-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
executable file
·1454 lines (1215 loc) · 54.2 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# util.py
# -------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
# EXTENSIONS
# Extensions from original project had been made for implementing WDQN
# and DQN Agents
import concurrent.futures
import sys
import inspect
import heapq
import random
import functools
import numpy as np
import _pickle as cPickle
import tensorflow as tf
# from pacman import GameState
import io
import os
import ast
import json
import shutil
import pickle
from featureExtractors import SimpleExtractor
class FixedRandom:
def __init__(self):
fixedState = (3, (2147483648, 507801126, 683453281, 310439348, 2597246090,
2209084787, 2267831527, 979920060, 3098657677, 37650879, 807947081, 3974896263,
881243242, 3100634921, 1334775171, 3965168385, 746264660, 4074750168, 500078808,
776561771, 702988163, 1636311725, 2559226045, 157578202, 2498342920, 2794591496,
4130598723, 496985844, 2944563015, 3731321600, 3514814613, 3362575829, 3038768745,
2206497038, 1108748846, 1317460727, 3134077628, 988312410, 1674063516, 746456451,
3958482413, 1857117812, 708750586, 1583423339, 3466495450, 1536929345, 1137240525,
3875025632, 2466137587, 1235845595, 4214575620, 3792516855, 657994358, 1241843248,
1695651859, 3678946666, 1929922113, 2351044952, 2317810202, 2039319015, 460787996,
3654096216, 4068721415, 1814163703, 2904112444, 1386111013, 574629867, 2654529343,
3833135042, 2725328455, 552431551, 4006991378, 1331562057, 3710134542, 303171486,
1203231078, 2670768975, 54570816, 2679609001, 578983064, 1271454725, 3230871056,
2496832891, 2944938195, 1608828728, 367886575, 2544708204, 103775539, 1912402393,
1098482180, 2738577070, 3091646463, 1505274463, 2079416566, 659100352, 839995305,
1696257633, 274389836, 3973303017, 671127655, 1061109122, 517486945, 1379749962,
3421383928, 3116950429, 2165882425, 2346928266, 2892678711, 2936066049, 1316407868,
2873411858, 4279682888, 2744351923, 3290373816, 1014377279, 955200944, 4220990860,
2386098930, 1772997650, 3757346974, 1621616438, 2877097197, 442116595, 2010480266,
2867861469, 2955352695, 605335967, 2222936009, 2067554933, 4129906358, 1519608541,
1195006590, 1942991038, 2736562236, 279162408, 1415982909, 4099901426, 1732201505,
2934657937, 860563237, 2479235483, 3081651097, 2244720867, 3112631622, 1636991639,
3860393305, 2312061927, 48780114, 1149090394, 2643246550, 1764050647, 3836789087,
3474859076, 4237194338, 1735191073, 2150369208, 92164394, 756974036, 2314453957,
323969533, 4267621035, 283649842, 810004843, 727855536, 1757827251, 3334960421,
3261035106, 38417393, 2660980472, 1256633965, 2184045390, 811213141, 2857482069,
2237770878, 3891003138, 2787806886, 2435192790, 2249324662, 3507764896, 995388363,
856944153, 619213904, 3233967826, 3703465555, 3286531781, 3863193356, 2992340714,
413696855, 3865185632, 1704163171, 3043634452, 2225424707, 2199018022, 3506117517,
3311559776, 3374443561, 1207829628, 668793165, 1822020716, 2082656160, 1160606415,
3034757648, 741703672, 3094328738, 459332691, 2702383376, 1610239915, 4162939394,
557861574, 3805706338, 3832520705, 1248934879, 3250424034, 892335058, 74323433,
3209751608, 3213220797, 3444035873, 3743886725, 1783837251, 610968664, 580745246,
4041979504, 201684874, 2673219253, 1377283008, 3497299167, 2344209394, 2304982920,
3081403782, 2599256854, 3184475235, 3373055826, 695186388, 2423332338, 222864327,
1258227992, 3627871647, 3487724980, 4027953808, 3053320360, 533627073, 3026232514,
