 18:24:28,1288.0,1.0,86.0,20.0,27.0,6.0,92.0,388.0,,,15.0,18.0,dscribe,conda-forge/dscribe,193.0,193.0,https://pypi.org/project/dscribe,194120.0,196546.0,https://anaconda.org/conda-forge/dscribe,2024-05-28 23:16:49.298,118919.0,1.0,,,,,,,,1.0,,,,,,,,,, +52,TorchMD-NET,,ml-iap,MIT,https://github.com/torchmd/torchmd-net,Training neural network potentials.,23,True,"['md', 'rep-learn', 'transformer', 'pretrained']",torchmd/torchmd-net,https://github.com/torchmd/torchmd-net,2021-04-09 16:16:32,2024-08-12 11:10:08,2024-07-29 09:38:50,1269.0,55.0,69.0,11.0,229.0,20.0,84.0,308.0,2024-07-09 09:20:46,2.3.0,25.0,16.0,,conda-forge/torchmd-net,,,,,10387.0,https://anaconda.org/conda-forge/torchmd-net,2024-07-09 18:53:56.674,103877.0,1.0,,,,,,,,,,,,,,,,,, +53,JARVIS-Tools,,general-tool,https://github.com/usnistgov/jarvis/blob/master/LICENSE.rst,https://github.com/usnistgov/jarvis,JARVIS-Tools: an open-source software package for data-driven atomistic materials design. Publications:..,23,True,,usnistgov/jarvis,https://github.com/usnistgov/jarvis,2017-06-22 19:34:02,2024-08-04 13:38:34,2024-06-28 03:35:23,2106.0,1.0,120.0,26.0,235.0,44.0,45.0,292.0,2024-06-28 03:36:55,2024.5.10,75.0,15.0,jarvis-tools,conda-forge/jarvis-tools,92.0,92.0,https://pypi.org/project/jarvis-tools,24147.0,25738.0,https://anaconda.org/conda-forge/jarvis-tools,2024-06-28 03:50:37.135,73186.0,2.0,,,,,,,,,,,,,,,,,, +54,MatGL (Materials Graph Library),,rep-learn,BSD-3-Clause,https://github.com/materialsvirtuallab/matgl,Graph deep learning library for materials.,23,True,['multifidelity'],materialsvirtuallab/matgl,https://github.com/materialsvirtuallab/matgl,2022-08-29 18:36:05,2024-08-15 05:01:44,2024-08-15 05:01:44,1027.0,66.0,58.0,12.0,216.0,2.0,85.0,249.0,2024-08-07 12:24:58,1.1.3,31.0,17.0,m3gnet,,44.0,44.0,https://pypi.org/project/m3gnet,667.0,667.0,,,,1.0,,,,,,,,,,,,,,,,,, +55,dpdata,,data-structures,LGPL-3.0,https://github.com/deepmodeling/dpdata,"Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc.",23,True,,deepmodeling/dpdata,https://github.com/deepmodeling/dpdata,2019-04-12 13:24:23,2024-08-13 00:50:09,2024-06-06 00:03:38,724.0,6.0,122.0,9.0,477.0,16.0,80.0,195.0,2024-06-06 00:06:28,0.2.19,26.0,60.0,dpdata,deepmodeling/dpdata,122.0,122.0,https://pypi.org/project/dpdata,30991.0,30997.0,https://anaconda.org/deepmodeling/dpdata,2023-09-27 20:07:36.945,218.0,1.0,,,,,,,,-1.0,,,,,,,,,, +56,MEGNet,,ml-iap,BSD-3-Clause,https://github.com/materialsvirtuallab/megnet,Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals.,22,False,['multifidelity'],materialsvirtuallab/megnet,https://github.com/materialsvirtuallab/megnet,2018-12-12 21:31:28,2023-04-27 02:39:17,2023-04-27 02:39:17,1146.0,,152.0,25.0,314.0,17.0,57.0,494.0,2022-11-16 21:24:36,1.3.2,34.0,14.0,megnet,,80.0,80.0,https://pypi.org/project/megnet,389.0,389.0,,,,1.0,,,,,,,,,,,,,,,,,, +57,TorchANI,,ml-iap,MIT,https://github.com/aiqm/torchani,Accurate Neural Network Potential on PyTorch.,22,True,,aiqm/torchani,https://github.com/aiqm/torchani,2018-04-02 15:43:04,2024-07-19 17:54:52,2023-11-14 16:32:59,434.0,,124.0,31.0,483.0,24.0,144.0,455.0,2023-11-14 16:38:04,2.2.4,24.0,17.0,torchani,conda-forge/torchani,39.0,39.0,https://pypi.org/project/torchani,3920.0,12326.0,https://anaconda.org/conda-forge/torchani,2024-05-31 06:36:10.067,403533.0,1.0,,,,,,,,,,,,,,,,,, +58,MACE,,ml-iap,MIT,https://github.com/ACEsuit/mace,MACE - Fast and accurate machine learning interatomic potentials with higher order equivariant message passing.,22,True,,ACEsuit/mace,https://github.com/ACEsuit/mace,2022-06-21 18:44:34,2024-08-13 16:18:00,2024-08-12 10:01:02,699.0,58.0,169.0,24.0,219.0,46.0,168.0,445.0,2024-07-16 10:55:30,0.3.6,7.0,35.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +59,GPUMD,,ml-iap,GPL-3.0,https://github.com/brucefan1983/GPUMD,GPUMD is a highly efficient general-purpose molecular dynamic (MD) package and enables machine-learned potentials..,22,True,"['md', 'lang-cpp', 'electrostatics']",brucefan1983/GPUMD,https://github.com/brucefan1983/GPUMD,2017-07-14 15:32:56,2024-08-15 06:41:50,2024-08-15 06:41:47,3940.0,211.0,111.0,28.0,510.0,15.0,160.0,428.0,2024-05-15 13:24:38,3.9.4,41.0,30.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +60,DP-GEN,,ml-iap,LGPL-3.0,https://github.com/deepmodeling/dpgen,The deep potential generator to generate a deep-learning based model of interatomic potential energy and force field.,22,True,['workflows'],deepmodeling/dpgen,https://github.com/deepmodeling/dpgen,2019-06-13 11:43:56,2024-08-13 00:50:19,2024-04-10 06:31:36,2083.0,,167.0,13.0,835.0,31.0,261.0,290.0,2024-04-10 06:37:07,0.12.1,18.0,64.0,dpgen,deepmodeling/dpgen,6.0,6.0,https://pypi.org/project/dpgen,317.0,352.0,https://anaconda.org/deepmodeling/dpgen,2023-06-16 19:27:03.566,204.0,1.0,,,,,,1745.0,,,,,,,,,,,, +61,CHGNet,,uip,https://github.com/CederGroupHub/chgnet/blob/main/LICENSE,https://github.com/CederGroupHub/chgnet,Pretrained universal neural network potential for charge-informed atomistic modeling https://chgnet.lbl.gov.,22,True,"['ml-iap', 'md', 'pretrained', 'electrostatics', 'magnetism', 'structure-relaxation']",CederGroupHub/chgnet,https://github.com/CederGroupHub/chgnet,2023-02-24 23:44:24,2024-08-09 02:58:00,2024-08-01 11:11:48,413.0,20.0,58.0,5.0,89.0,3.0,48.0,217.0,2024-06-05 16:28:25,0.3.8,16.0,7.0,chgnet,,30.0,30.0,https://pypi.org/project/chgnet,31347.0,31347.0,,,,2.0,,,,,,,,,,,,,,,,,, +62,MPContribs,,datasets,MIT,https://github.com/materialsproject/MPContribs,Platform for materials scientists to contribute and disseminate their materials data through Materials Project.,22,True,,materialsproject/MPContribs,https://github.com/materialsproject/MPContribs,2014-12-11 18:25:27,2024-08-12 17:10:18,2024-08-12 17:10:17,5576.0,41.0,19.0,10.0,1710.0,20.0,78.0,34.0,2024-06-20 22:37:13,5.8.4,78.0,25.0,mpcontribs-client,,38.0,38.0,https://pypi.org/project/mpcontribs-client,1261.0,1261.0,,,,1.0,,,,,,,,,,,,,,,,,, +63,Best-of Machine Learning with Python,,community,CC-BY-4.0,https://github.com/ml-tooling/best-of-ml-python,A ranked list of awesome machine learning Python libraries. Updated weekly.,21,True,"['general-ml', 'lang-py']",ml-tooling/best-of-ml-python,https://github.com/ml-tooling/best-of-ml-python,2020-11-29 19:41:36,2024-07-22 15:36:22,2024-07-22 15:36:22,496.0,9.0,2257.0,409.0,266.0,19.0,34.0,16172.0,2024-06-06 15:57:10,2024.06.06,100.0,46.0,,,,,,,,,,,1.0,,,,,,,,-1.0,,,,,,,,,, +64,NVIDIA Deep Learning Examples for Tensor Cores,,rep-learn,https://github.com/NVIDIA/DeepLearningExamples/blob/master/DGLPyTorch/DrugDiscovery/SE3Transformer/LICENSE,https://github.com/NVIDIA/DeepLearningExamples#graph-neural-networks,State-of-the-Art Deep Learning scripts organized by models - easy to train and deploy with reproducible accuracy and..,21,True,"['educational', 'drug-discovery']",NVIDIA/DeepLearningExamples,https://github.com/NVIDIA/DeepLearningExamples,2018-05-02 17:04:05,2024-08-12 14:01:29,2024-04-04 13:37:56,1437.0,,3022.0,300.0,538.0,260.0,570.0,13111.0,,,,115.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +65,DIG: Dive into Graphs,,rep-learn,GPL-3.0,https://github.com/divelab/DIG,A library for graph deep learning research.,21,True,,divelab/DIG,https://github.com/divelab/DIG,2020-10-30 03:51:15,2024-07-15 07:18:56,2024-02-04 20:37:53,1083.0,,278.0,29.0,41.0,31.0,176.0,1827.0,2023-04-07 20:33:15,1.1.0,10.0,50.0,dive-into-graphs,,,,https://pypi.org/project/dive-into-graphs,435.0,435.0,,,,2.0,,,,,,,,,,,,,,,,,, +66,FAIR Chemistry datasets,,datasets,MIT,https://github.com/FAIR-Chem/fairchem,"Datasets OC20, OC22, etc. Formerly known as Open Catalyst Project.",21,True,['catalysis'],FAIR-Chem/fairchem,https://github.com/FAIR-Chem/fairchem,2019-09-26 04:47:27,2024-08-15 02:44:15,2024-08-14 19:31:46,820.0,59.0,230.0,23.0,616.0,8.0,187.0,746.0,2024-08-14 16:52:55,fairchem_demo_ocpapi-0.1.0,8.0,41.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +67,pymatviz,,visualization,MIT,https://github.com/janosh/pymatviz,A toolkit for visualizations in materials informatics.,21,True,"['general-tool', 'probabilistic']",janosh/pymatviz,https://github.com/janosh/pymatviz,2021-02-21 12:40:34,2024-08-08 09:44:49,2024-08-07 20:43:20,323.0,50.0,12.0,7.0,150.0,10.0,31.0,150.0,2024-07-31 23:17:33,0.10.0,26.0,7.0,pymatviz,,8.0,8.0,https://pypi.org/project/pymatviz,2142.0,2142.0,,,,1.0,,,,,,,,1.0,,,,,,,,,, +68,Metatensor,,data-structures,BSD-3-Clause,https://github.com/lab-cosmo/metatensor,Self-describing sparse tensor data format for atomistic machine learning and beyond.,21,True,"['lang-rust', 'lang-c', 'lang-cpp', 'lang-py']",lab-cosmo/metatensor,https://github.com/lab-cosmo/metatensor,2022-03-01 15:58:28,2024-08-15 09:48:55,2024-08-15 08:46:03,774.0,67.0,15.0,18.0,514.0,74.0,128.0,47.0,2024-07-15 12:55:26,metatensor-torch-v0.5.3,38.0,21.0,,,11.0,11.0,,,2431.0,,,,2.0,,,,,,24318.0,,,,,,,,,,,, +69,DM21,,ml-dft,Apache-2.0,https://github.com/google-deepmind/deepmind-research/tree/master/density_functional_approximation_dm21,This package provides a PySCF interface to the DM21 (DeepMind 21) family of exchange-correlation functionals described..,20,False,,google-deepmind/deepmind-research,https://github.com/google-deepmind/deepmind-research,2019-01-15 09:54:13,2024-08-09 16:59:25,2023-06-02 17:04:50,369.0,,2532.0,325.0,236.0,177.0,138.0,13011.0,,,,92.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +70,FLARE,,active-learning,MIT,https://github.com/mir-group/flare,An open-source Python package for creating fast and accurate interatomic potentials.,20,True,"['lang-cpp', 'ml-iap']",mir-group/flare,https://github.com/mir-group/flare,2018-08-30 23:40:56,2024-06-11 22:18:56,2024-06-11 15:13:36,4399.0,7.0,64.0,20.0,187.0,33.0,170.0,283.0,2024-03-25 15:48:12,1.3.0,6.0,36.0,,,11.0,11.0,,,0.0,,,,1.0,,,,,,7.0,,,,,,,,,,,, +71,ALIGNN,,rep-learn,https://github.com/usnistgov/alignn/blob/main/LICENSE.rst,https://github.com/usnistgov/alignn,Atomistic Line Graph Neural Network https://scholar.google.com/citations?user=9Q-tNnwAAAAJ&hl=en.,20,True,,usnistgov/alignn,https://github.com/usnistgov/alignn,2021-04-19 20:08:09,2024-07-29 12:39:30,2024-07-15 20:09:42,707.0,15.0,77.0,10.0,107.0,33.0,24.0,204.0,2024-06-28 03:29:50,2024.5.27,46.0,7.0,alignn,,14.0,14.0,https://pypi.org/project/alignn,870.0,870.0,,,,2.0,,,,,,,,,,,,,,,,,, +72,e3nn-jax,,rep-learn,Apache-2.0,https://github.com/e3nn/e3nn-jax,jax library for E3 Equivariant Neural Networks.,20,True,,e3nn/e3nn-jax,https://github.com/e3nn/e3nn-jax,2021-06-08 13:21:51,2024-08-14 05:14:56,2024-08-14 05:13:07,1000.0,15.0,18.0,12.0,48.0,1.0,19.0,173.0,2024-08-14 05:14:56,0.20.7,43.0,7.0,e3nn-jax,,36.0,36.0,https://pypi.org/project/e3nn-jax,2716.0,2716.0,,,,2.0,,,,,,,,2.0,,,,,,,,,, +73,fairchem,,ml-iap,,https://github.com/FAIR-Chem/fairchem,FAIR Chemistrys library of machine learning methods for chemistry. Formerly known as Open Catalyst Project (ocp).,19,True,"['pretrained', 'rep-learn', 'catalysis']",FAIR-Chem/fairchem,https://github.com/FAIR-Chem/fairchem,2019-09-26 04:47:27,2024-08-15 02:44:15,2024-08-14 19:31:46,820.0,59.0,230.0,23.0,616.0,8.0,187.0,746.0,2024-08-14 16:52:55,fairchem_demo_ocpapi-0.1.0,8.0,41.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +74,exmol,,xai,MIT,https://github.com/ur-whitelab/exmol,Explainer for black box models that predict molecule properties.,19,True,,ur-whitelab/exmol,https://github.com/ur-whitelab/exmol,2021-08-03 17:56:06,2024-06-02 00:38:18,2023-12-04 18:03:57,189.0,,41.0,9.0,77.0,11.0,58.0,278.0,2023-06-19 20:50:51,3.0.3,27.0,7.0,exmol,,20.0,20.0,https://pypi.org/project/exmol,637.0,637.0,,,,1.0,,,,,,,,,,,,,,,,,, +75,KFAC-JAX,,math,Apache-2.0,https://github.com/google-deepmind/kfac-jax,Second Order Optimization and Curvature Estimation with K-FAC in JAX.,19,True,,google-deepmind/kfac-jax,https://github.com/google-deepmind/kfac-jax,2022-03-18 10:19:24,2024-08-15 06:27:08,2024-08-12 15:12:14,220.0,22.0,16.0,12.0,243.0,5.0,9.0,225.0,2024-04-03 17:12:00,0.0.6,5.0,13.0,kfac-jax,,10.0,10.0,https://pypi.org/project/kfac-jax,667.0,667.0,,,,1.0,,,,,,,,,,,,,,,,,, +76,Chemiscope,,visualization,BSD-3-Clause,https://github.com/lab-cosmo/chemiscope,An interactive structure/property explorer for materials and molecules.,19,True,['lang-js'],lab-cosmo/chemiscope,https://github.com/lab-cosmo/chemiscope,2019-10-03 09:59:42,2024-08-13 16:40:24,2024-08-05 21:35:00,730.0,22.0,29.0,19.0,238.0,33.0,86.0,122.0,2024-06-14 16:42:03,0.7.1,16.0,22.0,,,6.0,6.0,,,50.0,,,,3.0,,,,,,246.0,,,,,,chemiscope,https://www.npmjs.com/package/chemiscope,46.0,,,, +77,MAST-ML,,general-tool,MIT,https://github.com/uw-cmg/MAST-ML,MAterials Simulation Toolkit for Machine Learning (MAST-ML).,19,True,,uw-cmg/MAST-ML,https://github.com/uw-cmg/MAST-ML,2017-02-16 17:03:57,2024-08-05 20:49:39,2024-04-17 20:51:19,3296.0,,58.0,14.0,37.0,22.0,191.0,101.0,2024-04-17 21:30:14,3.2.0,7.0,18.0,,,43.0,43.0,,,2.0,,,,2.0,,,,,,95.0,,,,,,,,,,,, +78,mlcolvar,,md,MIT,https://github.com/luigibonati/mlcolvar,A unified framework for machine learning collective variables for enhanced sampling simulations.,19,True,['enhanced-sampling'],luigibonati/mlcolvar,https://github.com/luigibonati/mlcolvar,2021-09-21 21:32:04,2024-07-31 15:12:33,2024-06-14 14:38:42,1089.0,58.0,23.0,7.0,80.0,13.0,57.0,91.0,2024-06-12 17:03:44,1.1.1,10.0,8.0,mlcolvar,,2.0,2.0,https://pypi.org/project/mlcolvar,154.0,154.0,,,,2.0,,,,,,,,,,,,,,,,,, +79,MALA,,ml-dft,BSD-3-Clause,https://github.com/mala-project/mala,Materials Learning Algorithms. A framework for machine learning materials properties from first-principles data.,19,True,,mala-project/mala,https://github.com/mala-project/mala,2021-03-31 11:40:38,2024-08-14 11:15:04,2024-07-04 09:53:01,2307.0,92.0,23.0,9.0,303.0,37.0,230.0,80.0,2024-02-01 08:57:56,1.2.1,9.0,44.0,,,1.0,1.0,,,,,,,1.0,,,,,,,,,,,,,,,,,, +80,Scikit-Matter,,general-tool,BSD-3-Clause,https://github.com/scikit-learn-contrib/scikit-matter,A collection of scikit-learn compatible utilities that implement methods born out of the materials science and..,19,True,['scikit-learn'],scikit-learn-contrib/scikit-matter,https://github.com/scikit-learn-contrib/scikit-matter,2020-10-12 19:23:26,2024-08-12 16:25:31,2024-08-06 07:51:07,386.0,18.0,20.0,17.0,162.0,13.0,56.0,72.0,2023-08-24 17:18:49,0.2.0,7.0,15.0,skmatter,conda-forge/skmatter,10.0,10.0,https://pypi.org/project/skmatter,1134.0,1246.0,https://anaconda.org/conda-forge/skmatter,2023-08-24 19:08:29.551,1918.0,2.0,,,,,,,,,,,,,,,,,, +81,ZnDraw,,visualization,EPL-2.0,https://github.com/zincware/ZnDraw,"A powerful tool for visualizing, modifying, and analysing atomistic systems.",19,True,"['md', 'generative', 'lang-js']",zincware/ZnDraw,https://github.com/zincware/ZnDraw,2023-04-12 15:01:21,2024-08-15 09:04:27,2024-08-14 07:17:45,381.0,81.0,2.0,1.0,341.0,68.0,208.0,29.0,2024-08-14 07:17:12,0.4.6,24.0,7.0,zndraw,,3.0,3.0,https://pypi.org/project/zndraw,1112.0,1112.0,,,,3.0,,,,,,,,,,,,,,,,,, +82,Graph-based Deep Learning Literature,,community,MIT,https://github.com/naganandy/graph-based-deep-learning-literature,links to conference publications in graph-based deep learning.,18,True,"['general-ml', 'rep-learn']",naganandy/graph-based-deep-learning-literature,https://github.com/naganandy/graph-based-deep-learning-literature,2017-12-01 14:48:35,2024-08-04 17:35:07,2024-08-04 17:35:03,7711.0,31.0,736.0,247.0,21.0,,14.0,4711.0,,,,12.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +83,Uni-Mol,,rep-learn,MIT,https://github.com/deepmodeling/Uni-Mol,Official Repository for the Uni-Mol Series Methods.,18,True,['pretrained'],deepmodeling/Uni-Mol,https://github.com/deepmodeling/Uni-Mol,2022-05-22 13:26:41,2024-08-14 10:40:57,2024-08-14 10:40:52,130.0,21.0,116.0,15.0,111.0,59.0,88.0,637.0,2024-07-06 07:05:10,0.2.1,3.0,16.0,,,,,,,659.0,,,,2.0,,,,,,14504.0,,,,,,,,,,,, +84,GT4SD,,generative,MIT,https://github.com/GT4SD/gt4sd-core,"GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.",18,True,"['pretrained', 'drug-discovery', 'rep-learn']",GT4SD/gt4sd-core,https://github.com/GT4SD/gt4sd-core,2022-02-11 19:06:58,2024-07-04 11:11:27,2024-07-04 11:11:26,296.0,8.0,66.0,17.0,148.0,1.0,98.0,326.0,2024-06-13 15:18:45,1.4.1,57.0,20.0,gt4sd,,,,https://pypi.org/project/gt4sd,661.0,661.0,,,,1.0,,,,,,,,,,,,,,,,,, +85,ATOM3D,,datasets,MIT,https://github.com/drorlab/atom3d,ATOM3D: tasks on molecules in three dimensions.,18,False,"['biomolecules', 'benchmarking']",drorlab/atom3d,https://github.com/drorlab/atom3d,2020-04-03 22:53:11,2023-03-02 18:21:02,2023-03-02 18:20:29,798.0,,35.0,17.0,6.0,21.0,40.0,294.0,2022-07-20 00:56:05,0.2.6,15.0,10.0,atom3d,,40.0,40.0,https://pypi.org/project/atom3d,521.0,521.0,,,,2.0,,,,,,,,,,,,,,,,,, +86,Neural Force Field,,ml-iap,MIT,https://github.com/learningmatter-mit/NeuralForceField,Neural Network Force Field based on PyTorch.,18,True,['pretrained'],learningmatter-mit/NeuralForceField,https://github.com/learningmatter-mit/NeuralForceField,2020-10-04 15:17:41,2024-08-11 22:33:54,2024-07-24 20:30:53,3121.0,76.0,47.0,7.0,5.0,1.0,18.0,223.0,2024-05-29 21:15:00,1.0.0,1.0,40.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +87,MatBench,,community,MIT,https://github.com/materialsproject/matbench,Matbench: Benchmarks for materials science property prediction.,18,True,"['datasets', 'benchmarking', 'model-repository']",materialsproject/matbench,https://github.com/materialsproject/matbench,2021-02-24 03:58:42,2024-06-26 23:31:08,2024-01-20 09:41:36,772.0,,42.0,8.0,297.0,31.0,26.0,105.0,2022-07-27 04:40:26,0.6,5.0,25.0,matbench,,16.0,16.0,https://pypi.org/project/matbench,501.0,501.0,,,,1.0,,,,,,,,,,,,,,,,,, +88,kgcnn,,rep-learn,MIT,https://github.com/aimat-lab/gcnn_keras,"Graph convolutions in Keras with TensorFlow, PyTorch or Jax.",18,True,,aimat-lab/gcnn_keras,https://github.com/aimat-lab/gcnn_keras,2020-07-17 11:12:46,2024-05-06 10:08:41,2024-05-06 10:08:14,3099.0,,29.0,7.0,30.0,12.0,74.0,103.0,2024-02-27 12:21:46,4.0.1,26.0,7.0,kgcnn,,18.0,18.0,https://pypi.org/project/kgcnn,229.0,229.0,,,,2.0,,,,,,,,,,,,,,,,,, +89,apax,,ml-iap,MIT,https://github.com/apax-hub/apax,A flexible and performant framework for training machine learning potentials.,18,True,,apax-hub/apax,https://github.com/apax-hub/apax,2022-11-18 12:31:19,2024-08-12 22:21:46,2024-08-09 15:26:47,1705.0,245.0,1.0,4.0,209.0,14.0,101.0,14.0,2024-08-09 20:31:11,0.6.0,6.0,7.0,apax,,2.0,2.0,https://pypi.org/project/apax,310.0,310.0,,,,2.0,,,,,,,,,,,,,,,,,, +90,DeepQMC,,ml-wft,MIT,https://github.com/deepqmc/deepqmc,Deep learning quantum Monte Carlo for electrons in real space.,17,True,,deepqmc/deepqmc,https://github.com/deepqmc/deepqmc,2019-12-06 14:50:59,2024-08-14 09:04:29,2024-08-14 09:04:27,1461.0,1.0,58.0,23.0,156.0,5.0,39.0,340.0,2023-11-20 10:09:02,1.1.2,10.0,13.0,deepqmc,,2.0,2.0,https://pypi.org/project/deepqmc,100.0,100.0,,,,1.0,,,,,,,,,,,,,,,,,, +91,M3GNet,,uip,BSD-3-Clause,https://github.com/materialsvirtuallab/m3gnet,Materials graph network with 3-body interactions featuring a DFT surrogate crystal relaxer and a state-of-the-art..,17,False,"['ml-iap', 'pretrained']",materialsvirtuallab/m3gnet,https://github.com/materialsvirtuallab/m3gnet,2022-01-18 18:10:58,2023-06-06 23:56:08,2023-06-06 23:56:03,261.0,,58.0,11.0,33.0,15.0,20.0,225.0,2022-11-17 23:25:35,0.2.4,16.0,15.0,m3gnet,,23.0,23.0,https://pypi.org/project/m3gnet,667.0,667.0,,,,2.0,,,,,,,,,,,,,,,,,, +92,FitSNAP,,md,GPL-2.0,https://github.com/FitSNAP/FitSNAP,Software for generating SNAP machine-learning interatomic potentials.,17,True,,FitSNAP/FitSNAP,https://github.com/FitSNAP/FitSNAP,2019-09-12 14:46:18,2024-08-09 16:04:42,2024-08-09 16:04:41,1388.0,9.0,48.0,7.0,182.0,12.0,56.0,142.0,2023-06-28 16:00:48,3.1.0,7.0,24.0,,conda-forge/fitsnap3,2.0,2.0,,,168.0,https://anaconda.org/conda-forge/fitsnap3,2023-06-16 00:19:04.615,7583.0,2.0,,,,,,9.0,,,,,,,,,,,, +93,matsciml,,rep-learn,MIT,https://github.com/IntelLabs/matsciml,Open MatSci ML Toolkit is a framework for prototyping and scaling out deep learning models for materials discovery..,17,True,"['workflows', 'benchmarking']",IntelLabs/matsciml,https://github.com/IntelLabs/matsciml,2022-09-13 20:27:28,2024-08-14 22:46:53,2024-08-14 22:46:53,2373.0,231.0,17.0,5.0,214.0,19.0,35.0,134.0,2023-08-31 23:59:40,1.0.0,2.0,11.