forked from kkoutini/cpjku_dcase19
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
849 lines (746 loc) · 39.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
import os
import sys
import random
import time
import torch
import numpy as np
from dcase_util.utils import logging
from torch.utils.data import RandomSampler, BatchSampler, SequentialSampler
import shared_globals
from helpers.utils import AverageMeter, DictAverageMeter, my_mixup, get_criterion, get_total_evaluation, \
get_evaluation, create_optimizer, load_model, swa_moving_average, bn_update, count_parameters, Event, worker_init_fn
from attrdict import AttrDefault
from tensorboardX import SummaryWriter
from datasets import DatasetsManager
logger = shared_globals.logger
class Trainer:
# Events
eventAfterEpoch = Event()
eventAfterTrainingDataset = Event()
eventAfterTestingDataset = Event()
def __init__(self, config, seed=42):
global logger
logger = shared_globals.logger
config = AttrDefault(lambda: None, config)
self.config = config
self.datasets = {}
self.data_loaders = {}
self.use_swa = config.use_swa
#self.run.info['epoch'] = 0
# set random seed
torch.manual_seed(seed)
np.random.seed(seed + 1)
random.seed(seed + 2)
self.min_lr = self.config.optim_config["min_lr"]
if self.min_lr is None:
self.min_lr = 0.0
print(self.min_lr)
# making outout dirs
models_outputdir = os.path.join(config.out_dir, "models")
if not os.path.exists(config.out_dir):
os.makedirs(config.out_dir)
if not os.path.exists(models_outputdir):
os.makedirs(models_outputdir)
#self.run.info['out_path'] = config.out_dir
# init_loggers
self.init_loggers()
self.dataset_manager= DatasetsManager(self.config['audiodataset'])
# init Tensor board
if self.config.tensorboard:
tensorboard_write_path = config.tensorboard_write_path
if not tensorboard_write_path:
tensorboard_write_path = self.config.out_dir.replace("out", "runs", 1)
shared_globals.console.info("tensorboard run path: " + tensorboard_write_path)
shared_globals.console.info(
"To monitor this experiment use:\n " + shared_globals.bcolors.FAIL +
"tensorboard --logdir " + tensorboard_write_path + shared_globals.bcolors.ENDC)
#self.run.info['tensorboard_path'] = tensorboard_write_path
self.writer = SummaryWriter(
tensorboard_write_path)
# init multi gpu
self.bare_model = load_model(config.model_config)
print(self.bare_model)
if self.use_swa:
self.swa_model = load_model(config.model_config)
if self.config.use_gpu:
self.swa_model.cuda()
self.swa_n = 0
self.swa_c_epochs = config.swa_c_epochs
self.swa_start = config.swa_start
if self.config.use_gpu:
self.bare_model.cuda()
shared_globals.console.info("\n\nTrainable model parameters {}, non-trainable {} \n\n".format(
count_parameters(self.bare_model), count_parameters(self.bare_model, False)))
# DataParallel mode
if not config.parallel_mode:
self.model = self.bare_model
elif config.parallel_mode == "distributed":
torch.distributed.init_process_group(backend='nccl',
world_size=1, rank=0,
init_method='file://' + config.out_dir + "/shared_file")
self.model = torch.nn.parallel.DistributedDataParallel(self.bare_model)
else:
self.model = torch.nn.DataParallel(self.bare_model)
# self.model.cuda()
# if load_model
if config.get('load_model'):
load_model_path = config.get('load_model')
load_model_path = os.path.expanduser(load_model_path)
shared_globals.console.info("Loading model located at: " + load_model_path)
checkpoint = torch.load(load_model_path)
self.model.load_state_dict(checkpoint['state_dict'])
if self.use_swa:
swa_state_dict = checkpoint.get('swa_state_dict', None)
self.swa_n = checkpoint.get('swa_n', 0)
if (swa_state_dict is not None) and not self.config.swa_model_load_same:
self.swa_model.load_state_dict(swa_state_dict)
else:
shared_globals.console.warning("No swa_state_dict loaded! same loaded")
self.swa_model.load_state_dict(checkpoint['state_dict'])
self.swa_n = 0
shared_globals.logger.info(str(self.model))
shared_globals.current_learning_rate = config.optim_config['base_lr']
self.optimizer, self.scheduler = create_optimizer(self.model.parameters(), config.optim_config)
print("optimizer:", self.optimizer)
loss_criterion_args = dict(config.loss_criterion_args)