2340271949, 867277230, 868513116, 2158535651, 2487822909, 3428235761, 3067196046,
3435119657, 1908441839, 788668797, 3367703138, 3317763187, 908264443, 2252100381,
764223334, 4127108988, 384641349, 3377374722, 1263833251, 1958694944, 3847832657,
1253909612, 1096494446, 555725445, 2277045895, 3340096504, 1383318686, 4234428127,
1072582179, 94169494, 1064509968, 2681151917, 2681864920, 734708852, 1338914021,
1270409500, 1789469116, 4191988204, 1716329784, 2213764829, 3712538840, 919910444,
1318414447, 3383806712, 3054941722, 3378649942, 1205735655, 1268136494, 2214009444,
2532395133, 3232230447, 230294038, 342599089, 772808141, 4096882234, 3146662953,
2784264306, 1860954704, 2675279609, 2984212876, 2466966981, 2627986059, 2985545332,
2578042598, 1458940786, 2944243755, 3959506256, 1509151382, 325761900, 942251521,
4184289782, 2756231555, 3297811774, 1169708099, 3280524138, 3805245319, 3227360276,
3199632491, 2235795585, 2865407118, 36763651, 2441503575, 3314890374, 1755526087,
17915536, 1196948233, 949343045, 3815841867, 489007833, 2654997597, 2834744136,
417688687, 2843220846, 85621843, 747339336, 2043645709, 3520444394, 1825470818,
647778910, 275904777, 1249389189, 3640887431, 4200779599, 323384601, 3446088641,
4049835786, 1718989062, 3563787136, 44099190, 3281263107, 22910812, 1826109246,
745118154, 3392171319, 1571490704, 354891067, 815955642, 1453450421, 940015623,
796817754, 1260148619, 3898237757, 176670141, 1870249326, 3317738680, 448918002,
4059166594, 2003827551, 987091377, 224855998, 3520570137, 789522610, 2604445123,
454472869, 475688926, 2990723466, 523362238, 3897608102, 806637149, 2642229586,
2928614432, 1564415411, 1691381054, 3816907227, 4082581003, 1895544448, 3728217394,
3214813157, 4054301607, 1882632454, 2873728645, 3694943071, 1297991732, 2101682438,
3952579552, 678650400, 1391722293, 478833748, 2976468591, 158586606, 2576499787,
662690848, 3799889765, 3328894692, 2474578497, 2383901391, 1718193504, 3003184595,
3630561213, 1929441113, 3848238627, 1594310094, 3040359840, 3051803867, 2462788790,
954409915, 802581771, 681703307, 545982392, 2738993819, 8025358, 2827719383,
770471093, 3484895980, 3111306320, 3900000891, 2116916652, 397746721, 2087689510,
721433935, 1396088885, 2751612384, 1998988613, 2135074843, 2521131298, 707009172,
2398321482, 688041159, 2264560137, 482388305, 207864885, 3735036991, 3490348331,
1963642811, 3260224305, 3493564223, 1939428454, 1128799656, 1366012432, 2858822447,
1428147157, 2261125391, 1611208390, 1134826333, 2374102525, 3833625209, 2266397263,
3189115077, 770080230, 2674657172, 4280146640, 3604531615, 4235071805, 3436987249,
509704467, 2582695198, 4256268040, 3391197562, 1460642842, 1617931012, 457825497,
1031452907, 1330422862, 4125947620, 2280712485, 431892090, 2387410588, 2061126784,
896457479, 3480499461, 2488196663, 4021103792, 1877063114, 2744470201, 1046140599,
2129952955, 3583049218, 4217723693, 2720341743, 820661843, 1079873609, 3360954200,
3652304997, 3335838575, 2178810636, 1908053374, 4026721976, 1793145418, 476541615,
973420250, 515553040, 919292001, 2601786155, 1685119450, 3030170809, 1590676150,
1665099167, 651151584, 2077190587, 957892642, 646336572, 2743719258, 866169074,
851118829, 4225766285, 963748226, 799549420, 1955032629, 799460000, 2425744063,
2441291571, 1928963772, 528930629, 2591962884, 3495142819, 1896021824, 901320159,
3181820243, 843061941, 3338628510, 3782438992, 9515330, 1705797226, 953535929,
764833876, 3202464965, 2970244591, 519154982, 3390617541, 566616744, 3438031503,
1853838297, 170608755, 1393728434, 676900116, 3184965776, 1843100290, 78995357,