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +94,DADApy,,unsupervised,Apache-2.0,https://github.com/sissa-data-science/DADApy,Distance-based Analysis of DAta-manifolds in python.,17,True,,sissa-data-science/DADApy,https://github.com/sissa-data-science/DADApy,2021-02-16 17:45:23,2024-08-08 11:25:55,2024-07-24 22:45:27,825.0,36.0,16.0,7.0,110.0,5.0,27.0,101.0,2024-07-02 15:52:45,0.3.1,5.0,19.0,dadapy,,7.0,7.0,https://pypi.org/project/dadapy,134.0,134.0,,,,1.0,,,,,,,,,,,,,,,,,, +95,CatLearn,,rep-eng,GPL-3.0,https://github.com/SUNCAT-Center/CatLearn,,17,False,['surface-science'],SUNCAT-Center/CatLearn,https://github.com/SUNCAT-Center/CatLearn,2018-04-20 04:16:14,2024-06-28 07:53:45,2023-02-07 09:31:25,1960.0,,50.0,19.0,80.0,9.0,17.0,99.0,2020-03-27 09:26:03,0.6.2,8.0,22.0,catlearn,,5.0,5.0,https://pypi.org/project/catlearn,180.0,180.0,,,,1.0,,,,,,,,,,,,,,,,,, +96,Open Databases Integration for Materials Design (OPTIMADE),,datasets,CC-BY-4.0,https://github.com/Materials-Consortia/OPTIMADE,Specification of a common REST API for access to materials databases.,17,True,,Materials-Consortia/OPTIMADE,https://github.com/Materials-Consortia/OPTIMADE,2018-01-08 23:32:29,2024-07-29 21:09:07,2024-06-12 09:31:09,1786.0,2.0,35.0,21.0,297.0,64.0,169.0,76.0,2024-06-10 16:32:29,1.2.0,9.0,21.0,,,,,,,,,,,2.0,,,,,,,,-1.0,,,,,,,,,, +97,Graphormer,,rep-learn,MIT,https://github.com/microsoft/Graphormer,Graphormer is a general-purpose deep learning backbone for molecular modeling.,16,True,"['transformer', 'pretrained']",microsoft/Graphormer,https://github.com/microsoft/Graphormer,2021-05-27 05:31:18,2024-06-07 17:01:35,2024-05-28 06:22:34,77.0,2.0,321.0,31.0,46.0,86.0,64.0,2044.0,2024-04-03 08:23:10,dig-v1.0,2.0,14.0,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,,,, +98,OpenML,,community,BSD-3,https://github.com/openml/OpenML,Open Machine Learning.,16,True,['datasets'],openml/OpenML,https://github.com/openml/OpenML,2012-12-11 11:27:40,2024-04-05 08:51:24,2024-01-12 08:40:06,2317.0,,90.0,48.0,202.0,367.0,560.0,656.0,,,,35.0,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,,,, +99,ChemCrow,,language-models,MIT,https://github.com/ur-whitelab/chemcrow-public,Open source package for the accurate solution of reasoning-intensive chemical tasks.,16,True,['ai-agent'],ur-whitelab/chemcrow-public,https://github.com/ur-whitelab/chemcrow-public,2023-06-04 15:59:05,2024-04-03 19:49:19,2024-03-27 04:32:41,110.0,,75.0,16.0,22.0,4.0,14.0,547.0,2024-03-27 04:28:45,0.3.24,12.0,3.0,chemcrow,,4.0,4.0,https://pypi.org/project/chemcrow,542.0,542.0,,,,1.0,,,,,,,,,,,,,,,,,, +100,Uni-Fold,,biomolecules,Apache-2.0,https://github.com/dptech-corp/Uni-Fold,An open-source platform for developing protein models beyond AlphaFold.,16,True,,dptech-corp/Uni-Fold,https://github.com/dptech-corp/Uni-Fold,2022-07-30 03:37:29,2024-06-26 02:52:56,2024-01-08 06:19:47,98.0,,66.0,7.0,80.0,20.0,50.0,364.0,2022-10-19 12:44:31,2.2.0,3.0,7.0,,,,,,,161.0,,,,3.0,,,,,,3558.0,,,,,,,,,,,, +101,GT4SD - Generative Toolkit for Scientific Discovery,,community,MIT,https://huggingface.co/GT4SD,Gradio apps of generative models in GT4SD.,16,True,"['generative', 'pretrained', 'drug-discovery', 'model-repository']",GT4SD/gt4sd-core,https://github.com/GT4SD/gt4sd-core,2022-02-11 19:06:58,2024-07-04 11:11:27,2024-07-04 11:11:26,296.0,8.0,66.0,17.0,148.0,1.0,98.0,326.0,2024-06-13 15:18:45,1.4.1,57.0,20.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +102,ChemDataExtractor,,language-models,MIT,https://github.com/mcs07/ChemDataExtractor,Automatically extract chemical information from scientific documents.,16,False,['literature-data'],mcs07/ChemDataExtractor,https://github.com/mcs07/ChemDataExtractor,2016-10-02 23:50:01,2023-07-27 18:05:13,2017-02-21 23:20:23,106.0,,106.0,18.0,16.0,19.0,9.0,296.0,2017-02-03 00:28:29,1.3.0,7.0,2.0,chemdataextractor,chemdataextractor/chemdataextractor,112.0,112.0,https://pypi.org/project/chemdataextractor,686.0,750.0,https://anaconda.org/chemdataextractor/chemdataextractor,2023-06-16 13:17:47.249,3138.0,1.0,,,,,,2996.0,,,,,,,,,,,, +103,gpax,,math,MIT,https://github.com/ziatdinovmax/gpax,Gaussian Processes for Experimental Sciences.,16,True,"['probabilistic', 'active-learning']",ziatdinovmax/gpax,https://github.com/ziatdinovmax/gpax,2021-10-28 13:43:18,2024-08-09 21:37:33,2024-05-21 08:13:54,787.0,1.0,22.0,7.0,68.0,7.0,32.0,194.0,2024-03-20 06:39:05,0.1.8,16.0,6.0,gpax,,1.0,1.0,https://pypi.org/project/gpax,128.0,128.0,,,,1.0,,,,,,,,,,,,,,,,,, +104,openmm-torch,,md,https://github.com/openmm/openmm-torch#license,https://github.com/openmm/openmm-torch,OpenMM plugin to define forces with neural networks.,16,True,"['ml-iap', 'lang-cpp']",openmm/openmm-torch,https://github.com/openmm/openmm-torch,2019-09-27 18:15:19,2024-07-09 06:18:50,2024-07-09 06:18:50,71.0,4.0,24.0,12.0,61.0,25.0,65.0,177.0,2023-10-09 08:49:10,1.4,16.0,8.0,,conda-forge/openmm-torch,,,,,9229.0,https://anaconda.org/conda-forge/openmm-torch,2024-06-03 12:02:18.688,396876.0,2.0,,,,,,,,-1.0,,,,,,,,,, +105,XenonPy,,general-tool,BSD-3-Clause,https://github.com/yoshida-lab/XenonPy,XenonPy is a Python Software for Materials Informatics.,16,True,,yoshida-lab/XenonPy,https://github.com/yoshida-lab/XenonPy,2018-01-17 10:13:29,2024-07-15 21:14:48,2024-04-21 06:58:38,693.0,,57.0,11.0,184.0,20.0,66.0,130.0,2023-05-21 15:54:32,0.6.8,45.0,10.0,xenonpy,,,,https://pypi.org/project/xenonpy,211.0,229.0,,,,2.0,,,,,,1393.0,,,,,,,,,,,, +106,MatBench Discovery,,community,MIT,https://github.com/janosh/matbench-discovery,An evaluation framework for machine learning models simulating high-throughput materials discovery.,16,True,"['datasets', 'benchmarking', 'model-repository']",janosh/matbench-discovery,https://github.com/janosh/matbench-discovery,2022-06-20 18:32:44,2024-08-11 20:57:25,2024-08-11 20:57:23,357.0,23.0,11.0,8.0,77.0,2.0,32.0,82.0,2024-07-15 20:07:19,1.2.0,6.0,7.0,matbench-discovery,,2.0,2.0,https://pypi.org/project/matbench-discovery,142.0,142.0,,,,2.0,,,,,,,,-1.0,,,,,,,,,, +107,PMTransformer,,generative,MIT,https://github.com/hspark1212/MOFTransformer,"Universal Transfer Learning in Porous Materials, including MOFs.",16,True,"['transfer-learning', 'pretrained', 'transformer']",hspark1212/MOFTransformer,https://github.com/hspark1212/MOFTransformer,2021-12-11 06:30:12,2024-06-20 06:58:46,2024-06-20 06:57:57,410.0,6.0,11.0,5.0,127.0,,36.0,82.0,2024-06-20 07:02:24,2.2.0,17.0,2.0,moftransformer,,6.0,6.0,https://pypi.org/project/moftransformer,298.0,298.0,,,,1.0,,,,,,,,,True,,,,,,,,, +108,SpheriCart,,math,MIT,https://github.com/lab-cosmo/sphericart,Multi-language library for the calculation of spherical harmonics in Cartesian coordinates.,16,True,,lab-cosmo/sphericart,https://github.com/lab-cosmo/sphericart,2023-02-04 15:15:25,2024-08-06 22:48:54,2024-08-06 22:45:41,364.0,16.0,10.0,5.0,102.0,19.0,13.0,62.0,2023-04-26 12:06:09,0.3.0,3.0,10.0,sphericart,,3.0,3.0,https://pypi.org/project/sphericart,200.0,203.0,,,,1.0,,,,,,60.0,,,,,,,,,,,, +109,mp-pyrho,,data-structures,https://github.com/materialsproject/pyrho,https://github.com/materialsproject/pyrho,Tools for re-griding volumetric quantum chemistry data for machine-learning purposes.,16,True,['ml-dft'],materialsproject/pyrho,https://github.com/materialsproject/pyrho,2020-05-25 22:44:02,2024-08-14 00:15:19,2024-02-23 02:53:46,287.0,,6.0,9.0,115.0,1.0,3.0,36.0,2024-02-23 02:54:45,0.4.4,28.0,8.0,mp-pyrho,,23.0,23.0,https://pypi.org/project/mp-pyrho,6490.0,6490.0,,,,3.0,,,,,,,,,,,,,,,,,, +110,wfl,,ml-iap,GPL-2.0,https://github.com/libAtoms/workflow,Workflow is a Python toolkit for building interatomic potential creation and atomistic simulation workflows.,16,True,"['workflows', 'htc']",libAtoms/workflow,https://github.com/libAtoms/workflow,2021-11-04 17:03:34,2024-08-14 08:48:30,2024-08-08 22:10:12,1143.0,106.0,18.0,9.0,178.0,63.0,91.0,27.0,2024-04-25 15:07:11,0.2.4,4.0,18.0,,,1.0,1.0,,,,,,,2.0,,,,,,,,,,,,,,,,,, +111,IPSuite,,active-learning,EPL-2.0,https://github.com/zincware/IPSuite,A Python toolkit for FAIR development and deployment of machine-learned interatomic potentials.,16,True,"['ml-iap', 'md', 'workflows', 'htc', 'FAIR']",zincware/IPSuite,https://github.com/zincware/IPSuite,2023-03-01 16:34:45,2024-08-14 17:22:32,2024-08-09 08:56:01,442.0,38.0,8.0,3.0,203.0,67.0,65.0,17.0,2024-08-08 20:37:20,0.1.3,5.0,8.0,ipsuite,,6.0,6.0,https://pypi.org/project/ipsuite,139.0,139.0,,,,2.0,,,,,,,,,,,,,,,,,, +112,MoLeR,,generative,MIT,https://github.com/microsoft/molecule-generation,Implementation of MoLeR: a generative model of molecular graphs which supports scaffold-constrained generation.,15,True,,microsoft/molecule-generation,https://github.com/microsoft/molecule-generation,2022-02-17 19:16:29,2024-01-04 18:10:00,2024-01-03 14:28:02,67.0,,38.0,11.0,37.0,10.0,28.0,250.0,2024-01-04 18:12:47,0.4.1,5.0,5.0,molecule-generation,,,,https://pypi.org/project/molecule-generation,229.0,229.0,,,,2.0,,,,,,,,,,,,,,,,,, +113,QML,,general-tool,MIT,https://github.com/qmlcode/qml,QML: Quantum Machine Learning.,15,False,,qmlcode/qml,https://github.com/qmlcode/qml,2017-04-22 04:48:38,2024-04-12 13:38:21,2018-09-10 11:14:35,75.0,,81.0,23.0,101.0,30.0,19.0,197.0,,,3.0,2.0,qml,,31.0,31.0,https://pypi.org/project/qml,362.0,362.0,,,,3.0,,,,,,,,,,,,,,,,,, +114,ChemNLP project,,language-models,MIT,https://github.com/OpenBioML/chemnlp,ChemNLP project.,15,True,['datasets'],OpenBioML/chemnlp,https://github.com/OpenBioML/chemnlp,2023-02-13 16:20:23,2024-08-15 02:41:56,2024-08-15 02:41:32,367.0,36.0,45.0,3.0,284.0,111.0,140.0,144.0,,,,27.0,chemnlp,,,,https://pypi.org/project/chemnlp,58.0,58.0,,,,2.0,,,,,,,,,,,,,,,,,, +115,Automatminer,,general-tool,https://github.com/hackingmaterials/automatminer/blob/main/LICENSE,https://github.com/hackingmaterials/automatminer,An automatic engine for predicting materials properties.,15,False,['automl'],hackingmaterials/automatminer,https://github.com/hackingmaterials/automatminer,2018-05-10 18:27:08,2023-11-12 10:09:39,2022-01-06 19:39:49,1666.0,,49.0,12.0,233.0,36.0,138.0,134.0,2020-07-28 02:19:07,1.0.3.20200727,17.0,13.0,automatminer,,8.0,8.0,https://pypi.org/project/automatminer,222.0,222.0,,,,3.0,,,,,,,,,,,,,,,,,, +116,MODNet,,rep-eng,MIT,https://github.com/ppdebreuck/modnet,MODNet: a framework for machine learning materials properties.,15,True,"['pretrained', 'small-data', 'transfer-learning']",ppdebreuck/modnet,https://github.com/ppdebreuck/modnet,2020-03-13 07:39:21,2024-06-24 13:31:56,2024-06-24 12:29:45,276.0,1.0,31.0,7.0,174.0,15.0,27.0,74.0,2024-05-07 14:09:13,0.4.4,21.0,8.0,,,7.0,7.0,,,,,,,2.0,,,,,,,,,,,,,,,,,, +117,Ultra-Fast Force Fields (UF3),,ml-iap,Apache-2.0,https://github.com/uf3/uf3,UF3: a python library for generating ultra-fast interatomic potentials.,15,True,,uf3/uf3,https://github.com/uf3/uf3,2021-10-01 13:21:44,2024-07-27 23:40:38,2024-07-12 22:56:23,703.0,21.0,20.0,6.0,82.0,13.0,30.0,56.0,2023-10-27 16:36:21,0.4.0,4.0,10.0,uf3,,1.0,1.0,https://pypi.org/project/uf3,35.0,35.0,,,,2.0,,,,,,,,,,,,,,,,,, +118,aviary,,materials-discovery,MIT,https://github.com/CompRhys/aviary,The Wren sits on its Roost in the Aviary.,15,True,,CompRhys/aviary,https://github.com/CompRhys/aviary,2021-09-28 12:29:05,2024-08-05 20:10:13,2024-08-05 20:09:13,638.0,28.0,11.0,3.0,61.0,2.0,24.0,45.0,2024-07-22 19:03:03,1.0.0,5.0,4.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +119,KLIFF,,ml-iap,LGPL-2.1,https://github.com/openkim/kliff,KIM-based Learning-Integrated Fitting Framework for interatomic potentials.,15,True,"['probabilistic', 'workflows']",openkim/kliff,https://github.com/openkim/kliff,2017-08-01 20:33:58,2024-08-14 00:02:36,2024-07-06 01:33:46,1073.0,8.0,20.0,4.0,148.0,22.0,19.0,34.0,2023-12-17 02:12:00,0.4.3,18.0,9.0,kliff,conda-forge/kliff,3.0,3.0,https://pypi.org/project/kliff,75.0,2132.0,https://anaconda.org/conda-forge/kliff,2023-12-18 18:25:23.770,94653.0,2.0,,,,,,,,,,,,,,,,,, +120,Polynomials4ML.jl,,math,MIT,https://github.com/ACEsuit/Polynomials4ML.jl,"Polynomials for ML: fast evaluation, batching, differentiation.",15,True,['lang-julia'],ACEsuit/Polynomials4ML.jl,https://github.com/ACEsuit/Polynomials4ML.jl,2022-09-20 23:05:53,2024-06-22 16:34:34,2024-06-22 16:18:31,410.0,50.0,5.0,4.0,39.0,17.0,34.0,12.0,2024-06-22 16:34:35,0.3.1,17.0,10.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +121,benchmarking-gnns,,rep-learn,MIT,https://github.com/graphdeeplearning/benchmarking-gnns,Repository for benchmarking graph neural networks.,14,False,"['single-paper', 'benchmarking']",graphdeeplearning/benchmarking-gnns,https://github.com/graphdeeplearning/benchmarking-gnns,2020-03-03 03:42:50,2023-06-22 04:03:53,2022-05-10 13:22:20,45.0,,446.0,58.0,17.0,5.0,63.0,2475.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +122,dlpack,,data-structures,Apache-2.0,https://github.com/dmlc/dlpack,common in-memory tensor structure.,14,True,['lang-cpp'],dmlc/dlpack,https://github.com/dmlc/dlpack,2017-02-24 16:56:47,2024-05-13 08:28:51,2024-03-26 12:57:17,75.0,,130.0,47.0,77.0,27.0,42.0,883.0,2023-01-05 18:42:00,0.8,9.0,23.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +123,FermiNet,,ml-wft,Apache-2.0,https://github.com/google-deepmind/ferminet,An implementation of the Fermionic Neural Network for ab-initio electronic structure calculations.,14,True,['transformer'],google-deepmind/ferminet,https://github.com/google-deepmind/ferminet,2020-10-06 12:21:06,2024-06-04 15:46:46,2024-06-04 15:46:09,228.0,4.0,110.0,37.0,30.0,1.0,44.0,659.0,,,,18.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +124,escnn,,rep-learn,https://github.com/QUVA-Lab/escnn/blob/master/LICENSE,https://github.com/QUVA-Lab/escnn,Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/.,14,True,,QUVA-Lab/escnn,https://github.com/QUVA-Lab/escnn,2022-03-16 10:15:02,2024-06-26 14:25:20,2023-10-17 22:37:11,244.0,,42.0,17.0,33.0,27.0,36.0,339.0,,,,10.0,escnn,,,,https://pypi.org/project/escnn,527.0,527.0,,,,2.0,,,,,,,,,,,,,,,,,, +125,sGDML,,ml-iap,MIT,https://github.com/stefanch/sGDML,sGDML - Reference implementation of the Symmetric Gradient Domain Machine Learning model.,14,True,,stefanch/sGDML,https://github.com/stefanch/sGDML,2018-07-11 15:20:30,2023-08-31 12:58:49,2023-08-31 12:57:53,205.0,,35.0,8.0,12.0,6.0,11.0,139.0,2023-08-31 12:58:49,1.0.2,15.0,8.0,sgdml,,9.0,9.0,https://pypi.org/project/sgdml,141.0,141.0,,,,2.0,,,,,,,,,,,,,,,,,, +126,SevenNet,,uip,GPL-3.0,https://github.com/MDIL-SNU/SevenNet,SevenNet (Scalable EquiVariance Enabled Neural Network) is a graph neural network interatomic potential package that..,14,True,"['ml-iap', 'md', 'pretrained']",MDIL-SNU/SevenNet,https://github.com/MDIL-SNU/SevenNet,2023-02-16 06:31:53,2024-08-15 10:05:32,2024-07-30 04:17:16,380.0,67.0,9.0,4.0,54.0,2.0,6.0,86.0,2024-07-26 01:40:27,0.9.3,6.0,6.0,,,1.0,1.0,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +127,PyXtalFF,,ml-iap,MIT,https://github.com/MaterSim/PyXtal_FF,Machine Learning Interatomic Potential Predictions.,14,True,,MaterSim/PyXtal_FF,https://github.com/MaterSim/PyXtal_FF,2019-01-08 08:43:35,2024-02-15 16:12:06,2024-01-07 14:27:45,561.0,,23.0,9.0,4.0,11.0,51.0,85.0,2023-06-09 17:17:24,0.2.3,19.0,9.0,pyxtal_ff,,,,https://pypi.org/project/pyxtal_ff,71.0,71.0,,,,2.0,,,,,,,,,,,,,,,,,, +128,HydraGNN,,rep-learn,BSD-3,https://github.com/ORNL/HydraGNN,Distributed PyTorch implementation of multi-headed graph convolutional neural networks.,14,True,,ORNL/HydraGNN,https://github.com/ORNL/HydraGNN,2021-05-28 03:32:03,2024-08-13 16:34:41,2024-08-06 16:10:42,675.0,23.0,23.0,10.0,228.0,14.0,32.0,56.0,2023-11-10 15:25:43,3.0,2.0,13.0,,,1.0,1.0,,,,,,,2.0,,,,,,,,,True,,,,,,,,, +129,SchNetPack G-SchNet,,generative,MIT,https://github.com/atomistic-machine-learning/schnetpack-gschnet,G-SchNet extension for SchNetPack.,14,True,,atomistic-machine-learning/schnetpack-gschnet,https://github.com/atomistic-machine-learning/schnetpack-gschnet,2022-04-21 12:34:13,2024-07-05 12:47:35,2024-07-05 12:44:53,164.0,31.0,8.0,3.0,1.0,,14.0,43.0,2024-07-03 16:43:48,1.1.0,3.0,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +130,SALTED,,ml-dft,GPL-3.0,https://github.com/andreagrisafi/SALTED,Symmetry-Adapted Learning of Three-dimensional Electron Densities.,14,True,,andreagrisafi/SALTED,https://github.com/andreagrisafi/SALTED,2020-01-22 10:24:29,2024-08-02 15:26:59,2024-07-08 10:41:32,699.0,49.0,4.0,3.0,39.0,1.0,5.0,30.0,2024-06-22 12:42:33,3.0.0,2.0,16.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +131,GlassPy,,rep-eng,GPL-3.0,https://github.com/drcassar/glasspy,Python module for scientists working with glass materials.,14,True,,drcassar/glasspy,https://github.com/drcassar/glasspy,2019-07-18 23:15:43,2024-08-11 17:13:25,2024-01-21 13:59:55,334.0,,7.0,6.0,13.0,1.0,5.0,26.0,2024-01-21 13:47:58,0.4.6,8.0,,glasspy,,5.0,5.0,https://pypi.org/project/glasspy,165.0,165.0,,,,2.0,,,,,,,,,,,,,,,,,, +132,SISSO,,rep-eng,Apache-2.0,https://github.com/rouyang2017/SISSO,A data-driven method combining symbolic regression and compressed sensing for accurate & interpretable models.,13,True,['lang-fortran'],rouyang2017/SISSO,https://github.com/rouyang2017/SISSO,2017-10-16 11:31:57,2024-06-19 15:58:39,2023-09-12 08:50:38,166.0,,76.0,6.0,3.0,8.0,57.0,229.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +133,n2p2,,ml-iap,GPL-3.0,https://github.com/CompPhysVienna/n2p2,n2p2 - A Neural Network Potential Package.,13,False,['lang-cpp'],CompPhysVienna/n2p2,https://github.com/CompPhysVienna/n2p2,2018-07-25 12:29:17,2023-05-11 16:26:02,2022-09-05 10:56:20,387.0,,75.0,12.0,53.0,64.0,85.0,216.0,2022-05-23 12:53:39,2.2.0,11.0,9.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +134,Librascal,,rep-eng,LGPL-2.1,https://github.com/lab-cosmo/librascal,A scalable and versatile library to generate representations for atomic-scale learning.,13,True,,lab-cosmo/librascal,https://github.com/lab-cosmo/librascal,2018-02-01 08:38:51,2024-01-11 17:38:31,2023-11-30 14:48:28,2931.0,,19.0,22.0,201.0,100.0,132.0,80.0,,,3.0,30.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +135,OpenMM-ML,,md,MIT,https://github.com/openmm/openmm-ml,High level API for using machine learning models in OpenMM simulations.,13,True,['ml-iap'],openmm/openmm-ml,https://github.com/openmm/openmm-ml,2021-02-10 20:55:25,2024-08-06 19:01:36,2024-08-06 19:01:36,46.0,2.0,18.0,14.0,33.0,20.0,34.0,80.0,2024-06-06 16:49:09,1.2,6.0,5.0,,conda-forge/openmm-ml,,,,,190.0,https://anaconda.org/conda-forge/openmm-ml,2024-06-07 16:52:07.157,4577.0,3.0,,,,,,,,,,,,,,,,,, +136,NNPOps,,ml-iap,MIT,https://github.com/openmm/NNPOps,High-performance operations for neural network potentials.,13,True,"['md', 'lang-cpp']",openmm/NNPOps,https://github.com/openmm/NNPOps,2020-09-10 21:02:00,2024-07-10 15:29:02,2024-07-10 15:29:02,95.0,1.0,17.0,9.0,63.0,21.0,34.0,80.0,2023-07-26 11:21:58,0.6,7.0,9.0,,conda-forge/nnpops,,,,,6342.0,https://anaconda.org/conda-forge/nnpops,2024-05-31 15:49:32.883,183926.0,2.0,,,,,,,,,,,,,,,,,, +137,ChatMOF,,language-models,MIT,https://github.com/Yeonghun1675/ChatMOF,Predict and Inverse design for metal-organic framework with large-language models (llms).,13,True,['generative'],Yeonghun1675/ChatMOF,https://github.com/Yeonghun1675/ChatMOF,2023-05-19 06:33:06,2024-07-01 04:57:44,2024-07-01 04:57:36,72.0,4.0,7.0,1.0,12.0,,5.0,53.0,2024-06-14 09:56:27,0.2.1,6.0,,chatmof,,2.0,2.0,https://pypi.org/project/chatmof,243.0,243.0,,,,2.0,,,,,,,,,True,,,,,,,,, +138,Crystal Graph Convolutional Neural Networks (CGCNN),,rep-learn,MIT,https://github.com/txie-93/cgcnn,Crystal graph convolutional neural networks for predicting material properties.,12,False,,txie-93/cgcnn,https://github.com/txie-93/cgcnn,2018-03-14 20:41:21,2021-09-06 05:23:51,2021-09-06 05:23:38,25.0,,272.0,23.0,7.0,17.0,20.0,621.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +139,mat2vec,,language-models,MIT,https://github.com/materialsintelligence/mat2vec,Supplementary Materials for Tshitoyan et al. Unsupervised word embeddings capture latent knowledge from materials..,12,False,['rep-learn'],materialsintelligence/mat2vec,https://github.com/materialsintelligence/mat2vec,2019-04-25 07:55:30,2023-05-06 22:45:49,2023-05-06 22:45:49,55.0,,174.0,40.0,7.0,6.0,18.0,615.0,,,,5.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +140,AI for Science Resources,,community,GPL-3.0 license,https://github.com/divelab/AIRS/blob/main/Overview/resources.md,"List of resources for AI4Science research, including learning resources.",12,True,,divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2024-07-12 20:06:37,2024-07-12 20:06:37,425.0,6.0,57.0,18.0,5.0,2.0,12.0,477.0,,,,28.