Fast, LoopVectorization.jl-based summary statistics.
vminimum
vmaximum
vextrema
Implemented directly by compile-time loop generation or manually-coded loops (optionally multithreaded)
vmean
vsum
vvar
vstd
vcov
vcor
Implemented via quicksort/quickselect (some easy steps vectorized), with multidimensional reductions handled by compile-time loop generation
vsort!
vmedian!
vquantile!
vpercentile!
- NaNStatistics.jl for equivalently-vectorized functions that additionally ignore
NaN
s
As of Julia v1.8.3
, VectorizedStatistics v0.5.0
julia> using Statistics, VectorizedStatistics, BenchmarkTools
julia> A = rand(10_000);
julia> minimum(A) == vminimum(A)
true
julia> @benchmark minimum($A)
BenchmarkTools.Trial: 10000 samples with 5 evaluations.
Range (min … max): 6.400 μs … 17.850 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 6.692 μs ┊ GC (median): 0.00%
Time (mean ± σ): 6.677 μs ± 426.730 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▃▁▅▇▂ ▇█▅ ▂
█████▆▆▇▇█████▆▆▄▅▄▃▅▄▅▃▃▁▄▁▅▅▄▁▄▃▄▄▃▁▄▅▄▄▄▄▃▁▄▁▄▃▄▄▄▃▄▄▄▄▃ █
6.4 μs Histogram: log(frequency) by time 8.13 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
julia> @benchmark vminimum($A)
BenchmarkTools.Trial: 10000 samples with 190 evaluations.
Range (min … max): 532.237 ns … 760.084 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 555.921 ns ┊ GC (median): 0.00%
Time (mean ± σ): 551.762 ns ± 14.327 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▅▃ ▆▅ ▅█▅▂ ▂
████▇███▆▅▅▆▆▆▆▇▆▅████▇▇▇▇▆▆▄▄▇▆▅▅▅▅▆▆▅▄▅▆▄▄▅▅▄▅▃▄▄▄▃▁▁▃▃▃▃▄▃ █
532 ns Histogram: log(frequency) by time 608 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
julia> A = rand(11, 12, 13, 14);
julia> minimum(A, dims=(1,3,4)) == vminimum(A, dims=(1,3,4))
true
julia> @benchmark minimum($A, dims=(1,3,4))
BenchmarkTools.Trial: 10000 samples with 1 evaluation.
Range (min … max): 45.083 μs … 445.208 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 47.166 μs ┊ GC (median): 0.00%
Time (mean ± σ): 47.126 μs ± 5.362 μs ┊ GC (mean ± σ): 0.00% ± 0.00%
▄▄▄▅▂ ▅█▅▂ ▂
██████▆▇▇█████▇▇▇▆▅▅▅▅▅▅▅▅▄▄▅▅▄▅▆▅▅▅▄▅▄▅▃▄▁▁▄▅▃▄▄▃▃▃▃▃▄▄▄▃▁▃ █
45.1 μs Histogram: log(frequency) by time 57.2 μs <
Memory estimate: 816 bytes, allocs estimate: 18.
julia> @benchmark vminimum($A, dims=(1,3,4))
BenchmarkTools.Trial: 10000 samples with 7 evaluations.
Range (min … max): 4.673 μs … 569.113 μs ┊ GC (min … max): 0.00% … 98.82%
Time (median): 5.833 μs ┊ GC (median): 0.00%
Time (mean ± σ): 6.639 μs ± 19.905 μs ┊ GC (mean ± σ): 11.21% ± 3.70%
▁▂▄▇██▅▂
▆▁▁▁▁▁▁▁▁▂▄████████▇▅▄▂▂▂▂▂▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▂
4.67 μs Histogram: frequency by time 9.04 μs <
Memory estimate: 18.89 KiB, allocs estimate: 7.
julia> A = rand(11, 12, 13, 14);
julia> mean(A, dims=(1,3,4)) ≈ vmean(A, dims=(1,3,4))
true
julia> @benchmark mean($A, dims=(1,3,4))
BenchmarkTools.Trial: 10000 samples with 5 evaluations.