2227939888, 3460264600, 1745705055, 1474086965, 572796246, 4081303004, 882828851,
1295445825, 137639900, 3304579600, 2722437017, 4093422709, 273203373, 2666507854,
3998836510, 493829981, 1623949669, 3482036755, 3390023939, 833233937, 1639668730,
1499455075, 249728260, 1210694006, 3836497489, 1551488720, 3253074267, 3388238003,
2372035079, 3945715164, 2029501215, 3362012634, 2007375355, 4074709820, 631485888,
3135015769, 4273087084, 3648076204, 2739943601, 1374020358, 1760722448, 3773939706,
1313027823, 1895251226, 4224465911, 421382535, 1141067370, 3660034846, 3393185650,
1850995280, 1451917312, 3841455409, 3926840308, 1397397252, 2572864479, 2500171350,
3119920613, 531400869, 1626487579, 1099320497, 407414753, 2438623324, 99073255,
3175491512, 656431560, 1153671785, 236307875, 2824738046, 2320621382, 892174056,
230984053, 719791226, 2718891946, 624), None)
self.random = random.Random()
self.random.setstate(fixedState)
"""
Data structures useful for implementing SearchAgents
"""
class Stack:
"A container with a last-in-first-out (LIFO) queuing policy."
def __init__(self):
self.list = []
def push(self, item):
"Push 'item' onto the stack"
self.list.append(item)
def pop(self):
"Pop the most recently pushed item from the stack"
return self.list.pop()
def isEmpty(self):
"Returns true if the stack is empty"
return len(self.list) == 0
class Queue:
"A container with a first-in-first-out (FIFO) queuing policy."
def __init__(self):
self.list = []
def push(self, item):
"Enqueue the 'item' into the queue"
self.list.insert(0, item)
def pop(self):
"""
Dequeue the earliest enqueued item still in the queue. This
operation removes the item from the queue.
"""
return self.list.pop()
def isEmpty(self):
"Returns true if the queue is empty"
return len(self.list) == 0
class PriorityQueue:
"""
Implements a priority queue data structure. Each inserted item
has a priority associated with it and the client is usually interested
in quick retrieval of the lowest-priority item in the queue. This
data structure allows O(1) access to the lowest-priority item.
Note that this PriorityQueue does not allow you to change the priority
of an item. However, you may insert the same item multiple times with
different priorities.
"""
def __init__(self):
self.heap = []
self.count = 0
def push(self, item, priority):
# FIXME: restored old behaviour to check against old results better
# FIXED: restored to stable behaviour
entry = (priority, self.count, item)
# entry = (priority, item)
heapq.heappush(self.heap, entry)
self.count += 1
def pop(self):
(_, _, item) = heapq.heappop(self.heap)
# (_, item) = heapq.heappop(self.heap)
return item
def isEmpty(self):
return len(self.heap) == 0
class PriorityQueueWithFunction(PriorityQueue):
"""
Implements a priority queue with the same push/pop signature of the
Queue and the Stack classes. This is designed for drop-in replacement for
those two classes. The caller has to provide a priority function, which
extracts each item's priority.
"""
def __init__(self, priorityFunction):
"priorityFunction (item) -> priority"
self.priorityFunction = priorityFunction # store the priority function
PriorityQueue.__init__(self) # super-class initializer
def push(self, item):
"Adds an item to the queue with priority from the priority function"
PriorityQueue.push(self, item, self.priorityFunction(item))
def manhattanDistance(xy1, xy2):
"Returns the Manhattan distance between points xy1 and xy2"
return abs(xy1[0] - xy2[0]) + abs(xy1[1] - xy2[1])
class Counter(dict):
"""
A counter keeps track of counts for a set of keys.