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +141,QH9,,datasets,CC-BY-NC-SA-4.0,https://github.com/divelab/AIRS/tree/main/OpenDFT/QHBench/QH9,A Quantum Hamiltonian Prediction Benchmark.,12,True,['ml-dft'],divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2024-07-12 20:06:37,2024-07-12 20:06:37,425.0,6.0,57.0,18.0,5.0,2.0,12.0,477.0,,,,28.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +142,Artificial Intelligence for Science (AIRS),,general-tool,GPL-3.0 license,https://github.com/divelab/AIRS,Artificial Intelligence Research for Science (AIRS).,12,True,"['rep-learn', 'generative', 'ml-iap', 'md', 'ml-dft', 'ml-wft', 'biomolecules']",divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2024-07-12 20:06:37,2024-07-12 20:06:37,425.0,6.0,57.0,18.0,5.0,2.0,12.0,477.0,,,,28.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +143,QHNet,,ml-dft,GPL-3.0,https://github.com/divelab/AIRS/tree/main/OpenDFT/QHNet,Artificial Intelligence Research for Science (AIRS).,12,True,['rep-learn'],divelab/AIRS,https://github.com/divelab/AIRS,2023-02-01 17:05:09,2024-07-12 20:06:37,2024-07-12 20:06:37,425.0,6.0,57.0,18.0,5.0,2.0,12.0,477.0,,,,28.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +144,Geometric GNN Dojo,,educational,MIT,https://github.com/chaitjo/geometric-gnn-dojo/blob/main/geometric_gnn_101.ipynb,"New to geometric GNNs: try our practical notebook, prepared for MPhil students at the University of Cambridge.",12,False,['rep-learn'],chaitjo/geometric-gnn-dojo,https://github.com/chaitjo/geometric-gnn-dojo,2023-01-21 20:08:45,2024-05-22 11:06:03,2023-06-18 23:17:32,26.0,,43.0,10.0,5.0,3.0,6.0,446.0,2023-06-18 23:20:44,0.2.0,2.0,3.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +145,TensorMol,,ml-iap,GPL-3.0,https://github.com/jparkhill/TensorMol,Tensorflow + Molecules = TensorMol.,12,False,['single-paper'],jparkhill/TensorMol,https://github.com/jparkhill/TensorMol,2016-10-28 19:40:11,2021-02-11 00:12:00,2018-03-30 12:26:14,1724.0,,70.0,45.0,8.0,18.0,19.0,270.0,2017-11-08 18:05:50,0.1,1.0,12.0,,,1.0,1.0,,,,,,,2.0,,,,,,,,,,,,,,,,,, +146,gptchem,,language-models,MIT,https://github.com/kjappelbaum/gptchem,Use GPT-3 to solve chemistry problems.,12,True,,kjappelbaum/gptchem,https://github.com/kjappelbaum/gptchem,2023-01-06 15:34:32,2024-05-17 19:25:11,2023-10-04 11:27:09,147.0,,39.0,9.0,5.0,19.0,2.0,221.0,2023-11-30 09:31:51,0.0.4,2.0,4.0,gptchem,,,,https://pypi.org/project/gptchem,31.0,31.0,,,,2.0,,,,,,,,,,,,,,,,,, +147,ANI-1,,ml-iap,MIT,https://github.com/isayev/ASE_ANI,ANI-1 neural net potential with python interface (ASE).,12,True,,isayev/ASE_ANI,https://github.com/isayev/ASE_ANI,2016-12-08 05:09:32,2024-03-11 21:50:26,2024-03-11 21:50:26,112.0,,55.0,33.0,9.0,16.0,21.0,220.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +148,DMFF,,ml-iap,LGPL-3.0,https://github.com/deepmodeling/DMFF,DMFF (Differentiable Molecular Force Field) is a Jax-based python package that provides a full differentiable..,12,True,,deepmodeling/DMFF,https://github.com/deepmodeling/DMFF,2022-02-14 01:35:50,2024-07-23 03:11:30,2024-01-12 00:58:20,431.0,,40.0,9.0,158.0,10.0,16.0,146.0,2023-11-09 14:32:37,1.0.0,4.0,14.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +149,ASAP,,unsupervised,MIT,https://github.com/BingqingCheng/ASAP,ASAP is a package that can quickly analyze and visualize datasets of crystal or molecular structures.,12,True,,BingqingCheng/ASAP,https://github.com/BingqingCheng/ASAP,2019-08-11 12:45:14,2024-06-27 12:53:17,2024-06-27 12:53:00,763.0,3.0,28.0,7.0,37.0,6.0,19.0,143.0,2023-08-30 13:54:23,1,1.0,6.0,,,6.0,6.0,,,,,,,2.0,,,,,,,,,,,,,,,,,, +150,SPICE,,datasets,MIT,https://github.com/openmm/spice-dataset,A collection of QM data for training potential functions.,12,True,"['ml-iap', 'md']",openmm/spice-dataset,https://github.com/openmm/spice-dataset,2021-08-31 18:52:05,2024-04-15 20:17:14,2024-04-15 20:14:31,42.0,,8.0,17.0,46.0,15.0,45.0,141.0,2024-04-15 20:17:14,2.0.1,8.0,,,,,,,,9.0,,,,2.0,,,,,,244.0,,,,,,,,,,,, +151,So3krates (MLFF),,ml-iap,MIT,https://github.com/thorben-frank/mlff,Build neural networks for machine learning force fields with JAX.,12,True,,thorben-frank/mlff,https://github.com/thorben-frank/mlff,2022-09-30 07:40:17,2024-08-12 14:37:34,2024-08-06 09:40:56,138.0,7.0,13.0,7.0,21.0,3.0,6.0,69.0,2024-06-24 11:09:20,0.3.0,2.0,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +152,jarvis-tools-notebooks,,educational,NIST,https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks,A Google-Colab Notebook Collection for Materials Design: https://jarvis.nist.gov/.,12,True,,JARVIS-Materials-Design/jarvis-tools-notebooks,https://github.com/JARVIS-Materials-Design/jarvis-tools-notebooks,2020-06-27 20:22:02,2024-08-14 02:50:36,2024-08-14 02:50:35,753.0,118.0,26.0,4.0,46.0,,,58.0,,,,5.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +153,Neural fingerprint (nfp),,rep-learn,https://github.com/NREL/nfp/blob/master/LICENSE,https://github.com/NREL/nfp,Keras layers for end-to-end learning with rdkit and pymatgen.,12,False,,NREL/nfp,https://github.com/NREL/nfp,2018-11-20 23:55:23,2024-02-24 20:11:49,2022-06-14 22:18:28,143.0,,27.0,7.0,19.0,,6.0,57.0,2022-04-27 17:05:25,0.3.12,13.0,4.0,,,13.0,13.0,,,,,,,2.0,,,,,,,,,,,,,,,,,, +154,Rascaline,,rep-eng,BSD-3-Clause,https://github.com/Luthaf/rascaline,Computing representations for atomistic machine learning.,12,True,"['lang-rust', 'lang-cpp']",Luthaf/rascaline,https://github.com/Luthaf/rascaline,2020-09-24 14:28:34,2024-08-14 13:15:55,2024-08-14 13:10:20,561.0,17.0,13.0,7.0,255.0,32.0,35.0,44.0,,,,14.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +155,synspace,,generative,MIT,https://github.com/whitead/synspace,Synthesis generative model.,12,False,,whitead/synspace,https://github.com/whitead/synspace,2022-12-28 00:59:14,2023-04-15 22:42:57,2023-04-15 18:04:16,27.0,,3.0,3.0,1.0,2.0,1.0,35.0,2023-04-15 22:42:57,0.3.0,3.0,2.0,synspace,,17.0,17.0,https://pypi.org/project/synspace,906.0,906.0,,,,2.0,,,,,,,,,,,,,,,,,, +156,MACE-MP,,uip,MIT,https://github.com/ACEsuit/mace-mp,Pretrained foundation models for materials chemistry.,12,True,"['ml-iap', 'pretrained', 'rep-learn', 'md']",ACEsuit/mace-mp,https://github.com/ACEsuit/mace-mp,2024-01-11 10:55:55,2024-04-28 17:30:31,2024-04-24 14:56:12,10.0,,5.0,10.0,1.0,1.0,6.0,33.0,2024-04-28 17:30:31,mace_mp_0b,2.0,2.0,mace-torch,,,,https://pypi.org/project/mace-torch,11135.0,14179.0,,,,3.0,,,,,,21310.0,,,True,,,,,,,,, +157,Compositionally-Restricted Attention-Based Network (CrabNet),,rep-learn,MIT,https://github.com/sparks-baird/CrabNet,Predict materials properties using only the composition information!.,12,False,,sparks-baird/CrabNet,https://github.com/sparks-baird/CrabNet,2021-09-17 07:58:15,2023-06-19 09:35:52,2023-06-19 09:35:52,427.0,,4.0,1.0,54.0,15.0,2.0,12.0,2023-06-07 01:07:33,2.0.8,5.0,5.0,crabnet,,13.0,13.0,https://pypi.org/project/crabnet,262.0,262.0,,,,2.0,,,,,,,,,,,,,,,,,, +158,Deep Learning for Molecules and Materials Book,,educational,https://github.com/whitead/dmol-book/blob/main/LICENSE,https://dmol.pub/,Deep learning for molecules and materials book.,11,False,,whitead/dmol-book,https://github.com/whitead/dmol-book,2020-08-19 19:24:32,2023-07-02 18:02:57,2023-07-02 18:02:56,558.0,,111.0,16.0,92.0,28.0,129.0,604.0,,,,19.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +159,ReLeaSE,,reinforcement-learning,MIT,https://github.com/isayev/ReLeaSE,Deep Reinforcement Learning for de-novo Drug Design.,11,False,['drug-discovery'],isayev/ReLeaSE,https://github.com/isayev/ReLeaSE,2018-04-26 14:50:34,2021-12-08 19:49:36,2021-12-08 19:49:36,160.0,,130.0,19.0,9.0,27.0,8.0,347.0,,,,5.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +160,DeepLearningLifeSciences,,educational,MIT,https://github.com/deepchem/DeepLearningLifeSciences,Example code from the book Deep Learning for the Life Sciences.,11,False,,deepchem/DeepLearningLifeSciences,https://github.com/deepchem/DeepLearningLifeSciences,2019-02-05 17:16:18,2021-09-17 05:10:37,2021-09-17 05:10:37,52.0,,144.0,25.0,15.0,9.0,10.0,344.0,2019-10-28 18:46:28,1.0,1.0,10.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +161,DeepH-pack,,ml-dft,LGPL-3.0,https://github.com/mzjb/DeepH-pack,Deep neural networks for density functional theory Hamiltonian.,11,True,['lang-julia'],mzjb/DeepH-pack,https://github.com/mzjb/DeepH-pack,2022-05-13 02:51:32,2024-05-22 10:50:01,2024-05-22 10:50:01,66.0,2.0,36.0,7.0,17.0,12.0,38.0,199.0,2023-07-11 08:13:06,0.2.2,2.0,9.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +162,PiNN,,ml-iap,BSD-3-Clause,https://github.com/Teoroo-CMC/PiNN,A Python library for building atomic neural networks.,11,True,,Teoroo-CMC/PiNN,https://github.com/Teoroo-CMC/PiNN,2019-10-04 08:13:18,2024-08-02 06:55:47,2024-06-27 11:23:15,160.0,2.0,31.0,6.0,15.0,1.0,5.0,104.0,2019-10-09 09:21:30,0.3.0,1.0,5.0,,,,,,,4.0,,,,2.0,teoroo/pinn,https://hub.docker.com/r/teoroo/pinn,2024-06-27 11:32:07.538231,,243.0,,,,,,,,,,,,, +163,tinker-hp,,ml-iap,https://github.com/TinkerTools/tinker-hp/blob/master/license-Tinker.pdf,https://github.com/TinkerTools/tinker-hp,Tinker-HP: High-Performance Massively Parallel Evolution of Tinker on CPUs & GPUs.,11,True,,TinkerTools/tinker-hp,https://github.com/TinkerTools/tinker-hp,2018-06-12 12:15:51,2024-08-05 15:47:54,2024-08-05 15:47:21,562.0,14.0,21.0,13.0,2.0,3.0,17.0,78.0,2019-11-24 16:21:50,published-version-V1,1.0,12.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +164,hippynn,,rep-learn,https://github.com/lanl/hippynn/blob/main/LICENSE.txt,https://github.com/lanl/hippynn,python library for atomistic machine learning.,11,True,['workflows'],lanl/hippynn,https://github.com/lanl/hippynn,2021-11-17 00:45:13,2024-08-14 20:00:55,2024-08-14 19:09:04,147.0,18.0,23.0,9.0,75.0,7.0,8.0,65.0,2024-01-29 22:04:53,hippynn-0.0.3,3.0,14.0,,,1.0,1.0,,,,,,,2.0,,,,,,,,,,,,,,,,,, +165,Pacemaker,,ml-iap,https://github.com/ICAMS/python-ace/blob/master/LICENSE.md,https://cortner.github.io/ACEweb/software/,Python package for fitting atomic cluster expansion (ACE) potentials.,11,True,,ICAMS/python-ace,https://github.com/ICAMS/python-ace,2021-11-19 11:39:54,2024-07-22 19:16:32,2024-07-22 19:16:32,160.0,1.0,15.0,4.0,24.0,16.0,33.0,62.0,2022-10-24 19:59:33,0.2.8,2.0,5.0,python-ace,,,,https://pypi.org/project/python-ace,18.0,18.0,,,,2.0,,,,,,,,,,,,,,,,,, +166,Neural-Network-Models-for-Chemistry,,community,,https://github.com/Eipgen/Neural-Network-Models-for-Chemistry,A collection of Nerual Network Models for chemistry.,11,True,['rep-learn'],Eipgen/Neural-Network-Models-for-Chemistry,https://github.com/Eipgen/Neural-Network-Models-for-Chemistry,2022-05-23 06:35:09,2024-08-13 07:05:05,2024-08-08 14:14:24,210.0,14.0,8.0,3.0,22.0,1.0,1.0,59.0,2024-07-17 02:01:45,0.0.5,5.0,3.0,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,,,, +167,AMPtorch,,general-tool,GPL-3.0,https://github.com/ulissigroup/amptorch,AMPtorch: Atomistic Machine Learning Package (AMP) - PyTorch.,11,False,,ulissigroup/amptorch,https://github.com/ulissigroup/amptorch,2019-01-24 15:15:48,2023-07-16 02:11:38,2023-07-16 02:08:13,759.0,,32.0,10.0,99.0,7.0,26.0,58.0,2023-07-16 02:11:38,1.0,3.0,14.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +168,SIMPLE-NN,,ml-iap,GPL-3.0,https://github.com/MDIL-SNU/SIMPLE-NN,SIMPLE-NN(SNU Interatomic Machine-learning PotentiaL packagE version Neural Network).,11,False,,MDIL-SNU/SIMPLE-NN,https://github.com/MDIL-SNU/SIMPLE-NN,2018-03-26 23:53:35,2022-01-27 05:04:05,2022-01-27 05:04:05,586.0,,17.0,12.0,91.0,4.0,26.0,47.0,2021-09-23 01:41:42,1.1.1,9.0,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +169,DeepErwin,,ml-wft,https://github.com/mdsunivie/deeperwin/blob/master/LICENSE,https://github.com/mdsunivie/deeperwin,DeepErwin is a python 3.8+ package that implements and optimizes JAX 2.x wave function models for numerical solutions..,11,True,,mdsunivie/deeperwin,https://github.com/mdsunivie/deeperwin,2021-06-14 15:18:32,2024-06-07 15:52:47,2024-06-07 15:52:33,66.0,6.0,6.0,3.0,5.0,,11.0,46.0,2024-03-25 13:47:47,transferable_atomic_orbitals,3.0,7.0,deeperwin,,,,https://pypi.org/project/deeperwin,46.0,46.0,,,,3.0,,,,,,8.0,,,,,,,,,,,, +170,nlcc,,language-models,MIT,https://github.com/whitead/nlcc,Natural language computational chemistry command line interface.,11,False,['single-paper'],whitead/nlcc,https://github.com/whitead/nlcc,2021-08-19 18:23:52,2023-02-04 03:07:56,2023-02-04 03:06:33,144.0,,7.0,5.0,1.0,,9.0,44.0,2023-02-04 03:07:56,0.6.0,10.0,3.0,nlcc,,1.0,1.0,https://pypi.org/project/nlcc,45.0,45.0,,,,2.0,,,,,,,,,,,,,,,,,, +171,pair_nequip,,md,MIT,https://github.com/mir-group/pair_nequip,LAMMPS pair style for NequIP.,11,True,"['ml-iap', 'rep-learn']",mir-group/pair_nequip,https://github.com/mir-group/pair_nequip,2021-04-02 15:28:02,2024-06-05 17:06:39,2024-06-05 17:06:39,101.0,4.0,12.0,9.0,8.0,9.0,20.0,40.0,2022-05-20 00:39:04,0.5.2,4.0,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +172,load-atoms,,datasets,MIT,https://github.com/jla-gardner/load-atoms,download and manipulate atomistic datasets.,11,True,['data-structures'],jla-gardner/load-atoms,https://github.com/jla-gardner/load-atoms,2022-11-21 21:59:15,2024-04-06 05:14:57,2024-04-06 05:13:05,271.0,,2.0,1.0,31.0,2.0,29.0,37.0,,,,3.0,load-atoms,,3.0,3.0,https://pypi.org/project/load-atoms,459.0,459.0,,,,2.0,,,,,,,,,True,,,,,,,,, +173,NeuralXC,,ml-dft,BSD-3-Clause,https://github.com/semodi/neuralxc,Implementation of a machine learned density functional.,11,False,,semodi/neuralxc,https://github.com/semodi/neuralxc,2019-03-14 18:13:40,2024-06-17 22:55:40,2021-07-05 21:36:23,337.0,,10.0,5.0,10.0,5.0,5.0,33.0,,,3.0,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +174,CCS_fit,,ml-iap,GPL-3.0,https://github.com/Teoroo-CMC/CCS,Curvature Constrained Splines.,11,True,,Teoroo-CMC/CCS,https://github.com/Teoroo-CMC/CCS,2021-12-13 14:29:53,2024-05-14 08:53:09,2024-02-16 09:31:25,762.0,,10.0,3.0,13.0,8.0,6.0,7.0,2024-02-16 09:31:28,0.22.5,100.0,8.0,ccs_fit,,,,https://pypi.org/project/ccs_fit,255.0,275.0,,,,2.0,,,,,,422.0,,,,,,,,,,,, +175,pretrained-gnns,,rep-learn,MIT,https://github.com/snap-stanford/pretrain-gnns,Strategies for Pre-training Graph Neural Networks.,10,False,['pretrained'],snap-stanford/pretrain-gnns,https://github.com/snap-stanford/pretrain-gnns,2020-01-30 22:12:41,2023-07-29 06:21:39,2023-07-29 06:21:39,13.0,,160.0,17.0,8.0,34.0,29.0,954.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +176,GNoME Explorer,,community,Apache-2.0,https://next-gen.materialsproject.org/materials/gnome,Graph Networks for Materials Exploration Database.,10,True,"['datasets', 'materials-discovery']",google-deepmind/materials_discovery,https://github.com/google-deepmind/materials_discovery,2023-11-28 10:29:51,2024-07-09 19:00:36,2023-12-02 03:54:29,8.0,,132.0,47.0,7.0,17.0,4.0,854.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +177,Materials Discovery: GNoME,,materials-discovery,Apache-2.0,https://github.com/google-deepmind/materials_discovery,"Graph Networks for Materials Science (GNoME) and dataset of 381,000 novel stable materials.",10,True,"['uip', 'datasets', 'rep-learn', 'proprietary']",google-deepmind/materials_discovery,https://github.com/google-deepmind/materials_discovery,2023-11-28 10:29:51,2024-07-09 19:00:36,2023-12-02 03:54:29,8.0,,132.0,47.0,7.0,17.0,4.0,854.0,,,,2.0,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +178,OpenChem,,general-tool,MIT,https://github.com/Mariewelt/OpenChem,OpenChem: Deep Learning toolkit for Computational Chemistry and Drug Design Research.,10,False,,Mariewelt/OpenChem,https://github.com/Mariewelt/OpenChem,2018-07-10 01:27:33,2023-11-26 05:03:36,2022-04-27 19:27:40,444.0,,111.0,36.0,12.0,15.0,2.0,668.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +179,EDM,,generative,MIT,https://github.com/ehoogeboom/e3_diffusion_for_molecules,E(3) Equivariant Diffusion Model for Molecule Generation in 3D.,10,False,,ehoogeboom/e3_diffusion_for_molecules,https://github.com/ehoogeboom/e3_diffusion_for_molecules,2022-04-15 14:34:35,2022-07-10 17:56:18,2022-07-10 17:56:12,6.0,,109.0,8.0,,2.0,36.0,417.0,,,,,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +180,Awesome Materials Informatics,,community,https://github.com/tilde-lab/awesome-materials-informatics#license,https://github.com/tilde-lab/awesome-materials-informatics,"Curated list of known efforts in materials informatics, i.e. in modern materials science.",10,True,,tilde-lab/awesome-materials-informatics,https://github.com/tilde-lab/awesome-materials-informatics,2018-02-15 15:14:16,2024-07-12 09:19:42,2024-07-12 09:19:42,138.0,3.0,80.0,17.0,54.0,,8.0,359.0,2023-03-02 19:56:59,2023.03.02,1.0,19.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +181,Allegro,,ml-iap,MIT,https://github.com/mir-group/allegro,Allegro is an open-source code for building highly scalable and accurate equivariant deep learning interatomic..,10,False,,mir-group/allegro,https://github.com/mir-group/allegro,2022-02-06 23:50:40,2024-07-01 20:43:10,2023-05-08 21:16:45,38.0,,44.0,20.0,5.0,18.0,15.0,309.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +182,GDC,,rep-learn,MIT,https://github.com/gasteigerjo/gdc,"Graph Diffusion Convolution, as proposed in Diffusion Improves Graph Learning (NeurIPS 2019).",10,False,['generative'],gasteigerjo/gdc,https://github.com/gasteigerjo/gdc,2019-10-26 16:05:11,2023-04-26 14:22:40,2023-04-26 14:22:40,28.0,,42.0,3.0,1.0,,11.0,262.0,,,,3.0,,,1.0,1.0,,,,,,,2.0,,,,,,,,,,,,,,,,,, +183,AI4Chemistry course,,educational,MIT,https://github.com/schwallergroup/ai4chem_course,"EPFL AI for chemistry course, Spring 2023. https://schwallergroup.github.io/ai4chem_course.",10,True,['chemistry'],schwallergroup/ai4chem_course,https://github.com/schwallergroup/ai4chem_course,2022-08-22 07:29:30,2024-05-02 20:41:12,2024-05-02 20:41:12,232.0,,30.0,4.0,9.0,1.0,3.0,127.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,,,, +184,DeePKS-kit,,ml-dft,LGPL-3.0,https://github.com/deepmodeling/deepks-kit,a package for developing machine learning-based chemically accurate energy and density functional models.,10,True,,deepmodeling/deepks-kit,https://github.com/deepmodeling/deepks-kit,2020-07-29 03:27:50,2024-08-08 16:28:48,2024-04-13 03:44:40,384.0,,35.0,14.0,44.0,5.0,14.0,96.0,,,,7.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +185,Grad DFT,,ml-dft,Apache-2.0,https://github.com/XanaduAI/GradDFT,GradDFT is a JAX-based library enabling the differentiable design and experimentation of exchange-correlation..,10,True,,XanaduAI/GradDFT,https://github.com/XanaduAI/GradDFT,2023-05-15 16:18:25,2024-02-13 16:05:53,2024-02-13 16:05:51,419.0,,5.0,5.0,43.0,11.0,43.0,71.0,,,,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +186,LLaMP,,language-models,BSD-3-Clause,https://github.com/chiang-yuan/llamp,A web app and Python API for multi-modal RAG framework to ground LLMs on high-fidelity materials informatics. An..,10,True,"['materials-discovery', 'cheminformatics', 'generative', 'MD', 'multimodal', 'language-models', 'lang-py', 'general-tool']",chiang-yuan/llamp,https://github.com/chiang-yuan/llamp,2023-07-01 08:15:34,2024-08-11 08:26:47,2024-08-01 23:06:38,372.0,9.0,6.0,,30.0,8.0,17.0,49.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +187,DSECOP,,educational,CCO-1.0,https://github.com/GDS-Education-Community-of-Practice/DSECOP,This repository contains data science educational materials developed by DSECOP Fellows.,10,True,,GDS-Education-Community-of-Practice/DSECOP,https://github.com/GDS-Education-Community-of-Practice/DSECOP,2022-03-07 17:47:33,2024-06-26 14:49:22,2024-06-26 14:49:19,555.0,6.0,25.0,10.0,25.0,1.0,7.0,43.0,,,,13.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +188,Finetuna,,active-learning,MIT,https://github.com/ulissigroup/finetuna,Active Learning for Machine Learning Potentials.,10,True,,ulissigroup/finetuna,https://github.com/ulissigroup/finetuna,2020-09-22 14:39:52,2024-05-15 17:26:24,2024-05-15 17:25:23,1200.0,,11.0,3.0,40.0,5.0,15.0,42.0,,,,11.