self.criterion = get_criterion(config.loss_criterion)(**loss_criterion_args)
# init state
inf_value = -float("inf")
if self.config["optim_config"].get("model_selection", {}).get("select_min", False):
inf_value = float("inf")
self.state = {
# 'config': self.config,
'state_dict': None,
'optimizer': None,
'epoch': 0,
'metrics': {},
'best_metric_value': inf_value,
'best_epoch': 0,
}
self.first_batch_done = False
# init dataset loaders
self.init_loaders()
if config.get('load_model'):
if not config.get("load_model_no_test_first"):
testing_result = {}
for name in self.config.datasets:
dataset_config = AttrDefault(lambda: None, self.config.datasets[name])
if dataset_config.testing:
testing_result[name] = self.test(0, name, dataset_config)
# updating the state with new results
self.update_state(testing_result, 0)
def init_loaders(self):
# maybe lazy load for predicting only runs
for name in self.config.datasets:
dataset_config = AttrDefault(lambda: None, self.config.datasets[name])
if self.config['predict_only_mode'] and not dataset_config.predicting:
continue
# ds = self.run.get_command_function(dataset_config.dataset)()
ds = self.dataset_manager.get_dataset(dataset_config)
self.datasets[name] = ds
shared_globals.logger.info("Initialized Dataset `" + name + "` with {} Samples ".format(len(ds)))
if dataset_config.batch_config.get("batch_sampler") == "stratified":
shared_globals.logger.info("Initializing StratifiedBatchSampler for " + name)
batch_sampler = StratifiedBatchSampler(ds, dataset_config.batch_config.batch_size, self.config.epochs)
elif dataset_config.batch_config.get("batch_sampler") == "sequential":
shared_globals.logger.info("Initializing Sequential Sampler for " + name)
sampler = SequentialSampler(ds)
batch_sampler = BatchSampler(sampler, dataset_config.batch_config.batch_size, False)
else:
if dataset_config.testing or dataset_config.predicting:
shared_globals.logger.info("Initializing Sequential Sampler for " + name)
sampler = SequentialSampler(ds)
else:
shared_globals.logger.info("Initializing RandomSampler for " + name)
sampler = RandomSampler(ds)
batch_sampler = BatchSampler(sampler, dataset_config.batch_config.batch_size, True)
loader = torch.utils.data.DataLoader(
ds,
# batch_size=batch_size,
batch_sampler=batch_sampler,
# shuffle=True,
num_workers=dataset_config.num_of_workers,
pin_memory=True,
# drop_last=True,
worker_init_fn=worker_init_fn,
timeout=60
)
self.data_loaders[name] = loader
def fit(self, epochs, start_epoch=0):
try:
for epoch in range(start_epoch, epochs):
# Training
for name in self.config.datasets:
dataset_config = AttrDefault(lambda: None, self.config.datasets[name])
if dataset_config.training:
if dataset_config.frequency and ((epoch + 1) % dataset_config.frequency):
continue
self.train(epoch, name, dataset_config)
# notify the model that training done
epoch_done_op = getattr(self.bare_model, "epoch_done", None)
if callable(epoch_done_op):
epoch_done_op(epoch)
if self.use_swa and (epoch + 1) >= self.use_swa and (
epoch + 1 - self.use_swa) % self.swa_c_epochs == 0:
swa_moving_average(self.swa_model, self.bare_model, 1.0 / (self.swa_n + 1))
self.swa_n += 1
if not self.config["swa_no_bn_update"]:
bn_update(self.data_loaders['training'], self.swa_model)
self.state['swa_state_dict'] = self.swa_model.state_dict()
self.state['swa_n'] = self.swa_n
#self.run.info['swa_n'] = self.swa_n
self.save_model(epoch)
# Testing
swa_testing_result = {}
for name in self.config.datasets:
dataset_config = AttrDefault(lambda: None, self.config.datasets[name])
if dataset_config.testing:
swa_testing_result[name] = self.test(epoch, name, dataset_config, model=self.swa_model,
extra_name="_swa")
# Testing
testing_result = {}
for name in self.config.datasets:
dataset_config = AttrDefault(lambda: None, self.config.datasets[name])
if dataset_config.testing:
testing_result[name] = self.test(epoch, name, dataset_config)
# updating the state with new results
self.update_state(testing_result, epoch)
#self.run.info['epoch'] = epoch
self.eventAfterEpoch(self, epoch)
if shared_globals.current_learning_rate < self.min_lr:
shared_globals.console.info("learning rate reached minimum {} ({}), stopping in epoch {}".