The counter class is an extension of the standard python
dictionary type. It is specialized to have number values
(integers or floats), and includes a handful of additional
functions to ease the task of counting data. In particular,
all keys are defaulted to have value 0. Using a dictionary:
a = {}
print a['test']
would give an error, while the Counter class analogue:
>>> a = Counter()
>>> print a['test']
0
returns the default 0 value. Note that to reference a key
that you know is contained in the counter,
you can still use the dictionary syntax:
>>> a = Counter()
>>> a['test'] = 2
>>> print a['test']
2
This is very useful for counting things without initializing their counts,
see for example:
>>> a['blah'] += 1
>>> print a['blah']
1
The counter also includes additional functionality useful in implementing
the classifiers for this assignment. Two counters can be added,
subtracted or multiplied together. See below for details. They can
also be normalized and their total count and arg max can be extracted.
"""
def __getitem__(self, idx):
self.setdefault(idx, 0)
return dict.__getitem__(self, idx)
def incrementAll(self, keys, count):
"""
Increments all elements of keys by the same count.
>>> a = Counter()
>>> a.incrementAll(['one','two', 'three'], 1)
>>> a['one']
1
>>> a['two']
1
"""
for key in keys:
self[key] += count
def argMax(self):
"""
Returns the key with the highest value.
"""
if len(list(self.keys())) == 0:
return None
all = list(self.items())
values = [x[1] for x in all]
maxIndex = values.index(max(values))
return all[maxIndex][0]
def sortedKeys(self):
"""
Returns a list of keys sorted by their values. Keys
with the highest values will appear first.
>>> a = Counter()
>>> a['first'] = -2
>>> a['second'] = 4
>>> a['third'] = 1
>>> a.sortedKeys()
['second', 'third', 'first']
"""
sortedItems = list(self.items())
compare = lambda x, y: sign(y[1] - x[1])
sortedItems.sort(cmp=compare)
return [x[0] for x in sortedItems]
def totalCount(self):
"""
Returns the sum of counts for all keys.
"""
return sum(self.values())
def normalize(self):
"""
Edits the counter such that the total count of all
keys sums to 1. The ratio of counts for all keys
will remain the same. Note that normalizing an empty
Counter will result in an error.
"""
total = float(self.totalCount())
if total == 0:
return
for key in list(self.keys()):
self[key] = self[key] / total
def divideAll(self, divisor):
"""
Divides all counts by divisor
"""
divisor = float(divisor)
for key in self:
self[key] /= divisor
def copy(self):
"""
Returns a copy of the counter
"""
return Counter(dict.copy(self))
def __mul__(self, y):
"""
Multiplying two counters gives the dot product of their vectors where
each unique label is a vector element.
>>> a = Counter()
>>> b = Counter()
>>> a['first'] = -2
>>> a['second'] = 4
>>> b['first'] = 3
>>> b['second'] = 5
>>> a['third'] = 1.5
>>> a['fourth'] = 2.5
>>> a * b
14
"""
sum = 0
x = self
if len(x) > len(y):
x, y = y, x
for key in x:
if key not in y:
continue
sum += x[key] * y[key]
return sum
def __radd__(self, y):
"""
Adding another counter to a counter increments the current counter
by the values stored in the second counter.
>>> a = Counter()
>>> b = Counter()
>>> a['first'] = -2
>>> a['second'] = 4
>>> b['first'] = 3
>>> b['third'] = 1
>>> a += b
>>> a['first']
1
"""
for key, value in list(y.items()):
self[key] += value
def __add__(self, y):
"""
Adding two counters gives a counter with the union of all keys and
counts of the second added to counts of the first.
>>> a = Counter()
>>> b = Counter()
>>> a['first'] = -2
>>> a['second'] = 4
>>> b['first'] = 3
>>> b['third'] = 1
>>> (a + b)['first']
1
"""
addend = Counter()
for key in self:
if key in y:
addend[key] = self[key] + y[key]
else:
addend[key] = self[key]
for key in y:
if key in self:
continue
addend[key] = y[key]
return addend
def __sub__(self, y):
"""
Subtracting a counter from another gives a counter with the union of all keys and
counts of the second subtracted from counts of the first.