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +189,flare++,,active-learning,MIT,https://github.com/mir-group/flare_pp,A many-body extension of the FLARE code.,10,False,"['lang-cpp', 'ml-iap']",mir-group/flare_pp,https://github.com/mir-group/flare_pp,2019-11-20 22:46:32,2022-02-27 21:05:09,2022-02-24 19:00:50,989.0,,6.0,7.0,28.0,8.0,17.0,35.0,,,,10.0,flare_pp,,,,https://pypi.org/project/flare_pp,129.0,129.0,,,,2.0,,,,,,,,,,,,,,,,,, +190,cmlkit,,rep-eng,MIT,https://github.com/sirmarcel/cmlkit,tools for machine learning in condensed matter physics and quantum chemistry.,10,False,['benchmarking'],sirmarcel/cmlkit,https://github.com/sirmarcel/cmlkit,2018-05-31 07:56:52,2022-04-01 00:39:14,2022-03-25 22:27:04,526.0,,6.0,3.0,1.0,6.0,2.0,34.0,,,,,cmlkit,,5.0,5.0,https://pypi.org/project/cmlkit,118.0,118.0,,,,2.0,,,,,,,,,,,,,,,,,, +191,OpenKIM,,datasets,LGPL-2.1,https://openkim.org/,"The Open Knowledgebase of Interatomic Models (OpenKIM) aims to be an online resource for standardized testing, long-..",10,False,"['model-repository', 'knowledge-base', 'pretrained']",openkim/kim-api,https://github.com/openkim/kim-api,2014-07-28 21:21:08,2023-08-16 00:09:44,2022-03-17 23:01:36,2371.0,,20.0,12.0,55.0,17.0,18.0,31.0,,,,24.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +192,Point Edge Transformer (PET),,ml-iap,MIT,https://github.com/spozdn/pet,Point Edge Transformer.,10,True,"['rep-learn', 'transformer']",spozdn/pet,https://github.com/spozdn/pet,2023-02-08 18:36:10,2024-07-18 13:35:00,2024-07-02 10:29:58,201.0,12.0,5.0,4.0,12.0,5.0,,18.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +193,ACEhamiltonians,,ml-dft,MIT,https://github.com/ACEsuit/ACEhamiltonians.jl,"Provides tools for constructing, fitting, and predicting self-consistent Hamiltonian and overlap matrices in solid-..",10,False,['lang-julia'],ACEsuit/ACEhamiltonians.jl,https://github.com/ACEsuit/ACEhamiltonians.jl,2022-01-17 20:54:22,2024-06-05 15:25:30,2023-04-12 15:04:14,33.0,,6.0,5.0,42.0,2.0,3.0,12.0,2024-02-07 16:35:47,0.1.0,2.0,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +194,NNsforMD,,ml-iap,MIT,https://github.com/aimat-lab/NNsForMD,"Neural network class for molecular dynamics to predict potential energy, forces and non-adiabatic couplings.",10,False,,aimat-lab/NNsForMD,https://github.com/aimat-lab/NNsForMD,2020-08-31 11:14:18,2022-11-10 13:04:49,2022-11-10 13:04:45,265.0,,6.0,3.0,,,,10.0,2022-04-12 15:10:32,2.0.0,5.0,2.0,pyNNsMD,,1.0,1.0,https://pypi.org/project/pyNNsMD,46.0,46.0,,,,3.0,,,,,,,,,,,,,,,,,, +195,ACEfit,,ml-iap,MIT,https://github.com/ACEsuit/ACEfit.jl,,10,True,['lang-julia'],ACEsuit/ACEfit.jl,https://github.com/ACEsuit/ACEfit.jl,2022-01-01 00:09:17,2024-08-13 04:26:08,2024-08-13 04:22:01,226.0,5.0,5.0,4.0,22.0,22.0,33.0,8.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +196,SE(3)-Transformers,,rep-learn,MIT,https://github.com/FabianFuchsML/se3-transformer-public,code for the SE3 Transformers paper: https://arxiv.org/abs/2006.10503.,9,False,"['single-paper', 'transformer']",FabianFuchsML/se3-transformer-public,https://github.com/FabianFuchsML/se3-transformer-public,2020-08-31 10:36:57,2023-07-10 05:13:25,2021-11-18 09:11:56,63.0,,67.0,17.0,5.0,9.0,17.0,482.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +197,molecularGNN_smiles,,rep-learn,Apache-2.0,https://github.com/masashitsubaki/molecularGNN_smiles,"The code of a graph neural network (GNN) for molecules, which is based on learning representations of r-radius..",9,False,,masashitsubaki/molecularGNN_smiles,https://github.com/masashitsubaki/molecularGNN_smiles,2018-11-06 00:25:26,2020-11-28 02:04:45,2020-11-28 02:04:45,79.0,,75.0,6.0,,6.0,1.0,286.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +198,DimeNet,,ml-iap,https://github.com/gasteigerjo/dimenet/blob/master/LICENSE.md,https://github.com/gasteigerjo/dimenet,"DimeNet and DimeNet++ models, as proposed in Directional Message Passing for Molecular Graphs (ICLR 2020) and Fast and..",9,True,,gasteigerjo/dimenet,https://github.com/gasteigerjo/dimenet,2020-02-14 12:40:15,2023-10-03 09:57:19,2023-10-03 09:57:19,103.0,,57.0,4.0,,1.0,30.0,278.0,,,,2.0,,,1.0,1.0,,,,,,,3.0,,,,,,,,,,,,,,,,,, +199,MoLFormers UI,,community,Apache-2.0,https://molformer.res.ibm.com/,A family of foundation models trained on chemicals.,9,True,"['transformer', 'language-models', 'pretrained', 'drug-discovery']",IBM/molformer,https://github.com/IBM/molformer,2022-11-07 18:48:17,2023-10-16 16:34:25,2023-10-16 16:33:13,7.0,,40.0,10.0,3.0,9.0,10.0,231.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +200,MoLFormer,,language-models,Apache-2.0,https://github.com/IBM/molformer,Repository for MolFormer.,9,True,"['transformer', 'pretrained', 'drug-discovery']",IBM/molformer,https://github.com/IBM/molformer,2022-11-07 18:48:17,2023-10-16 16:34:25,2023-10-16 16:33:13,7.0,,40.0,10.0,3.0,9.0,10.0,231.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +201,SchNet,,ml-iap,MIT,https://github.com/atomistic-machine-learning/SchNet,SchNet - a deep learning architecture for quantum chemistry.,9,False,,atomistic-machine-learning/SchNet,https://github.com/atomistic-machine-learning/SchNet,2017-10-03 11:52:20,2018-09-04 08:42:35,2018-09-04 08:42:34,53.0,,65.0,16.0,,1.0,2.0,212.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +202,QDF for molecule,,ml-esm,MIT,https://github.com/masashitsubaki/QuantumDeepField_molecule,"Quantum deep field: data-driven wave function, electron density generation, and energy prediction and extrapolation..",9,False,,masashitsubaki/QuantumDeepField_molecule,https://github.com/masashitsubaki/QuantumDeepField_molecule,2020-11-11 01:06:09,2021-02-20 03:46:18,2021-02-20 03:46:09,20.0,,40.0,4.0,,1.0,3.0,197.0,,,,,,,,,,,,,,,1.0,,,,,,,,,,,,,,,,,, +203,Equiformer,,rep-learn,MIT,https://github.com/atomicarchitects/equiformer,[ICLR23 Spotlight] Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs.,9,True,['transformer'],atomicarchitects/equiformer,https://github.com/atomicarchitects/equiformer,2023-02-28 00:21:30,2024-07-27 08:42:53,2024-07-18 10:32:17,6.0,3.0,36.0,5.0,2.0,5.0,7.0,187.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +204,GemNet,,ml-iap,https://github.com/TUM-DAML/gemnet_pytorch/blob/master/LICENSE,https://github.com/TUM-DAML/gemnet_pytorch,"GemNet model in PyTorch, as proposed in GemNet: Universal Directional Graph Neural Networks for Molecules (NeurIPS..",9,False,,TUM-DAML/gemnet_pytorch,https://github.com/TUM-DAML/gemnet_pytorch,2021-10-11 07:30:36,2023-04-26 14:20:12,2023-04-26 14:20:12,36.0,,27.0,4.0,1.0,,14.0,175.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +205,MolSkill,,language-models,MIT,https://github.com/microsoft/molskill,Extracting medicinal chemistry intuition via preference machine learning.,9,True,"['drug-discovery', 'recommender']",microsoft/molskill,https://github.com/microsoft/molskill,2023-01-12 13:48:31,2023-10-31 17:03:36,2023-10-31 17:03:36,81.0,,9.0,6.0,8.0,2.0,4.0,101.0,2023-08-04 12:22:15,1.2b,5.0,4.0,,msr-ai4science/molskill,,,,,15.0,https://anaconda.org/msr-ai4science/molskill,2023-06-18 17:27:43.196,275.0,3.0,,,,,,,,,,,,,,,,,, +206,GATGNN: Global Attention Graph Neural Network,,rep-learn,MIT,https://github.com/superlouis/GATGNN,Pytorch Repository for our work: Graph convolutional neural networks with global attention for improved materials..,9,False,,superlouis/GATGNN,https://github.com/superlouis/GATGNN,2020-06-21 03:27:36,2022-10-03 21:57:33,2022-10-03 21:57:33,99.0,,17.0,8.0,,3.0,3.0,67.0,2021-04-05 06:49:29,0.2,2.0,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +207,ACE.jl,,ml-iap,https://github.com/ACEsuit/ACE.jl/blob/main/license/mit.md,https://github.com/ACEsuit/ACE.jl,Parameterisation of Equivariant Properties of Particle Systems.,9,False,['lang-julia'],ACEsuit/ACE.jl,https://github.com/ACEsuit/ACE.jl,2019-11-30 16:22:51,2023-06-09 21:31:30,2023-06-09 21:29:10,912.0,,15.0,8.0,65.0,24.0,58.0,66.0,,,,12.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +208,PROPhet,,ml-dft,GPL-3.0,https://github.com/biklooost/PROPhet,PROPhet is a code to integrate machine learning techniques with first-principles quantum chemistry approaches.,9,False,"['ml-iap', 'md', 'single-paper', 'lang-cpp']",biklooost/PROPhet,https://github.com/biklooost/PROPhet,2016-09-16 16:21:06,2018-04-19 02:09:46,2018-04-19 02:00:46,120.0,,26.0,14.0,6.0,9.0,7.0,62.0,2018-04-15 16:55:15,1.2,3.0,4.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +209,HamGNN,,ml-dft,GPL-3.0,https://github.com/QuantumLab-ZY/HamGNN,An E(3) equivariant Graph Neural Network for predicting electronic Hamiltonian matrix.,9,True,"['rep-learn', 'magnetism', 'lang-c']",QuantumLab-ZY/HamGNN,https://github.com/QuantumLab-ZY/HamGNN,2023-07-14 12:20:27,2024-08-06 17:17:12,2024-08-06 17:16:48,63.0,32.0,12.0,5.0,,20.0,4.0,49.0,,,,,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,,,, +210,AI for Science paper collection,,community,Apache-2.0,https://github.com/sherrylixuecheng/AI_for_Science_paper_collection,List the AI for Science papers accepted by top conferences.,9,True,,sherrylixuecheng/AI_for_Science_paper_collection,https://github.com/sherrylixuecheng/AI_for_Science_paper_collection,2024-06-28 16:20:57,2024-08-13 03:53:31,2024-08-04 06:21:15,66.0,66.0,5.0,2.0,8.0,,,43.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +211,pair_allegro,,md,MIT,https://github.com/mir-group/pair_allegro,LAMMPS pair style for Allegro deep learning interatomic potentials with parallelization support.,9,True,"['ml-iap', 'rep-learn']",mir-group/pair_allegro,https://github.com/mir-group/pair_allegro,2021-08-09 17:26:51,2024-06-05 17:00:50,2024-06-05 17:00:50,101.0,10.0,7.0,10.0,3.0,10.0,18.0,34.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +212,ALF,,ml-iap,https://github.com/lanl/ALF/blob/main/LICENSE,https://github.com/lanl/ALF,A framework for performing active learning for training machine-learned interatomic potentials.,9,True,['active-learning'],lanl/alf,https://github.com/lanl/ALF,2023-01-04 23:13:24,2024-08-08 16:59:38,2024-08-08 16:59:10,149.0,3.0,11.0,8.0,27.0,,,29.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +213,lie-nn,,math,MIT,https://github.com/lie-nn/lie-nn,Tools for building equivariant polynomials on reductive Lie groups.,9,False,['rep-learn'],lie-nn/lie-nn,https://github.com/lie-nn/lie-nn,2022-04-01 18:02:49,2023-06-29 19:38:34,2023-06-20 22:30:53,249.0,,1.0,8.0,3.0,,,26.0,2023-06-20 22:31:12,0.0.0,1.0,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +214,FAENet,,rep-learn,MIT,https://github.com/vict0rsch/faenet,Frame Averaging Equivariant GNN for materials modeling.,9,True,,vict0rsch/faenet,https://github.com/vict0rsch/faenet,2023-02-10 22:10:27,2023-10-12 08:46:26,2023-10-12 08:46:22,125.0,,2.0,3.0,5.0,,,25.0,2023-09-12 04:00:49,0.1.2,1.0,3.0,faenet,,2.0,2.0,https://pypi.org/project/faenet,62.0,62.0,,,,3.0,,,,,,,,,,,,,,,,,, +215,iam-notebooks,,educational,Apache-2.0,https://github.com/ceriottm/iam-notebooks,Jupyter notebooks for the lectures of the Introduction to Atomistic Modeling.,9,True,,ceriottm/iam-notebooks,https://github.com/ceriottm/iam-notebooks,2020-11-23 21:27:41,2024-06-26 12:42:53,2024-06-26 12:42:45,242.0,2.0,5.0,4.0,7.0,3.0,,24.0,,,,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +216,CBFV,,rep-eng,,https://github.com/Kaaiian/CBFV,Tool to quickly create a composition-based feature vector.,9,False,,kaaiian/CBFV,https://github.com/Kaaiian/CBFV,2019-09-05 23:07:46,2022-03-30 05:47:53,2021-10-24 17:10:17,49.0,,6.0,4.0,7.0,5.0,5.0,23.0,,,,3.0,CBFV,,9.0,9.0,https://pypi.org/project/CBFV,286.0,286.0,,,,2.0,,,,,,,,,,,,,,,,,, +217,PACE,,md,https://github.com/ICAMS/lammps-user-pace/blob/main/LICENSE,https://github.com/ICAMS/lammps-user-pace,"The LAMMPS ML-IAP `pair_style pace`, aka Atomic Cluster Expansion (ACE), aka ML-PACE,..",9,True,,ICAMS/lammps-user-pace,https://github.com/ICAMS/lammps-user-pace,2021-02-25 10:04:48,2024-07-10 09:17:44,2023-11-27 21:28:13,59.0,,10.0,6.0,16.0,,6.0,21.0,2023-11-25 21:58:41,.2023.11.25.fix,6.0,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +218,UVVisML,,rep-learn,MIT,https://github.com/learningmatter-mit/uvvisml,Predict optical properties of molecules with machine learning.,9,False,"['optical-properties', 'single-paper', 'probabilistic']",learningmatter-mit/uvvisml,https://github.com/learningmatter-mit/uvvisml,2021-10-13 05:58:48,2023-05-26 22:35:14,2023-05-26 22:35:14,17.0,,6.0,4.0,1.0,,,21.0,2022-02-06 18:14:14,0.0.2,2.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +219,TurboGAP,,ml-iap,https://github.com/mcaroba/turbogap/blob/master/LICENSE.md,https://github.com/mcaroba/turbogap,The TurboGAP code.,9,True,['lang-fortran'],mcaroba/turbogap,https://github.com/mcaroba/turbogap,2021-05-02 09:19:05,2024-08-08 08:26:12,2024-07-09 06:58:53,309.0,12.0,8.0,8.0,7.0,6.0,3.0,16.0,,,,8.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +220,BenchML,,rep-eng,Apache-2.0,https://github.com/capoe/benchml,ML benchmarking and pipeling framework.,9,False,['benchmarking'],capoe/benchml,https://github.com/capoe/benchml,2020-04-28 13:26:29,2023-05-24 15:13:06,2023-05-24 15:04:57,341.0,,4.0,5.0,7.0,3.0,10.0,15.0,,,,9.0,benchml,,,,https://pypi.org/project/benchml,91.0,91.0,,,,2.0,,,,,,,,,,,,,,,,,, +221,OPTIMADE Tutorial Exercises,,educational,MIT,https://github.com/Materials-Consortia/optimade-tutorial-exercises,Tutorial exercises for the OPTIMADE API.,9,True,['datasets'],Materials-Consortia/optimade-tutorial-exercises,https://github.com/Materials-Consortia/optimade-tutorial-exercises,2021-08-25 17:33:15,2023-09-27 08:32:31,2023-09-27 08:32:30,49.0,,7.0,12.0,15.0,,3.0,14.0,2023-06-12 07:47:14,2.0.1,5.0,6.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +222,Q-stack,,ml-dft,MIT,https://github.com/lcmd-epfl/Q-stack,Stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML).,9,True,"['excited-states', 'general-tool']",lcmd-epfl/Q-stack,https://github.com/lcmd-epfl/Q-stack,2021-10-20 15:33:26,2024-07-25 14:47:23,2024-07-19 11:29:08,413.0,32.0,5.0,2.0,45.0,9.0,20.0,14.0,,,1.0,7.0,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,,,, +223,calorine,,ml-iap,https://gitlab.com/materials-modeling/calorine/-/blob/master/LICENSE,https://gitlab.com/materials-modeling/calorine,A Python package for constructing and sampling neuroevolution potential models. https://doi.org/10.21105/joss.06264.,9,False,,,,2021-04-23 16:12:56,2021-04-23 16:12:56,,,,4.0,,,9.0,76.0,12.0,,,14.0,,calorine,,,,https://pypi.org/project/calorine,1273.0,1273.0,,,,3.0,,,,,,,,,,,,,,,materials-modeling/calorine,https://gitlab.com/materials-modeling/calorine,, +224,Materials Data Facility (MDF),,datasets,Apache-2.0,https://www.materialsdatafacility.org,"A simple way to publish, discover, and access materials datasets. Publication of very large datasets supported (e.g.,..",9,True,,materials-data-facility/connect_client,https://github.com/materials-data-facility/connect_client,2018-09-12 20:49:58,2024-03-10 03:11:45,2024-02-05 22:48:40,158.0,,1.0,4.0,35.0,1.0,6.0,10.0,2024-02-05 22:49:58,0.5.0,23.0,7.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +225,optimade.science,,community,MIT,https://optimade.science,A sky-scanner Optimade browser-only GUI.,9,True,['datasets'],tilde-lab/optimade.science,https://github.com/tilde-lab/optimade.science,2019-06-08 14:10:54,2024-06-10 12:03:39,2024-06-10 12:03:39,247.0,4.0,2.0,4.0,32.0,7.0,19.0,8.0,2023-03-02 20:13:25,2.0.0,1.0,8.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +226,2DMD dataset,,datasets,Apache-2.0,https://github.com/HSE-LAMBDA/ai4material_design/blob/main/docs/DATA.md,"Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of..",9,True,['material-defect'],HSE-LAMBDA/ai4material_design,https://github.com/HSE-LAMBDA/ai4material_design,2021-03-25 10:06:20,2023-11-21 11:30:42,2023-11-21 11:30:33,1118.0,,3.0,8.0,28.0,,12.0,6.0,,,,11.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +227,ai4material_design,,rep-learn,Apache-2.0,https://github.com/HSE-LAMBDA/ai4material_design,"Code for Kazeev, N., Al-Maeeni, A.R., Romanov, I. et al. Sparse representation for machine learning the properties of..",9,True,"['pretrained', 'material-defect']",HSE-LAMBDA/ai4material_design,https://github.com/HSE-LAMBDA/ai4material_design,2021-03-25 10:06:20,2023-11-21 11:30:42,2023-11-21 11:30:33,1118.0,,3.0,8.0,28.0,,12.0,6.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +228,MADICES Awesome Interoperability,,community,MIT,MADICES/MADICES.github.io/blob/main/docs/awesome_interoperability.md,Linked data interoperability resources of the Machine-actionable data interoperability for the chemical sciences..,9,False,['datasets'],MADICES/MADICES.github.io,https://github.com/MADICES/MADICES.github.io,2021-12-26 13:27:32,2024-07-10 07:36:51,2024-07-10 07:35:07,217.0,18.0,5.0,4.0,17.0,1.0,14.0,1.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +229,Awesome Neural Geometry,,community,,https://github.com/neurreps/awesome-neural-geometry,"A curated collection of resources and research related to the geometry of representations in the brain, deep networks,..",8,True,"['educational', 'rep-learn']",neurreps/awesome-neural-geometry,https://github.com/neurreps/awesome-neural-geometry,2022-07-31 01:19:57,2024-08-13 14:39:08,2024-07-17 18:47:49,124.0,2.0,56.0,28.0,13.0,,1.0,886.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +230,Awesome-Graph-Generation,,community,,https://github.com/yuanqidu/awesome-graph-generation,A curated list of up-to-date graph generation papers and resources.,8,True,['rep-learn'],yuanqidu/awesome-graph-generation,https://github.com/yuanqidu/awesome-graph-generation,2021-08-07 05:43:46,2024-06-24 01:56:37,2024-03-17 06:07:46,84.0,,16.0,7.0,2.0,,,255.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +231,RDKit Tutorials,,educational,https://github.com/rdkit/rdkit-tutorials/blob/master/LICENSE,https://github.com/rdkit/rdkit-tutorials,Tutorials to learn how to work with the RDKit.,8,False,,rdkit/rdkit-tutorials,https://github.com/rdkit/rdkit-tutorials,2016-10-07 03:34:01,2023-03-19 13:36:55,2023-03-19 13:36:55,68.0,,70.0,17.0,7.0,3.0,1.0,251.0,,,,5.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +232,EquiformerV2,,rep-learn,MIT,https://github.com/atomicarchitects/equiformer_v2,[ICLR24] EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations.,8,True,,atomicarchitects/equiformer_v2,https://github.com/atomicarchitects/equiformer_v2,2023-06-21 07:09:58,2024-07-31 23:38:48,2024-07-16 05:51:23,16.0,4.0,24.0,5.0,1.0,15.0,2.0,184.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +233,BestPractices,,educational,MIT,https://github.com/anthony-wang/BestPractices,Things that you should (and should not) do in your Materials Informatics research.,8,True,,anthony-wang/BestPractices,https://github.com/anthony-wang/BestPractices,2020-05-05 19:41:25,2023-11-17 02:58:25,2023-11-17 02:58:25,17.0,,68.0,8.0,8.0,5.0,2.0,165.0,,,,3.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +234,G-SchNet,,generative,MIT,https://github.com/atomistic-machine-learning/G-SchNet,G-SchNet - a generative model for 3d molecular structures.,8,False,,atomistic-machine-learning/G-SchNet,https://github.com/atomistic-machine-learning/G-SchNet,2019-10-21 13:48:59,2023-03-24 12:05:41,2023-03-24 12:05:41,64.0,,25.0,7.0,,,10.0,129.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +235,A Highly Opinionated List of Open-Source Materials Informatics Resources,,community,MIT,https://github.com/ncfrey/resources,A Highly Opinionated List of Open Source Materials Informatics Resources.,8,False,,ncfrey/resources,https://github.com/ncfrey/resources,2020-11-17 23:47:07,2022-02-18 13:37:51,2022-02-18 13:37:51,8.0,,22.0,9.0,,,,116.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +236,ANI-1 Dataset,,datasets,MIT,https://github.com/isayev/ANI1_dataset,A data set of 20 million calculated off-equilibrium conformations for organic molecules.,8,False,,isayev/ANI1_dataset,https://github.com/isayev/ANI1_dataset,2017-08-07 20:08:46,2022-08-08 15:56:17,2022-08-08 15:56:17,25.0,,18.0,12.0,2.0,8.0,3.0,96.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +237,AIMNet,,ml-iap,MIT,https://github.com/aiqm/aimnet,Atoms In Molecules Neural Network Potential.,8,False,['single-paper'],aiqm/aimnet,https://github.com/aiqm/aimnet,2018-09-26 17:28:37,2019-11-21 23:49:01,2019-11-21 23:49:00,7.0,,24.0,10.0,2.0,4.0,,94.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +238,MoleculeNet Leaderboard,,datasets,MIT,https://github.com/deepchem/moleculenet,,8,False,['benchmarking'],deepchem/moleculenet,https://github.com/deepchem/moleculenet,2020-02-24 18:14:05,2021-04-29 19:51:06,2021-04-29 19:51:06,78.0,,19.0,5.0,15.0,23.0,5.0,87.