format(self.min_lr, shared_globals.current_learning_rate, epoch))
break
except KeyboardInterrupt:
pass
shared_globals.console.info("last test:\n" + str(self.state['metrics']))
def train(self, epoch, dataset_name, dataset_config, model=None):
logger.info('Train ({}) epoch {}:'.format(dataset_name, epoch))
if model is None:
model = self.model
scheduler = self.scheduler
optimizer = self.optimizer
optim_config = self.config.optim_config
model_config = self.config.model_config
if self.config.tensorboard:
writer = self.writer
# training mode
model.train()
loss_meter = AverageMeter()
accuracy_meter = AverageMeter()
metrics_meter = DictAverageMeter()
start = time.time()
train_loader = self.data_loaders[dataset_name]
start_loading_time = time.time()
total_loading_time = 0
if optim_config['scheduler'] == 'multistep':
scheduler.step(epoch + 1)
elif optim_config['scheduler'] == 'mycos':
scheduler.step(epoch + 1)
elif optim_config['scheduler'] == 'swa':
scheduler.step(epoch + 1)
elif optim_config['scheduler'] == 'linear':
scheduler.step(epoch)
elif optim_config['scheduler'] == 'drop':
scheduler.step(epoch)
number_of_steps = len(train_loader)
if self.config.maximum_steps_per_epoch and self.config.maximum_steps_per_epoch < number_of_steps:
number_of_steps = self.config.maximum_steps_per_epoch
for step, (data, _, targets) in enumerate(train_loader):
shared_globals.global_step += 1
if optim_config['scheduler'] == 'cosine':
scheduler.step()
if self.config.use_gpu:
data = data.cuda()
targets = targets.cuda()
if self.config.use_mixup and epoch >= int(self.config.use_mixup) - 1:
# don't forget to use mix up loss
rn_indices, lam = my_mixup(data, targets, self.config.mixup_alpha, self.config.get("mixup_mode"))
if self.config.use_gpu:
rn_indices = rn_indices.cuda()
lam = lam.cuda()
data = data * lam.reshape(lam.size(0), 1, 1, 1) \
+ data[rn_indices] * (1 - lam).reshape(lam.size(0), 1, 1, 1)
# data is loaded
total_loading_time += time.time() - start_loading_time
# Model graph to tensor board
if not self.first_batch_done:
self.first_batch_done = True
if self.config.tensorboard and not self.config.tensorboard_no_model_graph:
shared_globals.console.info("writing model graph to tensorboard!")
self.writer.add_graph(self.bare_model, data[0:1])
optimizer.zero_grad()
outputs = model(data)
if self.config.use_mixup and epoch >= int(self.config.use_mixup) - 1:
loss = self.criterion(outputs, targets, targets[rn_indices], lam, self.config.get("mixup_mode"))
else:
# print("targets", targets)
if model_config.binary_classifier:
targets = targets.float() # https://discuss.pytorch.org/t/data-type-mismatch-in-loss-function/34860
# print("targets.float()", targets)
loss = self.criterion(outputs, targets)
loss.backward()
optimizer.step()
if model_config['multi_label']:
preds = (outputs > model_config['prediction_threshold']).float()
elif model_config.binary_classifier:
if model_config.sigmoid_output:
preds = outputs > 0.5
else:
preds = outputs > 0.