>>> a = Counter()
>>> b = Counter()
>>> a['first'] = -2
>>> a['second'] = 4
>>> b['first'] = 3
>>> b['third'] = 1
>>> (a - b)['first']
-5
"""
addend = Counter()
for key in self:
if key in y:
addend[key] = self[key] - y[key]
else:
addend[key] = self[key]
for key in y:
if key in self:
continue
addend[key] = -1 * y[key]
return addend
def raiseNotDefined():
fileName = inspect.stack()[1][1]
line = inspect.stack()[1][2]
method = inspect.stack()[1][3]
print(("*** Method not implemented: %s at line %s of %s" %
(method, line, fileName)))
sys.exit(1)
def normalize(vectorOrCounter):
"""
normalize a vector or counter by dividing each value by the sum of all values
"""
normalizedCounter = Counter()
if isinstance(vectorOrCounter, type(normalizedCounter)):
counter = vectorOrCounter
total = float(counter.totalCount())
if total == 0:
return counter
for key in list(counter.keys()):
value = counter[key]
normalizedCounter[key] = value / total
return normalizedCounter
else:
vector = vectorOrCounter
s = float(sum(vector))
if s == 0:
return vector
return [el / s for el in vector]
def nSample(distribution, values, n):
if sum(distribution) != 1:
distribution = normalize(distribution)
rand = sorted([random.random() for i in range(n)])
samples = []
samplePos, distPos, cdf = 0, 0, distribution[0]
while samplePos < n:
if rand[samplePos] < cdf:
samplePos += 1
samples.append(values[distPos])
else:
distPos += 1
cdf += distribution[distPos]
return samples
def sample(distribution, values=None):
# r = random.Random()
# r.seed(2)
if isinstance(distribution, Counter):
items = sorted(distribution.items())
distribution = [i[1] for i in items]
values = [i[0] for i in items]
if sum(distribution) != 1:
distribution = normalize(distribution)
choice = random.random()
i, total = 0, distribution[0]
while choice > total:
i += 1
total += distribution[i]
return values[i]
def sampleFromCounter(ctr):
items = sorted(ctr.items())
return sample([v for k, v in items], [k for k, v in items])
def getProbability(value, distribution, values):
"""
Gives the probability of a value under a discrete distribution
defined by (distributions, values).
"""
total = 0.0
for prob, val in zip(distribution, values):
if val == value:
total += prob
return total
def flipCoin(p):
r = random.random()
return r < p
def chooseFromDistribution(distribution):
"Takes either a counter or a list of (prob, key) pairs and samples"
if isinstance(distribution, dict) or isinstance(distribution, Counter):
return sample(distribution)
r = random.random()
base = 0.0
for prob, element in distribution:
base += prob
if r <= base:
return element
def nearestPoint(pos):
"""
Finds the nearest grid point to a position (discretizes).
"""
(current_row, current_col) = pos
grid_row = int(current_row + 0.5)
grid_col = int(current_col + 0.5)
return (grid_row, grid_col)
def sign(x):
"""
Returns 1 or -1 depending on the sign of x
"""
if (x >= 0):
return 1
else:
return -1
def arrayInvert(array):
"""
Inverts a matrix stored as a list of lists.
"""
result = [[] for i in array]
for outer in array:
for inner in range(len(outer)):
result[inner].append(outer[inner])
return result
def matrixAsList(matrix, value=True):
"""
Turns a matrix into a list of coordinates matching the specified value
"""
rows, cols = len(matrix), len(matrix[0])
cells = []
for row in range(rows):
for col in range(cols):
if matrix[row][col] == value:
cells.append((row, col))
return cells
def lookup(name, namespace):
"""
Get a method or class from any imported module from its name.