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +239,Awesome Neural SBI,,community,MIT,https://github.com/smsharma/awesome-neural-sbi,Community-sourced list of papers and resources on neural simulation-based inference.,8,True,['active-learning'],smsharma/awesome-neural-sbi,https://github.com/smsharma/awesome-neural-sbi,2023-01-20 19:48:13,2024-06-17 04:24:32,2024-06-17 04:24:27,56.0,5.0,4.0,6.0,2.0,1.0,1.0,80.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +240,MACE-Jax,,ml-iap,MIT,https://github.com/ACEsuit/mace-jax,Equivariant machine learning interatomic potentials in JAX.,8,True,,ACEsuit/mace-jax,https://github.com/ACEsuit/mace-jax,2023-02-06 12:10:16,2023-10-04 08:07:35,2023-10-04 08:07:35,207.0,,4.0,11.0,1.0,3.0,3.0,58.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +241,graphite,,rep-learn,MIT,https://github.com/LLNL/graphite,A repository for implementing graph network models based on atomic structures.,8,True,,llnl/graphite,https://github.com/LLNL/graphite,2022-06-27 19:15:27,2024-08-08 04:10:45,2024-08-08 04:10:44,30.0,2.0,9.0,5.0,4.0,2.0,1.0,53.0,,,,2.0,,,11.0,11.0,,,,,,,3.0,,,,,,,,,,,,,,,,,, +242,cG-SchNet,,generative,MIT,https://github.com/atomistic-machine-learning/cG-SchNet,cG-SchNet - a conditional generative neural network for 3d molecular structures.,8,False,,atomistic-machine-learning/cG-SchNet,https://github.com/atomistic-machine-learning/cG-SchNet,2021-12-02 15:35:18,2023-03-24 12:09:56,2023-03-24 12:09:56,28.0,,15.0,3.0,,,3.0,50.0,2022-02-21 13:36:41,1.0,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +243,DeeperGATGNN,,rep-learn,MIT,https://github.com/usccolumbia/deeperGATGNN,Scalable graph neural networks for materials property prediction.,8,True,,usccolumbia/deeperGATGNN,https://github.com/usccolumbia/deeperGATGNN,2021-09-29 17:31:02,2024-01-19 18:11:52,2024-01-19 18:11:38,25.0,,8.0,3.0,1.0,,8.0,45.0,2022-03-08 02:14:28,1.0,1.0,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +244,Sketchmap,,unsupervised,GPL-3.0,https://github.com/lab-cosmo/sketchmap,Suite of programs to perform non-linear dimensionality reduction -- sketch-map in particular.,8,False,['lang-cpp'],lab-cosmo/sketchmap,https://github.com/lab-cosmo/sketchmap,2014-05-20 09:33:32,2024-02-20 20:57:41,2023-05-24 22:47:50,64.0,,10.0,31.0,1.0,3.0,5.0,44.0,,,,8.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +245,PyNEP,,ml-iap,MIT,https://github.com/bigd4/PyNEP,A python interface of the machine learning potential NEP used in GPUMD.,8,True,,bigd4/PyNEP,https://github.com/bigd4/PyNEP,2022-03-21 06:27:13,2024-06-01 09:06:22,2024-06-01 09:06:22,80.0,3.0,17.0,2.0,15.0,4.0,7.0,44.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +246,GAP,,ml-iap,https://github.com/libAtoms/GAP/blob/main/LICENSE.md,https://libatoms.github.io/,Gaussian Approximation Potential (GAP).,8,True,,libAtoms/GAP,https://github.com/libAtoms/GAP,2021-03-22 14:48:56,2024-07-19 14:11:30,2024-07-19 14:11:30,205.0,2.0,20.0,10.0,66.0,,,39.0,,,,13.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +247,SIMPLE-NN v2,,ml-iap,GPL-3.0,https://github.com/MDIL-SNU/SIMPLE-NN_v2,SIMPLE-NN is an open package that constructs Behler-Parrinello-type neural-network interatomic potentials from ab..,8,True,,MDIL-SNU/SIMPLE-NN_v2,https://github.com/MDIL-SNU/SIMPLE-NN_v2,2021-03-02 09:36:49,2023-12-29 02:08:47,2023-12-29 02:08:47,504.0,,17.0,5.0,88.0,4.0,9.0,39.0,,,,13.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +248,SNAP,,ml-iap,BSD-3-Clause,https://github.com/materialsvirtuallab/snap,Repository for spectral neighbor analysis potential (SNAP) model development.,8,False,,materialsvirtuallab/snap,https://github.com/materialsvirtuallab/snap,2017-06-26 21:56:00,2020-06-30 05:20:37,2020-06-30 05:20:37,38.0,,17.0,11.0,1.0,1.0,3.0,36.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +249,Atomistic Adversarial Attacks,,ml-iap,MIT,https://github.com/learningmatter-mit/Atomistic-Adversarial-Attacks,Code for performing adversarial attacks on atomistic systems using NN potentials.,8,False,['probabilistic'],learningmatter-mit/Atomistic-Adversarial-Attacks,https://github.com/learningmatter-mit/Atomistic-Adversarial-Attacks,2021-03-28 17:39:52,2022-10-03 16:19:31,2022-10-03 16:19:29,33.0,,7.0,5.0,1.0,,1.0,30.0,2021-07-19 18:09:36,1.0.1,1.0,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +250,CGAT,,rep-learn,MIT,https://github.com/hyllios/CGAT,Crystal graph attention neural networks for materials prediction.,8,False,,hyllios/CGAT,https://github.com/hyllios/CGAT,2021-03-28 09:51:15,2023-07-18 12:04:35,2023-01-10 22:31:07,153.0,,8.0,3.0,1.0,,1.0,25.0,2023-07-18 12:04:35,0.1,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +251,SkipAtom,,rep-eng,MIT,https://github.com/lantunes/skipatom,"Distributed representations of atoms, inspired by the Skip-gram model.",8,False,,lantunes/skipatom,https://github.com/lantunes/skipatom,2021-06-19 13:09:13,2023-07-16 19:28:39,2022-05-04 13:18:30,46.0,,3.0,2.0,7.0,3.0,1.0,23.0,,,1.0,,skipatom,conda-forge/skipatom,1.0,1.0,https://pypi.org/project/skipatom,92.0,151.0,https://anaconda.org/conda-forge/skipatom,2023-06-18 08:42:05.505,1492.0,3.0,,,,,,,,,,,,,,,,,, +252,ACE1.jl,,ml-iap,https://github.com/ACEsuit/ACE1.jl/blob/main/ASL.md,https://acesuit.github.io/,Atomic Cluster Expansion for Modelling Invariant Atomic Properties.,8,True,['lang-julia'],ACEsuit/ACE1.jl,https://github.com/ACEsuit/ACE1.jl,2022-01-14 19:52:49,2024-07-02 14:12:25,2024-07-02 14:12:23,558.0,1.0,7.0,5.0,30.0,22.0,24.0,20.0,,,,9.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +253,GElib,,math,MPL-2.0,https://github.com/risi-kondor/GElib,C++/CUDA library for SO(3) equivariant operations.,8,True,['lang-cpp'],risi-kondor/GElib,https://github.com/risi-kondor/GElib,2021-08-24 20:56:40,2024-08-06 20:45:38,2024-07-27 21:36:58,602.0,1.0,3.0,4.0,4.0,3.0,4.0,19.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +254,bVAE-IM,,generative,MIT,https://github.com/tsudalab/bVAE-IM,Implementation of Chemical Design with GPU-based Ising Machine.,8,False,"['qml', 'single-paper']",tsudalab/bVAE-IM,https://github.com/tsudalab/bVAE-IM,2023-03-01 08:26:56,2023-07-11 04:39:24,2023-07-11 04:39:24,39.0,,3.0,8.0,,,,11.0,2023-03-01 14:26:13,1.0.0,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +255,SiMGen,,generative,MIT,https://github.com/RokasEl/simgen,Zero Shot Molecular Generation via Similarity Kernels.,8,True,['visualization'],RokasEl/simgen,https://github.com/RokasEl/simgen,2023-01-25 16:41:18,2024-06-13 15:43:18,2024-02-15 10:31:41,257.0,,,2.0,23.0,1.0,3.0,11.0,2024-02-14 10:35:02,0.1.0,1.0,4.0,simgen,,1.0,1.0,https://pypi.org/project/simgen,20.0,20.0,,,,3.0,,,,,,,,,True,,,,,,,,, +256,T-e3nn,,rep-learn,MIT,https://github.com/Hongyu-yu/T-e3nn,Time-reversal Euclidean neural networks based on e3nn.,8,False,['magnetism'],Hongyu-yu/T-e3nn,https://github.com/Hongyu-yu/T-e3nn,2022-11-21 14:49:45,2023-02-21 16:36:26,2023-02-21 16:36:25,2145.0,,,2.0,,,,8.0,,,,26.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +257,MLXDM,,ml-iap,MIT,https://github.com/RowleyGroup/MLXDM,A Neural Network Potential with Rigorous Treatment of Long-Range Dispersion https://doi.org/10.1039/D2DD00150K.,8,True,['long-range'],RowleyGroup/MLXDM,https://github.com/RowleyGroup/MLXDM,2022-05-03 17:47:26,2024-08-08 21:52:47,2024-08-08 21:48:15,48.0,13.0,2.0,5.0,,,,6.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +258,GEOM,,datasets,,https://github.com/learningmatter-mit/geom,GEOM: Energy-annotated molecular conformations.,7,False,['drug-discovery'],learningmatter-mit/geom,https://github.com/learningmatter-mit/geom,2020-06-03 17:58:37,2022-04-24 18:57:39,2022-04-24 18:57:39,95.0,,24.0,10.0,,2.0,11.0,188.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +259,tensorfieldnetworks,,rep-learn,MIT,https://github.com/tensorfieldnetworks/tensorfieldnetworks,Rotation- and translation-equivariant neural networks for 3D point clouds.,7,False,,tensorfieldnetworks/tensorfieldnetworks,https://github.com/tensorfieldnetworks/tensorfieldnetworks,2018-02-09 23:18:13,2020-01-07 17:22:16,2020-01-07 17:22:15,10.0,,28.0,9.0,2.0,1.0,2.0,151.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +260,PhysNet,,ml-iap,MIT,https://github.com/MMunibas/PhysNet,Code for training PhysNet models.,7,False,['electrostatics'],MMunibas/PhysNet,https://github.com/MMunibas/PhysNet,2019-03-28 09:05:22,2022-10-16 17:45:42,2020-12-07 11:09:20,4.0,,26.0,9.0,1.0,5.0,,88.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +261,DTNN,,rep-learn,MIT,https://github.com/atomistic-machine-learning/dtnn,Deep Tensor Neural Network.,7,False,,atomistic-machine-learning/dtnn,https://github.com/atomistic-machine-learning/dtnn,2017-03-10 14:40:05,2017-07-11 08:26:15,2017-07-11 08:25:39,9.0,,30.0,14.0,,,3.0,76.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +262,JAXChem,,general-tool,MIT,https://github.com/deepchem/jaxchem,JAXChem is a JAX-based deep learning library for complex and versatile chemical modeling.,7,False,,deepchem/jaxchem,https://github.com/deepchem/jaxchem,2020-05-11 18:54:41,2020-07-15 05:02:21,2020-07-15 04:55:41,96.0,,10.0,7.0,13.0,1.0,1.0,76.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +263,Cormorant,,rep-learn,https://github.com/risilab/cormorant/blob/master/LICENSE,https://github.com/risilab/cormorant,Codebase for Cormorant Neural Networks.,7,False,,risilab/cormorant,https://github.com/risilab/cormorant,2019-10-27 18:22:07,2022-05-11 12:49:05,2020-03-11 15:25:51,160.0,,10.0,6.0,1.0,3.0,,59.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +264,Awesome-Crystal-GNNs,,community,MIT,https://github.com/kdmsit/Awesome-Crystal-GNNs,This repository contains a collection of resources and papers on GNN Models on Crystal Solid State Materials.,7,True,,kdmsit/Awesome-Crystal-GNNs,https://github.com/kdmsit/Awesome-Crystal-GNNs,2022-11-15 11:12:18,2024-06-16 16:02:41,2024-06-16 16:02:37,34.0,2.0,7.0,4.0,,,,54.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +265,uncertainty_benchmarking,,general-tool,,https://github.com/ulissigroup/uncertainty_benchmarking,Various code/notebooks to benchmark different ways we could estimate uncertainty in ML predictions.,7,False,"['benchmarking', 'probabilistic']",ulissigroup/uncertainty_benchmarking,https://github.com/ulissigroup/uncertainty_benchmarking,2019-08-28 19:39:28,2021-06-07 23:29:39,2021-06-07 23:27:19,265.0,,7.0,6.0,1.0,,,38.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +266,AdsorbML,,rep-learn,MIT,https://github.com/Open-Catalyst-Project/AdsorbML,,7,False,"['surface-science', 'single-paper']",Open-Catalyst-Project/AdsorbML,https://github.com/Open-Catalyst-Project/AdsorbML,2022-11-30 01:38:20,2024-05-07 21:54:19,2023-07-31 16:28:09,56.0,,4.0,7.0,11.0,3.0,1.0,35.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +267,torchchem,,general-tool,MIT,https://github.com/deepchem/torchchem,An experimental repo for experimenting with PyTorch models.,7,False,,deepchem/torchchem,https://github.com/deepchem/torchchem,2020-03-07 17:06:44,2023-03-24 23:13:19,2020-05-01 20:12:23,49.0,,13.0,8.0,27.0,2.0,1.0,34.0,,,,5.0,,,1.0,1.0,,,,,,,3.0,,,,,,,,,,,,,,,,,, +268,chemlift,,language-models,MIT,https://github.com/lamalab-org/chemlift,Language-interfaced fine-tuning for chemistry.,7,True,,lamalab-org/chemlift,https://github.com/lamalab-org/chemlift,2023-07-10 06:54:07,2023-11-30 10:47:50,2023-10-14 16:50:14,36.0,,3.0,1.0,1.0,11.0,7.0,31.0,2023-11-30 19:42:07,0.0.1,1.0,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +269,Mat2Spec,,ml-dft,MIT,https://github.com/gomes-lab/Mat2Spec,Density of States Prediction for Materials Discovery via Contrastive Learning from Probabilistic Embeddings.,7,False,['spectroscopy'],gomes-lab/Mat2Spec,https://github.com/gomes-lab/Mat2Spec,2022-01-17 11:45:57,2022-04-17 17:12:29,2022-04-17 17:12:29,8.0,,10.0,,,,,27.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +270,escnn_jax,,rep-learn,https://github.com/emilemathieu/escnn_jax/blob/master/LICENSE,https://github.com/emilemathieu/escnn_jax,Equivariant Steerable CNNs Library for Pytorch https://quva-lab.github.io/escnn/.,7,False,,emilemathieu/escnn_jax,https://github.com/emilemathieu/escnn_jax,2023-06-15 09:45:45,2023-06-28 14:40:32,2023-06-28 14:39:56,203.0,,2.0,,,,,26.0,,,,8.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +271,LLM-Prop,,language-models,MIT,https://github.com/vertaix/LLM-Prop,A repository for the LLM-Prop implementation.,7,True,,vertaix/LLM-Prop,https://github.com/vertaix/LLM-Prop,2022-10-16 19:15:21,2024-04-26 14:20:54,2024-04-26 14:20:54,175.0,,5.0,2.0,,1.0,1.0,25.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +272,BOSS,,materials-discovery,,https://gitlab.com/cest-group/boss,Bayesian Optimization Structure Search (BOSS).,7,False,['probabilistic'],,,2020-02-12 08:48:33,2020-02-12 08:48:33,,,,10.0,,,2.0,28.0,20.0,,,19.0,,aalto-boss,,,,https://pypi.org/project/aalto-boss,603.0,603.0,,,,2.0,,,,,,,,,,,,,,,cest-group/boss,https://gitlab.com/cest-group/boss,, +273,Libnxc,,ml-dft,MPL-2.0,https://github.com/semodi/libnxc,A library for using machine-learned exchange-correlation functionals for density-functional theory.,7,False,"['lang-cpp', 'lang-fortran']",semodi/libnxc,https://github.com/semodi/libnxc,2020-07-01 18:21:50,2021-09-18 14:53:52,2021-08-14 16:26:32,100.0,,4.0,2.0,3.0,13.0,3.0,16.0,,,2.0,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +274,AGOX,,materials-discovery,GPL-3.0,https://gitlab.com/agox/agox,AGOX is a package for global optimization of atomic system using e.g. the energy calculated from density functional..,7,False,['structure-optimization'],,,2022-03-08 09:08:13,2022-03-08 09:08:13,,,,5.0,,,14.0,9.0,13.0,,,2.0,,agox,,,,https://pypi.org/project/agox,197.0,197.0,,,,2.0,,,,,,,,,,,,,,,agox/agox,https://gitlab.com/agox/agox,, +275,COSMO Software Cookbook,,educational,BSD-3-Clause,https://github.com/lab-cosmo/atomistic-cookbook,The COSMO cookbook contains recipes for atomic-scale modelling for materials and molecules.,7,True,,lab-cosmo/software-cookbook,https://github.com/lab-cosmo/atomistic-cookbook,2023-05-23 10:33:47,2024-08-14 17:52:22,2024-08-14 17:43:05,69.0,5.0,1.0,16.0,57.0,2.0,10.0,12.0,,,,9.0,,,,,,,,,,,3.0,,,,,,,lab-cosmo/atomistic-cookbook,,,,,,,,,,, +276,NICE,,rep-eng,MIT,https://github.com/lab-cosmo/nice,NICE (N-body Iteratively Contracted Equivariants) is a set of tools designed for the calculation of invariant and..,7,True,,lab-cosmo/nice,https://github.com/lab-cosmo/nice,2020-07-03 08:47:41,2024-04-15 14:39:34,2024-04-15 14:39:33,233.0,,3.0,17.0,7.0,2.0,1.0,12.0,,,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +277,rxngenerator,,generative,MIT,https://github.com/tsudalab/rxngenerator,A generative model for molecular generation via multi-step chemical reactions.,7,False,,tsudalab/rxngenerator,https://github.com/tsudalab/rxngenerator,2021-06-18 07:44:53,2024-07-24 05:27:21,2022-08-09 07:21:05,16.0,,3.0,9.0,2.0,1.0,,11.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +278,AIS Square,,datasets,LGPL-3.0,https://github.com/deepmodeling/AIS-Square,"A collaborative and open-source platform for sharing AI for Science datasets, models, and workflows. Home of the..",7,True,"['community', 'model-repository']",deepmodeling/AIS-Square,https://github.com/deepmodeling/AIS-Square,2022-09-13 09:52:30,2024-07-30 13:14:00,2023-12-06 03:06:55,469.0,,8.0,8.0,210.0,5.0,1.0,10.0,,,,8.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +279,rho_learn,,ml-dft,MIT,https://github.com/jwa7/rho_learn,A proof-of-concept framework for torch-based learning of the electron density and related scalar fields.,7,False,,jwa7/rho_learn,https://github.com/jwa7/rho_learn,2023-03-27 16:59:34,2024-08-14 15:12:39,2024-03-20 15:20:39,111.0,,1.0,,4.0,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +280,MAChINE,,educational,MIT,https://github.com/aimat-lab/MAChINE,Client-Server Web App to introduce usage of ML in materials science to beginners.,7,False,,aimat-lab/MAChINE,https://github.com/aimat-lab/MAChINE,2023-04-17 14:29:06,2023-09-29 14:20:12,2023-09-29 10:20:31,1026.0,,,,7.0,9.0,23.0,1.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +281,ML4pXRDs,,rep-learn,MIT,https://github.com/aimat-lab/ML4pXRDs,Contains code to train neural networks based on simulated powder XRDs from synthetic crystals.,7,False,"['xrd', 'single-paper']",aimat-lab/ML4pXRDs,https://github.com/aimat-lab/ML4pXRDs,2022-12-01 16:24:29,2023-07-14 08:17:06,2023-07-14 08:17:04,1320.0,,,3.0,,,,,2023-03-22 11:04:31,1.0,1.0,,,,,,,,0.0,,,,3.0,,,,,,2.0,,,,,,,,,,,, +282,The Collection of Database and Dataset Resources in Materials Science,,community,,https://github.com/sedaoturak/data-resources-for-materials-science,"A list of databases, datasets and books/handbooks where you can find materials properties for machine learning..",6,True,['datasets'],sedaoturak/data-resources-for-materials-science,https://github.com/sedaoturak/data-resources-for-materials-science,2021-02-20 06:38:45,2024-06-07 15:51:11,2024-06-07 15:51:11,30.0,1.0,40.0,12.0,2.0,1.0,1.0,248.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +283,DeepH-E3,,ml-dft,MIT,https://github.com/Xiaoxun-Gong/DeepH-E3,General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian.,6,False,['magnetism'],Xiaoxun-Gong/DeepH-E3,https://github.com/Xiaoxun-Gong/DeepH-E3,2023-03-16 11:25:58,2023-04-04 13:27:01,2023-04-04 13:26:27,16.0,,16.0,6.0,,9.0,6.0,60.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +284,Applied AI for Materials,,educational,,https://github.com/WardLT/applied-ai-for-materials,Course materials for Applied AI for Materials Science and Engineering.,6,False,,WardLT/applied-ai-for-materials,https://github.com/WardLT/applied-ai-for-materials,2020-10-12 19:39:06,2022-03-12 02:26:58,2022-03-12 02:26:41,107.0,,31.0,4.0,13.0,5.0,,58.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +285,DeepDFT,,ml-dft,MIT,https://github.com/peterbjorgensen/DeepDFT,Official implementation of DeepDFT model.,6,False,,peterbjorgensen/DeepDFT,https://github.com/peterbjorgensen/DeepDFT,2020-11-03 11:51:15,2023-02-28 15:37:49,2023-02-28 15:37:37,128.0,,7.0,1.0,,,5.0,54.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +286,ANI-1x Datasets,,datasets,MIT,https://github.com/aiqm/ANI1x_datasets,"The ANI-1ccx and ANI-1x data sets, coupled-cluster and density functional theory properties for organic molecules.",6,False,,aiqm/ANI1x_datasets,https://github.com/aiqm/ANI1x_datasets,2019-09-17 18:19:28,2022-04-11 17:25:55,2022-04-11 17:25:55,12.0,,5.0,5.0,,4.0,3.0,53.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +287,COMP6 Benchmark dataset,,datasets,MIT,https://github.com/isayev/COMP6,COMP6 Benchmark dataset for ML potentials.,6,False,,isayev/COMP6,https://github.com/isayev/COMP6,2017-12-29 16:58:35,2018-07-09 23:56:35,2018-07-09 23:56:34,27.0,,4.0,5.0,,2.0,1.0,39.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +288,MACE-Layer,,rep-learn,MIT,https://github.com/ACEsuit/mace-layer,Higher order equivariant graph neural networks for 3D point clouds.,6,False,,ACEsuit/mace-layer,https://github.com/ACEsuit/mace-layer,2022-11-09 17:03:41,2023-06-27 15:32:49,2023-06-06 10:09:58,19.0,,6.0,5.0,2.0,1.0,,33.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +289,MACE-tutorials,,educational,MIT,https://github.com/ilyes319/mace-tutorials,Another set of tutorials for the MACE interatomic potential by one of the authors.,6,True,"['ml-iap', 'rep-learn', 'md']",ilyes319/mace-tutorials,https://github.com/ilyes319/mace-tutorials,2023-09-11 18:09:18,2024-07-16 12:45:45,2024-07-16 12:45:42,7.0,2.0,9.0,3.0,,1.0,,31.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +290,milad,,rep-eng,GPL-3.0,https://github.com/muhrin/milad,Moment Invariants Local Atomic Descriptor.,6,False,['generative'],muhrin/milad,https://github.com/muhrin/milad,2020-04-23 09:14:24,2022-12-03 10:40:05,2022-12-03 10:39:59,110.0,,1.0,4.0,,,,29.0,,,,,,,2.0,2.0,,,,,,,3.0,,,,,,,,,,,,,,,,,, +291,charge_transfer_nnp,,rep-learn,MIT,https://github.com/pfnet-research/charge_transfer_nnp,Graph neural network potential with charge transfer.,6,False,['electrostatics'],pfnet-research/charge_transfer_nnp,https://github.com/pfnet-research/charge_transfer_nnp,2022-04-06 01:48:18,2022-04-06 01:53:35,2022-04-06 01:53:22,1.0,,8.0,12.0,,,,28.