Range (min … max): 6.350 μs … 13.800 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 6.417 μs ┊ GC (median): 0.00%
Time (mean ± σ): 6.461 μs ± 224.303 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▃▆█▇█▆▇▅▆▄▅▃▄▂▃▁▂▁▂▂▂▃▂▃▁▂▁▂▁▂ ▁ ▁ ▃
████████████████████████████████▇█▆█▇▇▅▇▆▆▆▄▅▃▆▅▅▁▆▁▄▃▁▁▅▃▅ █
6.35 μs Histogram: log(frequency) by time 7.08 μs <
Memory estimate: 976 bytes, allocs estimate: 14.
julia> @benchmark vmean($A, dims=(1,3,4))
BenchmarkTools.Trial: 10000 samples with 7 evaluations.
Range (min … max): 5.012 μs … 7.696 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 5.137 μs ┊ GC (median): 0.00%
Time (mean ± σ): 5.147 μs ± 75.912 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▁▁▂▁█
▂▂▁▂▂▂▂▂▃▃▃▄█████████▇▆▅▄▅▃▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▂▂▂ ▃
5.01 μs Histogram: frequency by time 5.41 μs <
Memory estimate: 272 bytes, allocs estimate: 4.
julia> A = rand(10_000);
julia> @benchmark mean($A)
BenchmarkTools.Trial: 10000 samples with 10 evaluations.
Range (min … max): 1.733 μs … 5.954 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 1.750 μs ┊ GC (median): 0.00%
Time (mean ± σ): 1.754 μs ± 93.796 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▅ █ █ ▅ ▃ ▂ ▁ ▂ ▁ ▂
▃▁▁▁▁▆▁▁▁▁█▁▁▁▁█▁▁▁▁▁█▁▁▁▁█▁▁▁▁█▁▁▁▁█▁▁▁▁▁█▁▁▁▁█▁▁▁▁█▁▁▁▁█ █
1.73 μs Histogram: log(frequency) by time 1.78 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
julia> @benchmark vmean($A)
BenchmarkTools.Trial: 10000 samples with 169 evaluations.
Range (min … max): 636.834 ns … 887.331 ns ┊ GC (min … max): 0.00% … 0.00%
Time (median): 638.562 ns ┊ GC (median): 0.00%
Time (mean ± σ): 639.624 ns ± 9.350 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▄▂█▂
▂▃████▄▅▃▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▁▂▂▂▁▂▂▂▂▂▂▂▂▂▁▂▂▁▂▁▂▂▂▁▂ ▂
637 ns Histogram: frequency by time 662 ns <
Memory estimate: 0 bytes, allocs estimate: 0.
julia> @benchmark std($A)
BenchmarkTools.Trial: 10000 samples with 7 evaluations.
Range (min … max): 4.179 μs … 24.470 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 4.202 μs ┊ GC (median): 0.00%
Time (mean ± σ): 4.219 μs ± 275.224 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▂█▇▆▂▃▂▂ ▂
████████▇▁▄▄▄▃▄▄▃▃▃▃▁▄▄▅▃▃▁▃▁▃▃▃▃▃▃▁▁▃▃▁▃▁▃▁▁▃▄▃▃▁▁▁▁▄▁▃▁▁▄ █
4.18 μs Histogram: log(frequency) by time 4.73 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
julia> @benchmark vstd($A)
BenchmarkTools.Trial: 10000 samples with 10 evaluations.
Range (min … max): 1.421 μs … 4.858 μs ┊ GC (min … max): 0.00% … 0.00%
Time (median): 1.475 μs ┊ GC (median): 0.00%
Time (mean ± σ): 1.466 μs ± 94.269 ns ┊ GC (mean ± σ): 0.00% ± 0.00%
▄ ▇ ▇ ▄ ▃ ▂ ▁ ▅ █ █ ▅ ▄ ▃ ▂ ▁ ▂
▆▁█▁█▁█▁█▁▁█▁█▁█▁█▁▁▅▁▆▁█▁█▁▁█▁█▁█▁█▁█▁▁█▁█▁█▁█▁▁█▁█▁▆▁▆▁▃ █
1.42 μs Histogram: log(frequency) by time 1.53 μs <
Memory estimate: 0 bytes, allocs estimate: 0.
julia> A = rand(10_000);
julia> sort(A) == vsort!(A)
true
julia> median(A) == vmedian!(A)
true
- Median and percentile could be made more efficient with better SIMD sorting
- Other various summary statistics (mad, aad, etc.?)
- multithreaded vminimum, vmaximum, vextrema