Usage: lookup(functionName, globals())
"""
dots = name.count('.')
if dots > 0:
moduleName, objName = '.'.join(
name.split('.')[:-1]), name.split('.')[-1]
module = __import__(moduleName)
return getattr(module, objName)
else:
modules = [obj for obj in list(namespace.values()) if str(
type(obj)) == "<type 'module'>"]
options = [getattr(module, name)
for module in modules if name in dir(module)]
options += [obj[1]
for obj in list(namespace.items()) if obj[0] == name]
if len(options) == 1:
return options[0]
if len(options) > 1:
raise Exception('Name conflict for %s')
raise Exception('%s not found as a method or class' % name)
def pause():
"""
Pauses the output stream awaiting user feedback.
"""
print("<Press enter/return to continue>")
eval(input())
# code to handle timeouts
#
# FIXME
# NOTE: TimeoutFuncton is NOT reentrant. Later timeouts will silently
# disable earlier timeouts. Could be solved by maintaining a global list
# of active time outs. Currently, questions which have test cases calling
# this have all student code so wrapped.
#
import signal
import time
class TimeoutFunctionException(Exception):
"""Exception to raise on a timeout"""
pass
class TimeoutFunction:
def __init__(self, function, timeout):
self.timeout = timeout
self.function = function
def handle_timeout(self, signum, frame):
raise TimeoutFunctionException()
def __call__(self, *args, **keyArgs):
# If we have SIGALRM signal, use it to cause an exception if and
# when this function runs too long. Otherwise check the time taken
# after the method has returned, and throw an exception then.
if hasattr(signal, 'SIGALRM'):
old = signal.signal(signal.SIGALRM, self.handle_timeout)
signal.alarm(self.timeout)
try:
result = self.function(*args, **keyArgs)
finally:
signal.signal(signal.SIGALRM, old)
signal.alarm(0)
else:
startTime = time.time()
result = self.function(*args, **keyArgs)
timeElapsed = time.time() - startTime
if timeElapsed >= self.timeout:
self.handle_timeout(None, None)
return result
_ORIGINAL_STDOUT = None
_ORIGINAL_STDERR = None
_MUTED = False
class WritableNull:
def write(self, string):
pass
def mutePrint():
global _ORIGINAL_STDOUT, _ORIGINAL_STDERR, _MUTED
if _MUTED:
return
_MUTED = True
_ORIGINAL_STDOUT = sys.stdout
sys.stdout = WritableNull()
def unmutePrint():
global _ORIGINAL_STDOUT, _ORIGINAL_STDERR, _MUTED
if not _MUTED:
return
_MUTED = False
sys.stdout = _ORIGINAL_STDOUT
def mergeStateMatrices(state):
""" Merge state matrices to one state tensor """
stateMatrices = getStateMatrices(state)
stateMatrices = np.swapaxes(stateMatrices, 0, 2)
dim, h, w = stateMatrices.shape
total = np.zeros((h, w))
for i in range(dim):
total += (i + 1) * stateMatrices[i] / 6
# for the pile up
total = np.floor(total * 100) / 100
total = np.where(total != 1.33, total, 0.5)
total = np.where(total != 1.5, total, 0.5)
total = np.where(total != 1.49, total, 0.66)
total = np.where(total != 1.66, total, 0.66)
# Format for tf
total = np.expand_dims(total, axis=0)
total = np.swapaxes(total, 0, 2)
return total
def getStateMatrices(state):
""" Return wall, ghosts, food, capsules matrices """
def getWallMatrix(state):
""" Return matrix with wall coordinates set to 1 """
grid = state.data.layout.walls
matrix = np.array(grid[:][:], dtype=int).transpose()
matrix = matrix[::-1]
return matrix
def getPacmanMatrix(state):
""" Return matrix with pacman coordinates set to 1 """
width, height = state.data.layout.width, state.data.layout.height
matrix = np.zeros((height, width))
matrix.dtype = int
for agentState in state.data.agentStates:
if agentState.isPacman:
pos = agentState.configuration.getPosition()
cell = 1
matrix[-1 - int(pos[1])][int(pos[0])] = cell
return matrix
def getGhostMatrix(state):
""" Return matrix with ghost coordinates set to 1 """