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +292,SciBot,,language-models,,https://github.com/CFN-softbio/SciBot,SciBot is a simple demo of building a domain-specific chatbot for science.,6,True,['ai-agent'],CFN-softbio/SciBot,https://github.com/CFN-softbio/SciBot,2023-06-12 12:41:44,2024-04-19 18:34:24,2024-04-19 18:17:00,22.0,,8.0,6.0,,,,28.0,,,,,,,1.0,1.0,,,,,,,3.0,,,,,,,,,,,,,,,,,, +293,ChargE3Net,,ml-dft,MIT,https://github.com/AIforGreatGood/charge3net,Higher-order equivariant neural networks for charge density prediction in materials.,6,True,['rep-learn'],AIforGreatGood/charge3net,https://github.com/AIforGreatGood/charge3net,2023-12-16 13:54:56,2024-08-01 20:33:49,2024-07-29 16:24:35,9.0,5.0,6.0,4.0,,1.0,1.0,28.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +294,MLIP-3,,ml-iap,BSD-2-Clause,https://gitlab.com/ashapeev/mlip-3,MLIP-3: Active learning on atomic environments with Moment Tensor Potentials (MTP).,6,False,['lang-cpp'],,,2023-04-24 14:05:53,2023-04-24 14:05:53,,,,6.0,,,23.0,6.0,25.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,ashapeev/mlip-3,https://gitlab.com/ashapeev/mlip-3,, +295,GLAMOUR,,rep-learn,MIT,https://github.com/learningmatter-mit/GLAMOUR,Graph Learning over Macromolecule Representations.,6,False,['single-paper'],learningmatter-mit/GLAMOUR,https://github.com/learningmatter-mit/GLAMOUR,2021-08-20 18:16:40,2022-12-31 17:56:21,2022-12-31 17:56:21,14.0,,6.0,3.0,,,8.0,20.0,2021-08-23 18:58:52,0.1,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +296,SA-GPR,,rep-eng,LGPL-3.0,https://github.com/dilkins/TENSOAP,Public repository for symmetry-adapted Gaussian Process Regression (SA-GPR).,6,True,['lang-c'],dilkins/TENSOAP,https://github.com/dilkins/TENSOAP,2020-05-04 14:19:01,2024-07-23 13:03:45,2024-07-23 13:03:44,26.0,1.0,13.0,3.0,10.0,2.0,5.0,19.0,2020-12-17 16:51:47,2020.0,1.0,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +297,EquivariantOperators.jl,,math,MIT,https://github.com/aced-differentiate/EquivariantOperators.jl,This package is deprecated. Functionalities are migrating to Porcupine.jl.,6,True,['lang-julia'],aced-differentiate/EquivariantOperators.jl,https://github.com/aced-differentiate/EquivariantOperators.jl,2021-11-29 03:36:21,2023-09-27 18:34:44,2023-09-27 18:34:44,62.0,,,4.0,,,,18.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +298,CatGym,,reinforcement-learning,GPL,https://github.com/ulissigroup/catgym,Surface segregation using Deep Reinforcement Learning.,6,False,,ulissigroup/catgym,https://github.com/ulissigroup/catgym,2019-08-06 19:25:27,2021-08-30 17:05:36,2021-08-30 17:05:32,162.0,,2.0,4.0,,2.0,,11.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +299,testing-framework,,ml-iap,,https://github.com/libAtoms/testing-framework,The purpose of this repository is to aid the testing of a large number of interatomic potentials for a variety of..,6,False,['benchmarking'],libAtoms/testing-framework,https://github.com/libAtoms/testing-framework,2020-03-04 11:43:15,2022-02-10 17:23:46,2022-02-10 17:23:46,225.0,,6.0,16.0,10.0,5.0,3.0,11.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +300,PANNA,,ml-iap,MIT,https://gitlab.com/PANNAdevs/panna,A package to train and validate all-to-all connected network models for BP[1] and modified-BP[2] type local atomic..,6,False,['benchmarking'],,,2018-11-09 10:47:48,2018-11-09 10:47:48,,,,10.0,,,,,9.0,,,2.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,PANNAdevs/panna,https://gitlab.com/PANNAdevs/panna,, +301,ML for catalysis tutorials,,educational,MIT,https://github.com/ulissigroup/ml_catalysis_tutorials,A jupyter book repo for tutorial on how to use OCP ML models for catalysis.,6,False,,ulissigroup/ml_catalysis_tutorials,https://github.com/ulissigroup/ml_catalysis_tutorials,2022-10-28 20:37:30,2022-10-31 18:06:07,2022-10-31 17:49:25,40.0,,1.0,4.0,,,,8.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +302,COSMO Toolbox,,math,,https://github.com/lab-cosmo/toolbox,Assorted libraries and utilities for atomistic simulation analysis.,6,True,['lang-cpp'],lab-cosmo/toolbox,https://github.com/lab-cosmo/toolbox,2014-05-20 11:23:13,2024-03-19 13:27:28,2024-03-19 13:27:02,107.0,,5.0,27.0,1.0,,,7.0,,,,9.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +303,fplib,,rep-eng,MIT,https://github.com/zhuligs/fplib,a fingerprint library.,6,False,"['lang-c', 'single-paper']",zhuligs/fplib,https://github.com/zhuligs/fplib,2015-09-07 08:18:27,2022-02-09 05:31:21,2022-02-09 05:31:12,37.0,,2.0,3.0,,,3.0,7.0,2021-02-03 21:40:23,pub,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +304,SOAPxx,,rep-eng,GPL-2.0,https://github.com/capoe/soapxx,A SOAP implementation.,6,False,['lang-cpp'],capoe/soapxx,https://github.com/capoe/soapxx,2016-03-29 10:00:00,2020-03-27 13:47:44,2020-03-27 13:47:36,289.0,,3.0,3.0,1.0,,2.0,7.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +305,Equisolve,,general-tool,BSD-3-Clause,https://github.com/lab-cosmo/equisolve,A ML toolkit package utilizing the metatensor data format to build models for the prediction of equivariant properties..,6,True,['ml-iap'],lab-cosmo/equisolve,https://github.com/lab-cosmo/equisolve,2022-10-04 15:29:19,2023-10-27 10:03:59,2023-10-27 09:55:17,55.0,,1.0,17.0,43.0,19.0,4.0,5.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +306,Cephalo,,language-models,Apache-2.0,https://github.com/lamm-mit/Cephalo,Multimodal Vision-Language Models for Bio-Inspired Materials Analysis and Design.,6,True,"['generative', 'multimodal', 'pretrained']",lamm-mit/Cephalo,https://github.com/lamm-mit/Cephalo,2024-05-28 12:29:13,2024-07-23 09:27:58,2024-07-23 09:27:57,24.0,24.0,1.0,1.0,,,,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +307,cnine,,math,,https://github.com/risi-kondor/cnine,Cnine tensor library.,6,False,['lang-cpp'],risi-kondor/cnine,https://github.com/risi-kondor/cnine,2022-10-07 20:54:54,2024-08-14 20:13:06,2024-08-09 03:21:10,381.0,10.0,4.0,2.0,7.0,,1.0,4.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,https://risi-kondor.github.io/cnine/, +308,soap_turbo,,rep-eng,https://github.com/libAtoms/soap_turbo/blob/master/LICENSE.md,https://github.com/libAtoms/soap_turbo,soap_turbo comprises a series of libraries to be used in combination with QUIP/GAP and TurboGAP.,6,False,['lang-fortran'],libAtoms/soap_turbo,https://github.com/libAtoms/soap_turbo,2021-03-19 15:20:25,2024-06-28 11:53:50,2023-05-24 09:42:00,36.0,,8.0,8.0,,5.0,3.0,4.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +309,KSR-DFT,,others,Apache-2.0,https://github.com/pedersor/ksr_dft,Kohn-Sham regularizer for machine-learned DFT functionals.,6,False,,pedersor/ksr_dft,https://github.com/pedersor/ksr_dft,2023-03-01 17:24:48,2023-03-04 07:20:22,2023-03-04 07:20:18,466.0,,,1.0,,,,4.0,,,,,,,,,,,,,,,1.0,,,,,,,,,True,,,,,,,,, +310,pyLODE,,rep-eng,Apache-2.0,https://github.com/ceriottm/lode,Pythonic implementation of LOng Distance Equivariants.,6,False,['electrostatics'],ceriottm/lode,https://github.com/ceriottm/lode,2022-01-19 17:01:38,2023-07-05 09:57:29,2023-07-05 09:57:14,241.0,,1.0,2.0,,1.0,,3.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +311,ACEpsi.jl,,ml-wft,MIT,https://github.com/ACEsuit/ACEpsi.jl,ACE wave function parameterizations.,6,False,"['rep-eng', 'lang-julia']",ACEsuit/ACEpsi.jl,https://github.com/ACEsuit/ACEpsi.jl,2022-10-21 03:51:18,2024-04-12 06:18:19,2023-10-05 21:21:35,162.0,,,4.0,16.0,5.0,4.0,2.0,,,,6.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +312,OPTIMADE providers dashboard,,datasets,,https://www.optimade.org/providers-dashboard/,A dashboard of known providers.,6,False,,Materials-Consortia/providers-dashboard,https://github.com/Materials-Consortia/providers-dashboard,2020-06-17 16:15:07,2024-08-15 06:33:50,2024-08-01 23:27:42,139.0,21.0,3.0,19.0,141.0,10.0,18.0,1.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +313,Computational Autonomy for Materials Discovery (CAMD),,materials-discovery,Apache-2.0,https://github.com/ulissigroup/CAMD,Agent-based sequential learning software for materials discovery.,6,False,,ulissigroup/CAMD,https://github.com/ulissigroup/CAMD,2023-01-10 19:42:57,2023-01-10 19:49:35,2023-01-10 19:49:13,1336.0,,,1.0,,,,1.0,,,,17.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +314,ACE1Pack.jl,,ml-iap,MIT,https://github.com/ACEsuit/ACE1pack.jl,"Provides convenience functionality for the usage of ACE1.jl, ACEfit.jl, JuLIP.jl for fitting interatomic potentials..",6,True,['lang-julia'],ACEsuit/ACE1pack.jl,https://github.com/ACEsuit/ACE1pack.jl,2023-08-21 16:25:00,2023-08-21 16:30:19,2023-08-21 15:48:54,547.0,,,1.0,,,,,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,https://acesuit.github.io/ACE1pack.jl, +315,COATI,,generative,Apache 2.0,https://github.com/terraytherapeutics/COATI,COATI: multi-modal contrastive pre-training for representing and traversing chemical space.,5,True,"['drug-discovery', 'multimodal', 'pretrained', 'rep-learn']",terraytherapeutics/COATI,https://github.com/terraytherapeutics/COATI,2023-08-11 14:56:39,2024-03-23 18:06:26,2024-03-23 18:06:26,16.0,,5.0,2.0,6.0,1.0,2.0,89.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +316,AI4Science101,,educational,,https://github.com/deepmodeling/AI4Science101,AI for Science.,5,False,,deepmodeling/AI4Science101,https://github.com/deepmodeling/AI4Science101,2022-06-19 02:26:48,2024-04-11 02:15:55,2022-09-04 02:06:18,139.0,,13.0,9.0,29.0,,1.0,83.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +317,crystal-text-llm,,language-models,CC-BY-NC-4.0,https://github.com/facebookresearch/crystal-text-llm,Large language models to generate stable crystals.,5,True,['materials-discovery'],facebookresearch/crystal-text-llm,https://github.com/facebookresearch/crystal-text-llm,2024-02-05 22:29:12,2024-06-18 17:10:52,2024-06-18 17:10:52,13.0,2.0,10.0,5.0,3.0,7.0,2.0,63.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +318,The Perovskite Database Project,,datasets,,https://github.com/Jesperkemist/perovskitedatabase,"Perovskite Database Project aims at making all perovskite device data, both past and future, available in a form..",5,True,['community'],Jesperkemist/perovskitedatabase,https://github.com/Jesperkemist/perovskitedatabase,2021-01-17 14:26:45,2024-03-07 11:09:21,2024-03-07 11:09:17,44.0,,18.0,3.0,7.0,1.0,,58.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +319,SchNOrb,,ml-wft,MIT,https://github.com/atomistic-machine-learning/SchNOrb,Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions.,5,False,,atomistic-machine-learning/SchNOrb,https://github.com/atomistic-machine-learning/SchNOrb,2019-09-17 12:41:48,2019-09-17 14:31:47,2019-09-17 14:31:19,2.0,,19.0,5.0,,1.0,,58.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +320,Machine Learning for Materials Hard and Soft,,educational,,https://github.com/CompPhysVienna/MLSummerSchoolVienna2022,ESI-DCAFM-TACO-VDSP Summer School on Machine Learning for Materials Hard and Soft.,5,False,,CompPhysVienna/MLSummerSchoolVienna2022,https://github.com/CompPhysVienna/MLSummerSchoolVienna2022,2022-07-01 08:42:41,2022-07-22 08:10:24,2022-07-22 08:10:24,49.0,,17.0,1.0,14.0,,,34.0,,,,11.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +321,Joint Multidomain Pre-Training (JMP),,uip,CC-BY-NC-4.0,https://github.com/facebookresearch/JMP,Code for From Molecules to Materials Pre-training Large Generalizable Models for Atomic Property Prediction.,5,True,"['pretrained', 'ml-iap', 'general-tool']",facebookresearch/JMP,https://github.com/facebookresearch/JMP,2024-03-14 23:10:10,2024-06-20 04:11:08,2024-05-07 08:19:12,1.0,,4.0,4.0,1.0,1.0,,32.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +322,xDeepH,,ml-dft,LGPL-3.0,https://github.com/mzjb/xDeepH,Extended DeepH (xDeepH) method for magnetic materials.,5,False,"['magnetism', 'lang-julia']",mzjb/xDeepH,https://github.com/mzjb/xDeepH,2023-02-23 12:56:49,2023-06-14 11:44:53,2023-06-14 11:44:46,4.0,,3.0,3.0,,1.0,,31.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +323,Autobahn,,rep-learn,MIT,https://github.com/risilab/Autobahn,Repository for Autobahn: Automorphism Based Graph Neural Networks.,5,False,,risilab/Autobahn,https://github.com/risilab/Autobahn,2021-03-02 01:14:40,2022-03-01 21:04:09,2022-03-01 21:04:04,11.0,,2.0,5.0,,,,30.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +324,ML-DFT,,ml-dft,MIT,https://github.com/MihailBogojeski/ml-dft,A package for density functional approximation using machine learning.,5,False,,MihailBogojeski/ml-dft,https://github.com/MihailBogojeski/ml-dft,2020-09-14 22:15:56,2020-09-18 16:36:30,2020-09-18 16:36:30,9.0,,7.0,2.0,,1.0,1.0,23.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +325,Coarse-Graining-Auto-encoders,,unsupervised,,https://github.com/learningmatter-mit/Coarse-Graining-Auto-encoders,Implementation of coarse-graining Autoencoders.,5,False,['single-paper'],learningmatter-mit/Coarse-Graining-Auto-encoders,https://github.com/learningmatter-mit/Coarse-Graining-Auto-encoders,2019-09-16 15:27:57,2019-08-16 21:39:34,2019-08-16 21:39:33,14.0,,7.0,6.0,,,,21.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +326,CSPML (crystal structure prediction with machine learning-based element substitution),,materials-discovery,,https://github.com/Minoru938/CSPML,Original implementation of CSPML.,5,True,['structure-prediction'],minoru938/cspml,https://github.com/Minoru938/CSPML,2022-01-15 10:59:27,2024-07-09 12:40:53,2024-07-09 12:40:53,23.0,16.0,8.0,2.0,,2.0,1.0,18.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +327,NequIP-JAX,,ml-iap,,https://github.com/mariogeiger/nequip-jax,JAX implementation of the NequIP interatomic potential.,5,True,,mariogeiger/nequip-jax,https://github.com/mariogeiger/nequip-jax,2023-03-08 04:18:28,2023-11-01 20:35:48,2023-11-01 20:35:44,39.0,,3.0,1.0,2.0,1.0,,17.0,2023-06-22 22:36:36,1.1.0,3.0,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +328,FieldSchNet,,rep-learn,MIT,https://github.com/atomistic-machine-learning/field_schnet,Deep neural network for molecules in external fields.,5,False,,atomistic-machine-learning/field_schnet,https://github.com/atomistic-machine-learning/field_schnet,2020-11-18 10:26:59,2022-05-19 09:28:38,2022-05-19 09:28:38,26.0,,4.0,2.0,1.0,1.0,,16.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +329,Does this material exist?,,community,MIT,https://thismaterialdoesnotexist.com/,Vote on whether you think predicted crystal structures could be synthesised.,5,True,"['for-fun', 'materials-discovery']",ml-evs/this-material-does-not-exist,https://github.com/ml-evs/this-material-does-not-exist,2023-12-01 18:16:28,2024-07-29 09:50:18,2024-04-10 12:32:06,16.0,,3.0,2.0,2.0,2.0,,15.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +330,3DSC Database,,datasets,https://github.com/aimat-lab/3DSC/blob/main/LICENSE.md,https://github.com/aimat-lab/3DSC,Repo for the paper publishing the superconductor database with 3D crystal structures.,5,True,"['superconductors', 'materials-discovery']",aimat-lab/3DSC,https://github.com/aimat-lab/3DSC,2021-11-02 09:07:57,2024-01-08 09:21:11,2024-01-08 09:21:11,53.0,,4.0,2.0,,1.0,,15.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +331,SCFNN,,rep-learn,MIT,https://github.com/andy90/SCFNN,Self-consistent determination of long-range electrostatics in neural network potentials.,5,False,"['lang-cpp', 'electrostatics', 'single-paper']",andy90/SCFNN,https://github.com/andy90/SCFNN,2021-09-22 12:02:00,2022-01-30 02:29:03,2022-01-24 09:40:40,10.0,,8.0,2.0,,,,15.0,2022-01-30 02:29:04,1.0.0,1.0,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +332,CraTENet,,rep-learn,MIT,https://github.com/lantunes/CraTENet,An attention-based deep neural network for thermoelectric transport properties.,5,False,['transport-phenomena'],lantunes/CraTENet,https://github.com/lantunes/CraTENet,2022-06-30 10:40:06,2023-04-05 01:13:22,2023-04-05 01:13:11,24.0,,1.0,1.0,,,,13.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +333,ACEHAL,,active-learning,,https://github.com/ACEsuit/ACEHAL,Hyperactive Learning (HAL) Python interface for building Atomic Cluster Expansion potentials.,5,True,['lang-julia'],ACEsuit/ACEHAL,https://github.com/ACEsuit/ACEHAL,2023-02-24 17:33:47,2023-10-01 12:19:41,2023-09-21 21:50:43,121.0,,7.0,5.0,15.0,4.0,6.0,11.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +334,BERT-PSIE-TC,,language-models,MIT,https://github.com/StefanoSanvitoGroup/BERT-PSIE-TC,A dataset of Curie temperatures automatically extracted from scientific literature with the use of the BERT-PSIE..,5,True,['magnetism'],StefanoSanvitoGroup/BERT-PSIE-TC,https://github.com/StefanoSanvitoGroup/BERT-PSIE-TC,2023-01-25 10:27:26,2023-08-18 11:47:45,2023-08-18 12:48:31,36.0,,3.0,1.0,,,,11.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +335,QMLearn,,ml-esm,MIT,http://qmlearn.rutgers.edu/,Quantum Machine Learning by learning one-body reduced density matrices in the AO basis...,5,False,,,,2022-02-15 13:42:13,2022-02-15 13:42:13,,,,3.0,,,,,11.0,,,0.0,,,,,,,,,,,,2.0,,,,,,,,,True,,,,,,pavanello-research-group/qmlearn,https://gitlab.com/pavanello-research-group/qmlearn,, +336,SciGlass,,datasets,MIT,https://github.com/drcassar/SciGlass,The database contains a vast set of data on the properties of glass materials.,5,True,,drcassar/SciGlass,https://github.com/drcassar/SciGlass,2019-06-19 19:36:32,2023-08-27 13:46:44,2023-08-27 13:46:44,28.0,,3.0,1.0,,,,10.0,2023-08-27 13:48:09,2.0.1,1.0,2.0,,,,,,,1.0,,,,3.0,,,,,,16.0,,,,,,,,,,,, +337,InfGCN for Electron Density Estimation,,ml-dft,MIT,https://github.com/ccr-cheng/InfGCN-pytorch,Official implementation of the NeurIPS 23 spotlight paper of InfGCN.,5,True,['rep-learn'],ccr-cheng/infgcn-pytorch,https://github.com/ccr-cheng/InfGCN-pytorch,2023-10-01 21:21:40,2023-12-05 01:31:19,2023-12-05 01:31:14,3.0,,3.0,1.0,,,3.0,10.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +338,GN-MM,,ml-iap,MIT,https://gitlab.com/zaverkin_v/gmnn,The Gaussian Moment Neural Network (GM-NN) package developed for large-scale atomistic simulations employing atomistic..,5,False,"['active-learning', 'md', 'rep-eng', 'magnetism']",,,2021-09-19 15:56:31,2021-09-19 15:56:31,,,,4.0,,,,,10.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,zaverkin_v/gmnn,https://gitlab.com/zaverkin_v/gmnn,, +339,MAPI_LLM,,language-models,MIT,https://github.com/maykcaldas/MAPI_LLM,A LLM application developed during the LLM March MADNESS Hackathon https://doi.org/10.1039/D3DD00113J.,5,True,"['ai-agent', 'dataset']",maykcaldas/MAPI_LLM,https://github.com/maykcaldas/MAPI_LLM,2023-03-30 04:24:54,2024-04-20 03:16:17,2024-04-11 22:22:28,31.0,,2.0,1.0,7.0,,,8.0,2023-06-29 18:48:44,0.0.1,1.0,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +340,EGraFFBench,,rep-learn,,https://github.com/M3RG-IITD/MDBENCHGNN,,5,False,"['single-paper', 'benchmarking', 'ml-iap']",M3RG-IITD/MDBENCHGNN,https://github.com/M3RG-IITD/MDBENCHGNN,2023-07-06 18:15:34,2023-11-19 05:16:12,2023-11-19 05:14:44,161.0,,,,,4.0,,8.0,2023-07-16 05:46:38,0.1.0,1.0,5.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +341,GDB-9-Ex9 and ORNL_AISD-Ex,,datasets,,https://github.com/ORNL/Analysis-of-Large-Scale-Molecular-Datasets-with-Python,Distributed computing workflow for generation and analysis of large scale molecular datasets obtained running multi-..,5,True,,ORNL/Analysis-of-Large-Scale-Molecular-Datasets-with-Python,https://github.com/ORNL/Analysis-of-Large-Scale-Molecular-Datasets-with-Python,2023-01-06 18:09:54,2023-08-11 16:49:35,2023-08-11 16:49:35,47.0,,5.0,6.0,13.0,2.0,,6.0,,,,7.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +342,MEGAN: Multi Explanation Graph Attention Student,,xai,MIT,https://github.com/aimat-lab/graph_attention_student,Minimal implementation of graph attention student model architecture.,5,True,,aimat-lab/graph_attention_student,https://github.com/aimat-lab/graph_attention_student,2022-07-28 06:22:50,2024-07-31 07:57:28,2024-07-31 07:57:23,88.0,9.0,1.0,3.0,1.0,,2.0,5.