width, height = state.data.layout.width, state.data.layout.height
matrix = np.zeros((height, width))
matrix.dtype = int
for agentState in state.data.agentStates:
if not agentState.isPacman:
if not agentState.scaredTimer > 0:
pos = agentState.configuration.getPosition()
cell = 1
matrix[-1 - int(pos[1])][int(pos[0])] = cell
return matrix
def getScaredGhostMatrix(state):
""" Return matrix with ghost coordinates set to 1 """
width, height = state.data.layout.width, state.data.layout.height
matrix = np.zeros((height, width))
matrix.dtype = int
for agentState in state.data.agentStates:
if not agentState.isPacman:
if agentState.scaredTimer > 0:
pos = agentState.configuration.getPosition()
cell = 1
matrix[-1 - int(pos[1])][int(pos[0])] = cell
return matrix
def getFoodMatrix(state):
""" Return matrix with food coordinates set to 1 """
grid = state.data.food
matrix = np.array(grid[:][:], dtype=int).transpose()
matrix = matrix[::-1]
return matrix
def getCapsulesMatrix(state):
""" Return matrix with capsule coordinates set to 1 """
width, height = state.data.layout.width, state.data.layout.height
capsules = state.data.layout.capsules
matrix = np.zeros((height, width))
matrix.dtype = int
for i in capsules:
# Insert capsule cells vertically reversed into matrix
matrix[-1 - i[1], i[0]] = 1
return matrix
if isinstance(state, np.ndarray):
if state.ndim == 0:
state = state.tolist()
else:
print("NUMPY ARRAY HAS TO MANY DIMENSIONS!")
# Create observation matrix as a combination of
# wall, pacman, ghost, food and capsule matrices
width, height = state.data.layout.width, state.data.layout.height
# width, height = self.params['width'], self.params['height']
observation = np.zeros((6, height, width))
# pacm, ghst, scrdG = getAgentsMatrix(state)
observation[0] = getWallMatrix(state)
observation[1] = getPacmanMatrix(state) # pacm
observation[2] = getGhostMatrix(state) # ghst
observation[3] = getScaredGhostMatrix(state) # scrdG
observation[4] = getFoodMatrix(state)
observation[5] = getCapsulesMatrix(state)
observation = np.swapaxes(observation, 0, 2)
return observation
def map_state_mat(states):
"""Transform a list of states in state matrices"""
if isinstance(states, np.ndarray):
m = list(map(getStateMatrices, states))
return m
else:
return [getStateMatrices(states)]
def map_state_mat_np(states):
"""Transform a list of states in state matrices"""
if isinstance(states, np.ndarray):
func = np.vectorize(getStateMatrices, otypes=[np.ndarray])
m = np.stack(func(states))
return m
def mat_features(states, extractor=SimpleExtractor(), ftrs=None):
"""Transform a list of states in state matrices"""
if isinstance(states, np.ndarray):
m = list(map(functools.partial(extractor.getMatrixFeatures, features=ftrs), states))
return m
else:
return [extractor.getMatrixFeatures(states, features=ftrs)]
def mat_features_np(states, extractor=SimpleExtractor(), ftrs=None):
"""Transform a list of states in state matrices"""
if isinstance(states, np.ndarray):
func = np.vectorize(functools.partial(extractor.getMatrixFeatures, features=ftrs), otypes=[np.ndarray])
m = np.stack(func(states))
return m
def save_mem_rep(tupel, dir, subdir, steps, mem_size, preIdx=""):
""" Save Memory Replay in disk"""
dir = "".join([preIdx, "data/mem_rep_", dir, "/", subdir, "/"])
if not os.path.exists(dir):
os.makedirs(dir)
np.save("".join([dir, str(steps % mem_size)]), tupel)
def save_mem_rep_pkl(tupel, dir, subdir, steps, mem_size, preIdx=""):
""" Save Memory Replay in disk as pickle"""
dir = "".join([preIdx, "data/mem_rep_", dir, "/", subdir, "/"])
if not os.path.exists(dir):
os.makedirs(dir)
with open("".join([dir, str(steps % mem_size), ".pkl"]), "wb") as file:
cPickle.dump(tupel, file, protocol=3)
def save_rep_buf(rep_buf, dir, f):
""" Save the complete Memory Replay in the disk as pickle file"""