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +343,MolSLEPA,,generative,MIT,https://github.com/tsudalab/MolSLEPA,Interpretable Fragment-based Molecule Design with Self-learning Entropic Population Annealing.,5,False,['xai'],tsudalab/MolSLEPA,https://github.com/tsudalab/MolSLEPA,2023-04-10 15:04:55,2023-04-13 12:48:49,2023-04-13 12:48:49,11.0,,1.0,8.0,2.0,,,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +344,MEGAN,,xai,MIT,https://github.com/aimat-lab/graph_attention_student,Minimal implementation of graph attention student model architecture.,5,True,"['xai', 'rep-learn']",aimat-lab/graph_attention_student,https://github.com/aimat-lab/graph_attention_student,2022-07-28 06:22:50,2024-07-31 07:57:28,2024-07-31 07:57:23,88.0,9.0,1.0,3.0,1.0,,2.0,5.0,,,,2.0,,,,,,,,,,,2.0,,,,,,,,,,,,,,,,,, +345,MXenes4HER,,rep-eng,GPL-3.0,https://github.com/cnislab/MXenes4HER,Predicting hydrogen evolution (HER) activity over 4500 MXene materials https://doi.org/10.1039/D3TA00344B.,5,False,"['materials-discovery', 'catalysis', 'scikit-learn', 'single-paper']",cnislab/MXenes4HER,https://github.com/cnislab/MXenes4HER,2022-11-28 09:27:36,2023-02-27 18:08:05,2023-02-27 18:08:05,67.0,,3.0,1.0,1.0,,,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +346,COSMO tools,,others,,https://github.com/lab-cosmo/cosmo-tools,"Scripts, jupyter nbs, and general helpful stuff from COSMO by COSMO.",5,False,,lab-cosmo/cosmo-tools,https://github.com/lab-cosmo/cosmo-tools,2018-11-06 09:40:00,2024-05-24 05:53:06,2024-05-24 05:53:06,63.0,1.0,4.0,23.0,,,,4.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,,True +347,q-pac,,ml-esm,MIT,https://gitlab.com/jmargraf/qpac,Kernel charge equilibration method.,5,False,['electrostatics'],,,2020-11-15 20:11:27,2020-11-15 20:11:27,,,,4.0,,,2.0,,4.0,,,0.0,,,,,,,,,,,,2.0,,,,,,,,,,,,,,,jmargraf/qpac,https://gitlab.com/jmargraf/qpac,, +348,paper-ml-robustness-material-property,,unsupervised,BSD-3-Clause,https://github.com/mathsphy/paper-ml-robustness-material-property,A critical examination of robustness and generalizability of machine learning prediction of materials properties.,5,False,"['datasets', 'single-paper']",mathsphy/paper-ml-robustness-material-property,https://github.com/mathsphy/paper-ml-robustness-material-property,2023-02-21 02:38:13,2023-04-13 01:18:02,2023-04-13 01:18:02,3.0,,3.0,1.0,,,,4.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +349,SISSO++,,rep-eng,Apache-2.0,https://gitlab.com/sissopp_developers/sissopp,C++ Implementation of SISSO with python bindings.,5,False,['lang-cpp'],,,2021-04-30 14:20:59,2021-04-30 14:20:59,,,,3.0,,,2.0,18.0,3.0,,,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,sissopp_developers/sissopp,https://gitlab.com/sissopp_developers/sissopp,, +350,Alchemical learning,,ml-iap,BSD-3-Clause,https://github.com/Luthaf/alchemical-learning,Code for the Modeling high-entropy transition metal alloys with alchemical compression article.,5,False,,Luthaf/alchemical-learning,https://github.com/Luthaf/alchemical-learning,2021-12-02 17:02:00,2023-04-24 18:35:45,2023-04-07 10:19:10,120.0,,1.0,7.0,1.0,,4.0,2.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +351,Visual Graph Datasets,,datasets,MIT,https://github.com/aimat-lab/visual_graph_datasets,Datasets for the training of graph neural networks (GNNs) and subsequent visualization of attributional explanations..,5,False,"['xai', 'rep-learn']",aimat-lab/visual_graph_datasets,https://github.com/aimat-lab/visual_graph_datasets,2023-06-01 11:33:18,2024-06-26 14:06:17,2024-06-26 14:06:13,53.0,3.0,2.0,3.0,,1.0,,1.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +352,linear-regression-benchmarks,,datasets,MIT,https://github.com/BingqingCheng/linear-regression-benchmarks,Data sets used for linear regression benchmarks.,5,False,"['benchmarking', 'single-paper']",BingqingCheng/linear-regression-benchmarks,https://github.com/BingqingCheng/linear-regression-benchmarks,2020-04-16 20:48:28,2022-01-26 08:29:46,2022-01-26 08:29:46,24.0,,,3.0,2.0,,,1.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +353,"Data Handling, DoE and Statistical Analysis for Material Chemists",,educational,GPL-3.0,https://github.com/Teoroo-CMC/DoE_Course_Material,"Notebooks for workshops of DoE course, hosted by the Computational Materials Chemistry group at Uppsala University.",5,False,,Teoroo-CMC/DoE_Course_Material,https://github.com/Teoroo-CMC/DoE_Course_Material,2023-05-22 08:11:41,2023-06-26 12:48:17,2023-06-26 12:48:15,157.0,,15.0,2.0,1.0,,,1.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +354,Per-Site CGCNN,,rep-learn,MIT,https://github.com/learningmatter-mit/per-site_cgcnn,Crystal graph convolutional neural networks for predicting material properties.,5,False,"['pretrained', 'single-paper']",learningmatter-mit/per-site_cgcnn,https://github.com/learningmatter-mit/per-site_cgcnn,2023-05-30 18:59:03,2023-06-05 17:38:46,2023-06-05 17:38:41,28.0,,,,,,,1.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +355,Per-site PAiNN,,rep-learn,MIT,https://github.com/learningmatter-mit/per-site_painn,Fork of PaiNN for PerovskiteOrderingGCNNs.,5,False,"['probabilistic', 'pretrained', 'single-paper']",learningmatter-mit/per-site_painn,https://github.com/learningmatter-mit/per-site_painn,2023-06-04 14:23:49,2023-06-05 17:35:19,2023-06-05 17:30:34,123.0,,,,,,,1.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +356,Geometric-GNNs,,community,,https://github.com/AlexDuvalinho/geometric-gnns,List of Geometric GNNs for 3D atomic systems.,4,False,"['datasets', 'educational', 'rep-learn']",AlexDuvalinho/geometric-gnns,https://github.com/AlexDuvalinho/geometric-gnns,2023-08-31 09:10:32,2024-02-29 16:25:54,2024-02-29 16:25:53,37.0,,6.0,1.0,3.0,,1.0,85.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +357,ML-in-chemistry-101,,educational,,https://github.com/BingqingCheng/ML-in-chemistry-101,The course materials for Machine Learning in Chemistry 101.,4,False,,BingqingCheng/ML-in-chemistry-101,https://github.com/BingqingCheng/ML-in-chemistry-101,2020-02-09 17:47:07,2020-10-19 08:10:31,2020-10-19 08:10:30,13.0,,17.0,2.0,,,,67.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +358,MAGUS,,materials-discovery,,https://gitlab.com/bigd4/magus,Machine learning And Graph theory assisted Universal structure Searcher.,4,False,"['structure-prediction', 'active-learning']",,,2023-01-31 09:00:23,2023-01-31 09:00:23,,,,15.0,,,,,56.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,bigd4/magus,https://gitlab.com/bigd4/magus,, +359,Atom2Vec,,rep-learn,,https://github.com/idocx/Atom2Vec,Atom2Vec: a simple way to describe atoms for machine learning.,4,False,,idocx/Atom2Vec,https://github.com/idocx/Atom2Vec,2020-01-18 23:31:47,2024-02-23 21:44:03,2024-02-23 21:43:58,4.0,,8.0,1.0,1.0,2.0,1.0,32.0,,,,,atom2vec,,2.0,2.0,https://pypi.org/project/atom2vec,64.0,64.0,,,,3.0,,,,,,,,,,,,,,,,,, +360,Allegro-Legato,,ml-iap,MIT,https://github.com/ibayashi-hikaru/allegro-legato,An extension of Allegro with enhanced robustness and time-to-failure.,4,False,['md'],ibayashi-hikaru/allegro-legato,https://github.com/ibayashi-hikaru/allegro-legato,2023-01-17 19:46:10,2023-08-03 22:25:11,2023-08-03 22:24:35,82.0,,1.0,1.0,,,,19.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +361,glp,,ml-iap,MIT,https://github.com/sirmarcel/glp,tools for graph-based machine-learning potentials in jax.,4,False,,sirmarcel/glp,https://github.com/sirmarcel/glp,2023-03-27 15:19:40,2024-04-09 12:06:56,2024-03-20 09:00:27,11.0,,1.0,2.0,3.0,,,17.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +362,Graph Transport Network,,rep-learn,https://github.com/gasteigerjo/gtn/blob/main/LICENSE.md,https://github.com/gasteigerjo/gtn,"Graph transport network (GTN), as proposed in Scalable Optimal Transport in High Dimensions for Graph Distances,..",4,False,['transport-phenomena'],gasteigerjo/gtn,https://github.com/gasteigerjo/gtn,2021-07-11 23:36:22,2023-04-26 14:22:00,2023-04-26 14:22:00,9.0,,3.0,2.0,,,,16.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +363,ChemDataWriter,,language-models,MIT,https://github.com/ShuHuang/chemdatawriter,ChemDataWriter is a transformer-based library for automatically generating research books in the chemistry area.,4,False,['literature-data'],ShuHuang/chemdatawriter,https://github.com/ShuHuang/chemdatawriter,2023-09-22 10:05:25,2023-10-07 04:23:47,2023-10-07 04:07:59,9.0,,1.0,2.0,,1.0,,14.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +364,SPINNER,,materials-discovery,GPL-3.0,https://github.com/MDIL-SNU/SPINNER,SPINNER (Structure Prediction of Inorganic crystals using Neural Network potentials with Evolutionary and Random..,4,False,"['lang-cpp', 'structure-prediction']",MDIL-SNU/SPINNER,https://github.com/MDIL-SNU/SPINNER,2021-07-15 02:10:58,2024-07-20 05:12:50,2021-11-25 07:58:15,102.0,,2.0,1.0,,1.0,,12.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +365,SOMD,,md,AGPL-3.0,https://github.com/initqp/somd,Molecular dynamics package designed for the SIESTA DFT code.,4,False,"['ml-iap', 'active-learning']",initqp/somd,https://github.com/initqp/somd,2023-03-09 19:00:41,2024-07-03 18:06:36,2024-07-03 17:46:18,301.0,2.0,2.0,1.0,11.0,,1.0,11.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +366,charge-density-models,,ml-dft,MIT,https://github.com/ulissigroup/charge-density-models,Tools to build charge density models using [fairchem](https://github.com/FAIR-Chem/fairchem).,4,False,['rep-learn'],ulissigroup/charge-density-models,https://github.com/ulissigroup/charge-density-models,2022-06-22 13:47:53,2023-11-29 15:07:42,2023-11-29 15:07:42,96.0,,2.0,2.0,16.0,1.0,2.0,10.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +367,paper-data-redundancy,,datasets,BSD-3-Clause,https://github.com/mathsphy/paper-data-redundancy,Repo for the paper Exploiting redundancy in large materials datasets for efficient machine learning with less data.,4,False,"['small-data', 'single-paper']",mathsphy/paper-data-redundancy,https://github.com/mathsphy/paper-data-redundancy,2023-06-10 15:00:28,2024-03-22 20:24:35,2024-03-22 20:24:34,17.0,,,1.0,,,,7.0,2023-10-11 14:09:07,1.0,1.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +368,TensorPotential,,ml-iap,https://github.com/ICAMS/TensorPotential/blob/main/LICENSE.md,https://cortner.github.io/ACEweb/software/,"Tensorpotential is a TensorFlow based tool for development, fitting ML interatomic potentials from electronic..",4,False,,ICAMS/TensorPotential,https://github.com/ICAMS/TensorPotential,2021-12-08 12:10:04,2023-07-10 16:37:18,2023-07-10 16:37:18,18.0,,4.0,2.0,2.0,,,7.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +369,Mapping out phase diagrams with generative classifiers,,generative,MIT,https://github.com/arnoldjulian/Mapping-out-phase-diagrams-with-generative-classifiers,Repository for our ``Mapping out phase diagrams with generative models paper.,4,False,['phase-transition'],arnoldjulian/Mapping-out-phase-diagrams-with-generative-classifiers,https://github.com/arnoldjulian/Mapping-out-phase-diagrams-with-generative-classifiers,2023-06-07 21:43:14,2023-06-27 08:12:29,2023-06-27 08:12:29,39.0,,2.0,1.0,,,,7.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +370,chemrev-gpr,,educational,,https://github.com/gabor1/chemrev-gpr,Notebooks accompanying the paper on GPR in materials and molecules in Chemical Reviews 2020.,4,False,,gabor1/chemrev-gpr,https://github.com/gabor1/chemrev-gpr,2020-12-18 23:48:06,2021-05-04 19:21:34,2021-05-04 19:21:30,10.0,,6.0,4.0,,,,6.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +371,automl-materials,,rep-eng,MIT,https://github.com/mm-tud/automl-materials,AutoML for Regression Tasks on Small Tabular Data in Materials Design.,4,False,"['automl', 'benchmarking', 'single-paper']",mm-tud/automl-materials,https://github.com/mm-tud/automl-materials,2022-10-07 09:49:18,2022-11-15 15:22:54,2022-11-15 15:22:45,6.0,,1.0,2.0,,,,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +372,gkx: Green-Kubo Method in JAX,,rep-learn,MIT,https://github.com/sirmarcel/gkx,Green-Kubo + JAX + MLPs = Anharmonic Thermal Conductivities Done Fast.,4,False,['transport-phenomena'],sirmarcel/gkx,https://github.com/sirmarcel/gkx,2023-04-30 12:25:16,2024-03-20 09:05:20,2024-03-20 09:05:14,3.0,,,1.0,,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +373,ML-atomate,,materials-discovery,GPL-3.0,https://github.com/takahashi-akira-36m/ml_atomate,Machine learning-assisted Atomate code for autonomous computational materials screening.,4,False,"['active-learning', 'workflows']",takahashi-akira-36m/ml_atomate,https://github.com/takahashi-akira-36m/ml_atomate,2023-09-21 08:45:10,2023-11-17 09:54:23,2023-11-17 09:51:02,6.0,,1.0,1.0,,,,3.0,2023-09-29 03:52:46,stam_m_2023_fix,2.0,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +374,ACEatoms,,general-tool,https://github.com/ACEsuit/ACEatoms.jl/blob/main/ASL.md,https://github.com/ACEsuit/ACEatoms.jl,Generic code for modelling atomic properties using ACE.,4,False,['lang-julia'],ACEsuit/ACEatoms.jl,https://github.com/ACEsuit/ACEatoms.jl,2021-03-23 23:50:03,2023-01-13 21:35:06,2023-01-13 21:28:08,134.0,,1.0,3.0,14.0,4.0,3.0,2.0,,,,10.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +375,halex,,ml-esm,,https://github.com/ecignoni/halex,Hamiltonian Learning for Excited States https://doi.org/10.48550/arXiv.2311.00844.,4,False,['excited-states'],ecignoni/halex,https://github.com/ecignoni/halex,2023-09-04 06:54:15,2024-02-08 10:20:53,2024-02-08 10:20:49,169.0,,,3.0,,1.0,,2.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +376,AI4ChemMat Hands-On Series,,educational,MPL-2.0,https://github.com/ai4chemmat/ai4chemmat.github.io,Hands-On Series organized by Chemistry and Materials working group at Argonne Nat Lab.,4,False,,ai4chemmat/ai4chemmat.github.io,https://github.com/ai4chemmat/ai4chemmat.github.io,2023-03-24 21:25:21,2024-04-24 16:32:18,2024-04-24 16:32:18,40.0,,,2.0,,,,1.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +377,magnetism-prediction,,rep-eng,Apache-2.0,https://github.com/dppant/magnetism-prediction,DFT-aided Machine Learning Search for Magnetism in Fe-based Bimetallic Chalcogenides.,4,False,"['magnetism', 'single-paper']",dppant/magnetism-prediction,https://github.com/dppant/magnetism-prediction,2022-09-13 03:58:10,2023-07-19 13:25:49,2023-07-19 13:25:49,46.0,,,3.0,,,,1.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +378,ACE Workflows,,ml-iap,,https://github.com/ACEsuit/ACEworkflows,Workflow Examples for ACE Models.,4,False,"['lang-julia', 'workflows']",ACEsuit/ACEworkflows,https://github.com/ACEsuit/ACEworkflows,2023-04-04 16:57:36,2023-10-12 18:01:00,2023-10-12 18:00:39,45.0,,1.0,3.0,7.0,1.0,,,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +379,MLatom,,general-tool,https://creativecommons.org/licenses/by-nc-nd/4.0/,http://mlatom.com/,Machine learning for atomistic simulations.,4,False,,,,,,,,,,,,,,,,,,,MLatom,,,,https://pypi.org/project/MLatom,848.0,848.0,,,,3.0,,,,,,,,,,,,,,,,,http://mlatom.com/manual/, +380,gprep,,ml-dft,MIT,https://gitlab.com/jmargraf/gprep,Fitting DFTB repulsive potentials with GPR.,4,False,['single-paper'],,,2019-09-30 09:15:04,2019-09-30 09:15:04,,,,0.0,,,,,,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,jmargraf/gprep,https://gitlab.com/jmargraf/gprep,, +381,closed-loop-acceleration-benchmarks,,materials-discovery,MIT,https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks,Data and scripts in support of the publication By how much can closed-loop frameworks accelerate computational..,4,False,"['materials-discovery', 'active-learning', 'single-paper']",aced-differentiate/closed-loop-acceleration-benchmarks,https://github.com/aced-differentiate/closed-loop-acceleration-benchmarks,2022-11-10 20:22:30,2023-07-25 21:25:42,2023-05-02 17:07:48,17.0,,1.0,4.0,3.0,,,,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +382,PeriodicPotentials,,ml-iap,MIT,https://github.com/AaltoRSE/PeriodicPotentials,A Periodic table app that displays potentials based on the selected elements.,4,False,"['community', 'visualization', 'lang-js']",AaltoRSE/PeriodicPotentials,https://github.com/AaltoRSE/PeriodicPotentials,2022-10-14 09:03:59,2022-10-18 17:10:22,2022-10-18 17:10:22,17.0,,1.0,3.0,3.0,,,,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +383,CatBERTa,,language-models,,https://github.com/hoon-ock/CatBERTa,Large Language Model for Catalyst Property Prediction.,3,False,"['transformer', 'catalysis']",hoon-ock/CatBERTa,https://github.com/hoon-ock/CatBERTa,2023-05-19 18:23:17,2024-03-08 02:59:22,2024-03-08 02:59:22,93.0,,2.0,1.0,2.0,,,19.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +384,ALEBREW,,active-learning,https://github.com/nec-research/alebrew/blob/main/LICENSE.txt,https://github.com/nec-research/alebrew,Official repository for the paper Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic..,3,False,"['ml-iap', 'md']",nec-research/alebrew,https://github.com/nec-research/alebrew,2024-02-27 07:32:23,2024-03-17 13:51:57,2024-03-17 13:51:52,2.0,,3.0,1.0,,1.0,,9.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +385,atom_by_atom,,rep-learn,,https://github.com/learningmatter-mit/atom_by_atom,Atom-by-atom design of metal oxide catalysts for the oxygen evolution reaction with Machine Learning.,3,False,"['surface-science', 'single-paper']",learningmatter-mit/atom_by_atom,https://github.com/learningmatter-mit/atom_by_atom,2023-05-30 20:18:00,2023-10-19 15:59:08,2023-10-19 15:35:49,74.0,,,2.0,,,,6.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +386,DeepCDP,,ml-dft,,https://github.com/siddarthachar/deepcdp,DeepCDP: Deep learning Charge Density Prediction.,3,False,,siddarthachar/deepcdp,https://github.com/siddarthachar/deepcdp,2021-12-18 14:26:56,2023-06-16 20:38:23,2023-06-16 20:38:23,96.0,,1.0,2.0,27.0,,,6.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +387,Element encoder,,rep-learn,GPL-3.0,https://github.com/jeherr/element-encoder,Autoencoder neural network to compress properties of atomic species into a vector representation.,3,False,['single-paper'],jeherr/element-encoder,https://github.com/jeherr/element-encoder,2019-03-27 17:11:30,2020-01-09 15:54:27,2020-01-09 15:54:26,8.0,,2.0,4.0,,,1.0,6.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +388,interface-lammps-mlip-3,,md,GPL-2.0,https://gitlab.com/ivannovikov/interface-lammps-mlip-3,An interface between LAMMPS and MLIP (version 3).,3,False,,,,2023-04-24 12:48:51,2023-04-24 12:48:51,,,,5.0,,,4.0,1.0,5.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,ivannovikov/interface-lammps-mlip-3,https://gitlab.com/ivannovikov/interface-lammps-mlip-3,, +389,sl_discovery,,materials-discovery,Apache-2.0,https://github.com/CitrineInformatics-ERD-public/sl_discovery,Data processing and models related to Quantifying the performance of machine learning models in materials discovery.,3,False,"['materials-discovery', 'single-paper']",CitrineInformatics-ERD-public/sl_discovery,https://github.com/CitrineInformatics-ERD-public/sl_discovery,2022-10-24 18:10:14,2022-12-20 23:46:05,2022-12-20 23:45:57,5.0,,2.0,2.0,,,,5.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +390,APET,,ml-dft,GPL-3.0,https://github.com/emotionor/APET,Atomic Positional Embedding-based Transformer.,3,False,"['density-of-states', 'transformer']",emotionor/APET,https://github.com/emotionor/APET,2023-03-06 01:53:16,2024-04-24 03:43:39,2023-09-28 03:16:11,11.0,,,2.0,,,,4.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +391,e3psi,,ml-esm,LGPL-3.0,https://github.com/muhrin/e3psi,Equivariant machine learning library for learning from electronic structures.,3,False,,muhrin/e3psi,https://github.com/muhrin/e3psi,2022-08-08 10:48:30,2024-01-05 12:59:56,2024-01-05 12:59:09,19.0,,,2.0,,,,3.0,,,,,,,1.0,1.0,,,,,,,3.0,,,,,,,,,,,,,,,,,, +392,torch_spex,,math,,https://github.com/lab-cosmo/torch_spex,Spherical expansions in PyTorch.,3,False,,lab-cosmo/torch_spex,https://github.com/lab-cosmo/torch_spex,2023-03-28 09:48:36,2024-03-28 05:33:01,2024-03-28 05:33:01,77.0,,2.0,18.0,35.0,7.0,2.0,3.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +393,PiNN Lab,,educational,GPL-3.0,https://github.com/Teoroo-CMC/PiNN_lab,Material for running a lab session on atomic neural networks.,3,False,,Teoroo-CMC/PiNN_lab,https://github.com/Teoroo-CMC/PiNN_lab,2019-03-17 22:09:30,2023-05-01 15:59:56,2023-05-01 15:59:22,9.0,,1.0,3.0,1.0,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +394,CSNN,,ml-dft,BSD-3-Clause,https://github.com/foxjas/CSNN,Primary codebase of CSNN - Concentric Spherical Neural Network for 3D Representation Learning.,3,False,,foxjas/CSNN,https://github.com/foxjas/CSNN,2022-05-19 15:40:49,2022-10-11 04:27:40,2022-10-11 04:27:40,6.0,,,1.0,,,,2.0,,,,3.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +395,Linear vs blackbox,,xai,MIT,https://github.com/CitrineInformatics-ERD-public/linear-vs-blackbox,Code and data related to the publication: Interpretable models for extrapolation in scientific machine learning.,3,False,"['xai', 'single-paper', 'rep-eng']",CitrineInformatics-ERD-public/linear-vs-blackbox,https://github.com/CitrineInformatics-ERD-public/linear-vs-blackbox,2022-12-02 20:32:53,2022-12-16 18:48:12,2022-12-16 18:48:12,4.0,,,1.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +396,MALADA,,ml-dft,BSD-3-Clause,https://github.com/mala-project/malada,MALA Data Acquisition: Helpful tools to build data for MALA.,3,False,,mala-project/malada,https://github.com/mala-project/malada,2021-07-26 05:46:08,2024-07-26 14:19:51,2023-05-24 09:18:24,111.0,,1.0,2.0,4.0,17.0,2.0,1.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +397,ML-for-CurieTemp-Predictions,,rep-eng,MIT,https://github.com/msg-byu/ML-for-CurieTemp-Predictions,Machine Learning Predictions of High-Curie-Temperature Materials.,3,False,"['single-paper', 'magnetism']",msg-byu/ML-for-CurieTemp-Predictions,https://github.com/msg-byu/ML-for-CurieTemp-Predictions,2023-06-05 22:46:47,2023-06-14 19:05:50,2023-06-14 19:05:47,25.0,,,1.0,,,,1.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +398,MEGNetSparse,,ml-iap,MIT,https://github.com/HSE-LAMBDA/MEGNetSparse,"A library imlementing a graph neural network with sparse representation from Code for Kazeev, N., Al-Maeeni, A.R.,..",3,False,['material-defect'],HSE-LAMBDA/MEGNetSparse,https://github.com/HSE-LAMBDA/MEGNetSparse,2023-07-19 08:17:42,2023-08-21 17:11:34,2023-08-21 17:11:25,19.0,,1.0,2.0,,,,1.0,,,,2.0,MEGNetSparse,,1.0,1.0,https://pypi.org/project/MEGNetSparse,23.0,23.0,,,,3.0,,,,,,,,,,,,,,,,,, +399,Magpie,,general-tool,MIT,https://bitbucket.org/wolverton/magpie/,Materials Agnostic Platform for Informatics and Exploration (Magpie).,3,False,['lang-java'],,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +400,PyFLAME,,ml-iap,,https://gitlab.com/flame-code/PyFLAME,An automated approach for developing neural network interatomic potentials with FLAME..,3,False,"['active-learning', 'structure-prediction', 'structure-optimization', 'rep-eng', 'lang-fortran']",,,2021-04-07 09:16:07,2021-04-07 09:16:07,,,,4.0,,,,,,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,flame-code/PyFLAME,https://gitlab.com/flame-code/PyFLAME,, +401,nep-data,,datasets,,https://gitlab.com/brucefan1983/nep-data,Data related to the NEP machine-learned potential of GPUMD.,2,False,"['ml-iap', 'md', 'transport-phenomena']",,,2021-11-22 19:43:01,2021-11-22 19:43:01,,,,4.0,,,1.0,1.0,12.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,brucefan1983/nep-data,https://gitlab.com/brucefan1983/nep-data,, +402,SingleNN,,ml-iap,,https://github.com/lmj1029123/SingleNN,An efficient package for training and executing neural-network interatomic potentials.,2,False,['lang-cpp'],lmj1029123/SingleNN,https://github.com/lmj1029123/SingleNN,2020-03-11 18:36:16,2021-11-09 00:40:18,2021-11-09 00:40:10,17.0,,1.0,1.0,,1.0,,8.0,,,,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +403,A3MD,,ml-dft,,https://github.com/brunocuevas/a3md,MPNN-like + Analytic Density Model = Accurate electron densities.,2,False,"['rep-learn', 'single-paper']",brunocuevas/a3md,https://github.com/brunocuevas/a3md,2021-06-02 07:23:17,2021-12-02 17:10:39,2021-12-02 17:10:34,4.0,,1.0,2.0,,,,8.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +404,MLDensity_tutorial,,educational,,https://github.com/bfocassio/MLDensity_tutorial,Tutorial files to work with ML for the charge density in molecules and solids.,2,False,,bfocassio/MLDensity_tutorial,https://github.com/bfocassio/MLDensity_tutorial,2023-01-31 10:33:23,2023-02-22 19:20:32,2023-02-22 19:20:32,8.0,,1.0,1.0,,,,7.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +405,tmQM_wB97MV Dataset,,datasets,,https://github.com/ulissigroup/tmQM_wB97MV,Code for Applying Large Graph Neural Networks to Predict Transition Metal Complex Energies Using the tmQM_wB97MV..,2,False,"['catalysis', 'rep-learn']",ulissigroup/tmqm_wB97MV,https://github.com/ulissigroup/tmQM_wB97MV,2023-07-17 21:40:20,2024-04-09 22:01:26,2024-04-09 22:01:26,17.0,,1.0,3.0,,,2.0,5.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +406,LAMMPS-style pair potentials with GAP,,educational,,https://github.com/victorprincipe/pair_potentials,A tutorial on how to create LAMMPS-style pair potentials and use them in combination with GAP potentials to run MD..,2,False,"['ml-iap', 'md', 'rep-eng']",victorprincipe/pair_potentials,https://github.com/victorprincipe/pair_potentials,2022-09-21 09:45:03,2022-10-03 08:06:22,2022-10-03 08:05:53,36.0,,,1.0,1.0,,,4.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +407,KmdPlus,,unsupervised,,https://github.com/Minoru938/KmdPlus,"This module contains a class for treating kernel mean descriptor (KMD), and a function for generating descriptors with..",2,False,,Minoru938/KmdPlus,https://github.com/Minoru938/KmdPlus,2023-03-26 10:06:34,2023-10-17 08:28:01,2023-10-17 08:28:01,7.0,,1.0,1.0,,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +408,AisNet,,ml-iap,MIT,https://github.com/loilisxka/AisNet,A Universal Interatomic Potential Neural Network with Encoded Local Environment Features..,2,False,,loilisxka/AisNet,https://github.com/loilisxka/AisNet,2022-10-11 05:54:59,2022-10-11 06:02:47,2022-10-11 05:58:06,2.0,,,1.0,,,,3.0,,,,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +409,MALA Tutorial,,educational,,https://github.com/mala-project/mala_tutorial,A full MALA hands-on tutorial.,2,False,,mala-project/mala_tutorial,https://github.com/mala-project/mala_tutorial,2023-03-09 14:01:54,2023-11-28 11:20:39,2023-11-28 11:17:01,24.0,,,2.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +410,Wigner Kernels,,math,,https://github.com/lab-cosmo/wigner_kernels,Collection of programs to benchmark Wigner kernels.,2,False,['benchmarking'],lab-cosmo/wigner_kernels,https://github.com/lab-cosmo/wigner_kernels,2022-12-08 12:28:26,2023-07-08 15:48:41,2023-07-08 15:48:37,109.0,,,1.0,,,,2.0,,,,5.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +411,quantum-structure-ml,,general-tool,,https://github.com/hgheiberger/quantum-structure-ml,Multi-class classification model for predicting the magnetic order of magnetic structures and a binary classification..,2,False,"['magnetism', 'benchmarking']",hgheiberger/quantum-structure-ml,https://github.com/hgheiberger/quantum-structure-ml,2020-10-05 01:11:01,2022-12-22 21:45:40,2022-12-22 21:45:40,19.0,,,2.0,,,,2.0,2022-08-18 05:25:24,1.0.0,1.0,4.0,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +412,AMP,,rep-eng,,https://bitbucket.org/andrewpeterson/amp/,Amp is an open-source package designed to easily bring machine-learning to atomistic calculations.,2,False,,,,,,,,,,,,,,,,,,,amp-atomistics,,,,https://pypi.org/project/amp-atomistics,76.0,76.0,,,,3.0,,,,,,,,,,,,,,,,,https://amp.readthedocs.io/, +413,RuNNer,,ml-iap,GPL-3.0,https://www.uni-goettingen.de/de/560580.html,The RuNNer Neural Network Energy Representation is a Fortran-based framework for the construction of Behler-..,2,False,['lang-fortran'],,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,https://theochemgoettingen.gitlab.io/RuNNer/, +414,Point Edge Transformer,,rep-learn,CC-BY-4.0,https://zenodo.org/record/7967079,"Smooth, exact rotational symmetrization for deep learning on point clouds.",2,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +415,nnp-pre-training,,ml-iap,,https://github.com/jla-gardner/nnp-pre-training,Synthetic pre-training for neural-network interatomic potentials.,1,False,"['pretrained', 'md']",jla-gardner/nnp-pre-training,https://github.com/jla-gardner/nnp-pre-training,2023-07-12 11:58:29,2023-12-19 12:08:14,2023-12-19 12:08:14,11.0,,,1.0,,,,6.0,2023-12-19 12:02:35,1.0,1.0,2.0,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +416,SphericalNet,,rep-learn,,https://github.com/risilab/SphericalNet,Implementation of Clebsch-Gordan Networks (CGnet: https://arxiv.org/pdf/1806.09231.pdf) by GElib & cnine libraries in..,1,False,,risilab/SphericalNet,https://github.com/risilab/SphericalNet,2022-05-31 14:39:05,2022-06-07 03:57:10,2022-06-07 03:53:49,1.0,,,2.0,,,,3.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +417,kdft,,ml-dft,,https://gitlab.com/jmargraf/kdf,The Kernel Density Functional (KDF) code allows generating ML based DFT functionals.,1,False,,,,2020-11-07 21:50:22,2020-11-07 21:50:22,,,,0.0,,,,,2.0,,,0.0,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,jmargraf/kdf,https://gitlab.com/jmargraf/kdf,, +418,mag-ace,,ml-iap,,https://github.com/mttrin93/mag-ace,Magnetic ACE potential. FORTRAN interface for LAMMPS SPIN package.,1,False,"['magnetism', 'md', 'lang-fortran']",mttrin93/mag-ace,https://github.com/mttrin93/mag-ace,2023-12-26 19:00:40,2023-12-26 22:34:27,2023-12-26 22:34:27,7.0,,,1.0,,,,2.0,,,,,,,,,,,,,,,3.0,,,,,,,,,True,,,,,,,,, +419,mlp,,ml-iap,,https://github.com/cesmix-mit/MLP,Proper orthogonal descriptors for efficient and accurate interatomic potentials...,1,False,['lang-julia'],cesmix-mit/mlp,https://github.com/cesmix-mit/MLP,2022-02-25 23:03:09,2022-10-22 19:01:45,2022-10-22 19:01:42,12.0,,1.0,2.0,,,,1.0,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +420,GitHub topic materials-informatics,,community,,https://github.com/topics/materials-informatics,GitHub topic materials-informatics.,1,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +421,MateriApps,,community,,https://ma.issp.u-tokyo.ac.jp/en/,A Portal Site of Materials Science Simulation.,1,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3.0,,,,,,,,,,,,,,,,,, +422,Allegro-JAX,,ml-iap,,https://github.com/mariogeiger/allegro-jax,JAX implementation of the Allegro interatomic potential.,0,True,,mariogeiger/allegro-jax,https://github.com/mariogeiger/allegro-jax,2023-07-02 19:00:00,2024-04-09 18:44:30,2024-04-09 18:44:30,7.0,,2.0,2.0,1.0,1.0,1.0,17.0,,,,2.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +423,Descriptor Embedding and Clustering for Atomisitic-environment Framework (DECAF),,unsupervised,,https://gitlab.mpcdf.mpg.de/klai/decaf,Provides a workflow to obtain clustering of local environments in dataset of structures.,0,False,,,,,,,41.0,,,,,,,2.0,,,,2.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +424,MLDensity,,ml-dft,,https://github.com/StefanoSanvitoGroup/MLdensity,Linear Jacobi-Legendre expansion of the charge density for machine learning-accelerated electronic structure..,0,False,,StefanoSanvitoGroup/MLdensity,https://github.com/StefanoSanvitoGroup/MLdensity,2023-01-31 20:44:45,2024-05-27 12:28:57,2023-02-22 19:25:51,14.0,,,2.0,,,,2.0,,,,2.0,,,,,,,,,,,,,,,,,,,,,,,,,,,,, diff --git a/latest-changes.md b/latest-changes.md index b3e6b03..9d053fa 100644 --- a/latest-changes.md +++ b/latest-changes.md @@ -2,24 +2,71 @@ _Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity._ -- apax (🥈18 · ⭐ 14 · 📈) - A flexible and performant framework for training machine learning potentials. MIT -- IPSuite (🥈17 · ⭐ 16 · 📈) - A Python toolkit for FAIR development and deployment of machine-learned interatomic potentials. EPL-2.0 ML-IAP MD workflows HTC FAIR -- rxngenerator (🥉7 · ⭐ 11 · 💀) - A generative model for molecular generation via multi-step chemical reactions. MIT -- cnine (🥉6 · ⭐ 4 · 📈) - Cnine tensor library. Unlicensed C++ -- NequIP-JAX (🥉5 · ⭐ 17 · 💤) - JAX implementation of the NequIP interatomic potential. Unlicensed +- paper-qa (🥇27 · ⭐ 3.8K · 📈) - LLM Chain for answering questions from documents with citations. Apache-2 ai-agent +- DScribe (🥇23 · ⭐ 390 · 📈) - DScribe is a python package for creating machine learning descriptors for atomistic systems. Apache-2 +- pymatviz (🥇21 · ⭐ 150 · 📈) - A toolkit for visualizations in materials informatics. MIT general-tool probabilistic +- e3nn-jax (🥈20 · ⭐ 170 · 📈) - jax library for E3 Equivariant Neural Networks. Apache-2 ## 📉 Trending Down _Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity._ -- gpax (🥇16 · ⭐ 190 · 📉) - Gaussian Processes for Experimental Sciences. MIT probabilistic active-learning -- OpenMM-ML (🥉13 · ⭐ 81 · 📉) - High level API for using machine learning models in OpenMM simulations. MIT ML-IAP -- Pacemaker (🥈11 · ⭐ 62 · 📉) - Python package for fitting atomic cluster expansion (ACE) potentials. Custom -- graphite (🥉8 · ⭐ 53 · 📉) - A repository for implementing graph network models based on atomic structures. MIT +- dpdata (🥇23 · ⭐ 200 · 📉) - Manipulating multiple atomic simulation data formats, including DeePMD-kit, VASP, LAMMPS, ABACUS, etc. LGPL-3.0 +- Best-of Machine Learning with Python (🥇21 · ⭐ 16K · 📉) - A ranked list of awesome machine learning Python libraries. Updated weekly. CC-BY-4.0 general-ml Python +- Open Databases Integration for Materials Design (OPTIMADE) (🥈17 · ⭐ 76 · 📉) - Specification of a common REST API for access to materials databases. CC-BY-4.0 +- openmm-torch (🥈16 · ⭐ 180 · 📉) - OpenMM plugin to define forces with neural networks. Custom ML-IAP C++ +- MatBench Discovery (🥈16 · ⭐ 82 · 📉) - An evaluation framework for machine learning models simulating high-throughput materials discovery. MIT datasets benchmarking model-repository ## ➕ Added Projects _Projects that were recently added to this best-of list._ -- QH9 (🥈12 · ⭐ 470 · ➕) - A Quantum Hamiltonian Prediction Benchmark. CC-BY-NC-SA 4.0 ML-DFT +- DPA-2 (🥇26 · ⭐ 1.4K · ➕) - Towards a universal large atomic model for molecular and material simulation https://doi.org/10.48550/arXiv.2312.15492. LGPL-3.0 ML-IAP pretrained workflows datasets +- Graphormer (🥈16 · ⭐ 2K · ➕) - Graphormer is a general-purpose deep learning backbone for molecular modeling. MIT transformer pretrained +- OpenML (🥈16 · ⭐ 660 · 💤) - Open Machine Learning. BSD-3 datasets +- PMTransformer (🥇16 · ⭐ 82 · ➕) - Universal Transfer Learning in Porous Materials, including MOFs. MIT transfer-learning pretrained transformer +- SevenNet (🥉14 · ⭐ 86 · ➕) - SevenNet (Scalable EquiVariance Enabled Neural Network) is a graph neural network interatomic potential package that.. GPL-3.0 ML-IAP MD pretrained +- HydraGNN (🥈14 · ⭐ 56 · ➕) - Distributed PyTorch implementation of multi-headed graph convolutional neural networks. BSD-3 +- ChatMOF (🥈13 · ⭐ 53 · ➕) - Predict and Inverse design for metal-organic framework with large-language models (llms). MIT generative +- MACE-MP (🥉12 · ⭐ 33 · ➕) - Pretrained foundation models for materials chemistry. MIT ML-IAP pretrained rep-learn MD +- Neural-Network-Models-for-Chemistry (🥈11 · ⭐ 59 · ➕) - A collection of Nerual Network Models for chemistry. Unlicensed rep-learn +- load-atoms (🥈11 · ⭐ 37 · ➕) - download and manipulate atomistic datasets. MIT data-structures +- AI4Chemistry course (🥈10 · ⭐ 130 · ➕) - EPFL AI for chemistry course, Spring 2023. https://schwallergroup.github.io/ai4chem_course. MIT chemistry +- HamGNN (🥈9 · ⭐ 49 · ➕) - An E(3) equivariant Graph Neural Network for predicting electronic Hamiltonian matrix. GPL-3.0 rep-learn magnetism C-lang +- AI for Science paper collection (🥉9 · ⭐ 43 · 🐣) - List the AI for Science papers accepted by top conferences. Apache-2 +- Q-stack (🥈9 · ⭐ 14 · ➕) - Stack of codes for dedicated pre- and post-processing tasks for Quantum Machine Learning (QML). MIT excited-states general-tool +- MADICES Awesome Interoperability (🥉9 · ⭐ 1 · ➕) - Linked data interoperability resources of the Machine-actionable data interoperability for the chemical sciences.. MIT datasets +- Awesome-Graph-Generation (🥉8 · ⭐ 260 · ➕) - A curated list of up-to-date graph generation papers and resources. Unlicensed rep-learn +- Awesome Neural SBI (🥉8 · ⭐ 80 · ➕) - Community-sourced list of papers and resources on neural simulation-based inference. MIT active-learning +- SiMGen (🥉8 · ⭐ 11 · ➕) - Zero Shot Molecular Generation via Similarity Kernels. MIT viz +- Awesome-Crystal-GNNs (🥉7 · ⭐ 54 · ➕) - This repository contains a collection of resources and papers on GNN Models on Crystal Solid State Materials. MIT +- AIS Square (🥉7 · ⭐ 10 · 💤) - A collaborative and open-source platform for sharing AI for Science datasets, models, and workflows. Home of the.. LGPL-3.0 community-resource model-repository +- rho_learn (🥉7 · ⭐ 3 · ➕) - A proof-of-concept framework for torch-based learning of the electron density and related scalar fields. MIT +- ChargE3Net (🥉6 · ⭐ 28 · ➕) - Higher-order equivariant neural networks for charge density prediction in materials. MIT rep-learn +- ML for catalysis tutorials (🥉6 · ⭐ 8 · 💀) - A jupyter book repo for tutorial on how to use OCP ML models for catalysis. MIT +- Cephalo (🥉6 · ⭐ 5 · 🐣) - Multimodal Vision-Language Models for Bio-Inspired Materials Analysis and Design. Apache-2 generative multimodal pretrained +- KSR-DFT (🥇6 · ⭐ 4 · 💀) - Kohn-Sham regularizer for machine-learned DFT functionals. Apache-2 +- ACEpsi.jl (🥉6 · ⭐ 2 · 💤) - ACE wave function parameterizations. MIT rep-eng Julia +- crystal-text-llm (🥉5 · ⭐ 63 · 🐣) - Large language models to generate stable crystals. CC-BY-NC-4.0 materials-discovery +- The Perovskite Database Project (🥉5 · ⭐ 58 · ➕) - Perovskite Database Project aims at making all perovskite device data, both past and future, available in a form.. Unlicensed community-resource +- Joint Multidomain Pre-Training (JMP) (🥉5 · ⭐ 32 · 🐣) - Code for From Molecules to Materials Pre-training Large Generalizable Models for Atomic Property Prediction. CC-BY-NC-4.0 pretrained ML-IAP general-tool +- QMLearn (🥈5 · ⭐ 11 · 💀) - Quantum Machine Learning by learning one-body reduced density matrices in the AO basis... MIT +- InfGCN for Electron Density Estimation (🥉5 · ⭐ 10 · 💤) - Official implementation of the NeurIPS 23 spotlight paper of InfGCN. MIT rep-learn +- GN-MM (🥉5 · ⭐ 10 · 💀) - The Gaussian Moment Neural Network (GM-NN) package developed for large-scale atomistic simulations employing atomistic.. MIT active-learning MD rep-eng magnetism +- EGraFFBench (🥉5 · ⭐ 8 · 💤) - Unlicensed single-paper benchmarking ML-IAP +- GDB-9-Ex9 and ORNL_AISD-Ex (🥉5 · ⭐ 6 · 💤) - Distributed computing workflow for generation and analysis of large scale molecular datasets obtained running multi-.. Unlicensed +- MXenes4HER (🥉5 · ⭐ 5 · 💀) - Predicting hydrogen evolution (HER) activity over 4500 MXene materials https://doi.org/10.1039/D3TA00344B. GPL-3.0 materials-discovery catalysis scikit-learn single-paper +- Geometric-GNNs (🥉4 · ⭐ 85 · ➕) - List of Geometric GNNs for 3D atomic systems. Unlicensed datasets educational rep-learn +- MAGUS (🥉4 · ⭐ 56 · 💀) - Machine learning And Graph theory assisted Universal structure Searcher. Unlicensed structure-prediction active-learning +- Allegro-Legato (🥉4 · ⭐ 19 · 💤) - An extension of Allegro with enhanced robustness and time-to-failure. MIT MD +- Mapping out phase diagrams with generative classifiers (🥉4 · ⭐ 7 · 💀) - Repository for our ``Mapping out phase diagrams with generative models paper. MIT phase-transition +- automl-materials (🥉4 · ⭐ 5 · 💀) - AutoML for Regression Tasks on Small Tabular Data in Materials Design. MIT autoML benchmarking single-paper +- ML-atomate (🥉4 · ⭐ 3 · 💤) - Machine learning-assisted Atomate code for autonomous computational materials screening. GPL-3.0 active-learning workflows +- AI4ChemMat Hands-On Series (🥉4 · ⭐ 1 · ➕) - Hands-On Series organized by Chemistry and Materials working group at Argonne Nat Lab. MPL-2.0 +- ALEBREW (🥉3 · ⭐ 9 · 🐣) - Official repository for the paper Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic.. Custom ML-IAP MD +- PyFLAME (🥉3 · 💀) - An automated approach for developing neural network interatomic potentials with FLAME.. Unlicensed active-learning structure-prediction structure-optimization rep-eng Fortran +- tmQM_wB97MV Dataset (🥉2 · ⭐ 5 · ➕) - Code for Applying Large Graph Neural Networks to Predict Transition Metal Complex Energies Using the tmQM_wB97MV.. Unlicensed catalysis rep-learn +- AisNet (🥉2 · ⭐ 3 · 💀) - A Universal Interatomic Potential Neural Network with Encoded Local Environment Features.. MIT +- nnp-pre-training (🥉1 · ⭐ 6 · 💤) - Synthetic pre-training for neural-network interatomic potentials. Unlicensed pretrained MD +- mag-ace (🥉1 · ⭐ 2 · 💤) - Magnetic ACE potential. FORTRAN interface for LAMMPS SPIN package. Unlicensed magnetism MD Fortran