if not os.path.exists(dir):
os.makedirs(dir)
src = "".join([dir,f])
with open(src, 'wb') as handle:
pickle.dump(rep_buf, handle)
def copy_mem_rep(src, dst):
"""Copy directory with mem_rep and rename it"""
try:
shutil.copytree(src, dst)
print("Memory Replay saved")
except Exception as e:
print("Memory Replay could not be saved")
print(e)
def del_dir(dst):
"""Delete directory if it already exists"""
if os.path.exists(dst):
shutil.rmtree(dst)
def get_normalize(params):
"""
Set normalize as false in case it doesn't exist in dict 'params' and return dict
"""
if not "normalize" in params.keys():
params["normalize"] = False
return params
else:
return params
def get_only_dqn(params):
"""
Set only_dqn as false in case it doesn't exist in dict 'params' and return dict
"""
if not "only_dqn" in params.keys():
params["only_dqn"] = False
return params
else:
return params
def json_to_dict(path):
""" Creates a path for reading json files"""
folder = path.split("-")[1]
if "/" not in path: # just name of it
save_file = path
if os.path.exists("".join(["dict/", folder, "/", path, ".json"])):
path = "".join(["dict/", folder, "/", path, ".json"])
else:
path = "".join(["dict/", path, ".json"])
else: # path option like: path/file.json
save_file = path.split("/")[-1].split(".json")[0]
# Check if files exists
if not os.path.exists(path):
raise ValueError("File could not be found. Check path or name of it")
js = open(path).read()
params = json.loads(js)
if "conv_layer_sizes" and "hidden_layer_sizes" in params.keys():
params["conv_layer_sizes"], params["hidden_layer_sizes"] = ast.literal_eval(
params["conv_layer_sizes"]), ast.literal_eval(params["hidden_layer_sizes"])
params["save_file"] = save_file
if "feat_val" in params.keys():
params["feat_val"] = ast.literal_eval(params["feat_val"])
params["features"] = len(params["feat_val"])
if "pickle" not in params.keys():
params["pickle"] = True
if "global_step" in params.keys():
params["global_step_lin"] = None
params["global_step_dqn"] = None
if "only_dqn" not in params.keys():
params["only_dqn"] = False
if "only_lin" not in params.keys():
params["only_lin"] = False
if params["only_lin"] and params["only_dqn"]:
params["only_dqn"] = False
params["only_lin"] = False
if "prioritized" not in params.keys():
params["prioritized"] = False
if "GPU" not in params.keys():
params["GPU"] = 0
if "ranked" not in params.keys():
params["ranked"] = False
if "sort_rank" not in params.keys():
params["sort_rank"] = None
if "model_shift" not in params.keys():
params["model_shift"] = False
params["val_shift"] = None
params["start_shift"] = None
if params["only_lin"] or params["only_dqn"]:
params["model_shift"] = False
if "shift_best" not in params.keys():
params["shift_best"] = 100
return params
def get_onehot(actions, batch_size, k):
"""Transform actions into one hot coding"""
actions_onehot = np.zeros((batch_size, k))
actions_onehot[np.arange(batch_size), actions] = 1
return actions_onehot
def extract_batches_dqn(params, local_cnt, tnet, path_extra, sub_dir, gameS, r):
"""Takes and process batches just for DQN.py from local computer """
if local_cnt < params["mem_size"]:
rang = range(local_cnt)
else:
rang = range(0, params["mem_size"])
# Sampling. Two times repeat it because of Numpy bug
r_list = r.choice(rang, params["batch_size"], replace=False)
r_list = r.choice(rang, params["batch_size"], replace=False)
print(r_list)
if not params["pickle"]:
try:
batch_s, batch_r, batch_a, batch_n, batch_t = map(np.array, zip(
*[np.load("".join(
[path_extra, "data/mem_rep_", params["save_file"], "/", sub_dir, "/", str(r),
".npy"])) for r in r_list]))
except Exception as e:
print(e)
else:
batch_s, batch_r, batch_a, batch_n, batch_t = np.empty(params['batch_size'], dtype=gameS), np.empty(