elif model_config.regression:
preds = outputs
else:
_, preds = torch.max(outputs, dim=1)
loss_ = loss.item()
# if data_config['use_mixup']:
# _, targets = targets.max(dim=1)
if model_config.binary_classifier:
targets_binary = targets > 0.5 # this is to account for smoothed labels
# smoothed labels like in [Schlüter 2015] who used [0.02, 0.98] instead of [0, 1]
correct_ = preds.eq(targets_binary).sum().item()
elif model_config.regression:
# in regression accuracy is L1 loss
correct_ = torch.abs(preds - targets).sum().item()
else:
correct_ = preds.eq(targets).sum().item()
if model_config['multi_label']:
num = data.size(0) * model_config['n_classes']
else:
num = data.size(0)
accuracy = correct_ / num
eval_metrics = {}
for ef in dataset_config._mapping.get("evaluations", []):
ev_func = get_evaluation(ef["name"])
if epoch % ef.get("frequency", 1) == 0:
eval_metrics = {**eval_metrics, **ev_func(outputs, targets, eval_args=ef.get("eval_args", {}))}
metrics_meter.update(eval_metrics, num)
loss_meter.update(loss_, num)
accuracy_meter.update(accuracy, num)
if self.config.tensorboard:
writer.add_scalar(dataset_name + '/RunningLoss', loss_, shared_globals.global_step)
writer.add_scalar(dataset_name + '/RunningAccuracy', accuracy,
shared_globals.global_step)
writer.add_scalars(dataset_name + "/RunningMetrics", eval_metrics,
shared_globals.global_step)
if step % (number_of_steps // 10) == 0:
print('\x1b[2K ' + 'Epoch {} Step {}/{} '
'Loss {:.4f} ({:.4f}) '
'Accuracy {:.4f} ({:.4f}) '.format(
epoch,
step + 1,
number_of_steps,
loss_meter.val,
loss_meter.avg,
accuracy_meter.val,
accuracy_meter.avg), end="\r")
if step % 100 == 0:
logger.info('Epoch {} Step {}/{} '
'Loss {:.4f} ({:.4f}) '
'Accuracy {:.4f} ({:.4f})'.format(
epoch,
step,
number_of_steps,
loss_meter.val,
loss_meter.avg,
accuracy_meter.val,
accuracy_meter.avg,
))
# to get the data loading time
start_loading_time = time.time()
if self.config.maximum_steps_per_epoch and step + 1 == self.config.maximum_steps_per_epoch:
break
elapsed = time.time() - start
logger.info('Elapsed {:.2f} (loading: {:.2f} )'.format(elapsed, total_loading_time))
logger.info('avg metrics: {}'.format(str(metrics_meter.avg)))
print('\x1b[2K' + 'Train[{}]{}:Step {}/{} '
'Loss {:.4f} ({:.4f}) '
'Accuracy {:.4f} ({:.4f})'.format(
epoch, dataset_name,
step + 1,
number_of_steps,
loss_meter.val,
loss_meter.avg,
accuracy_meter.val,
accuracy_meter.avg), end="\r")
eval_metrics = {"loss": loss_meter.avg, "accuracy": accuracy}
for ef in dataset_config._mapping.get("total_evaluations", []):
ev_func = get_total_evaluation(ef["name"])
eval_metrics = {**eval_metrics,
**ev_func(metrics_meter, model=model, data_loader=train_loader, config=self.config,
current_dataset_config=dataset_config,
eval_args=ef.get("eval_args", {}))}
logger.info('total metrics: {}'.format(str(eval_metrics)))
# logging metrics resutls
#self.run.info.setdefault("last_metrics", {})[dataset_name] = eval_metrics
# for k, v in eval_metrics.items():
# self.log_scalar(dataset_name + "." + k, v, epoch)
if self.config.tensorboard:
writer.add_scalar(dataset_name + '/Loss', loss_meter.avg, epoch)
writer.add_scalar(dataset_name + '/Accuracy', accuracy_meter.avg, epoch)
writer.add_scalar(dataset_name + '/Time', elapsed, epoch)
writer.add_scalars(dataset_name + "/AvgMetrics", metrics_meter.avg, epoch)
writer.add_scalars(dataset_name + "/TotalMetrics", eval_metrics, epoch)
if optim_config.get('scheduler') and optim_config['scheduler'] != 'none':
lr = scheduler.get_lr()[0]
else:
lr = optim_config['base_lr']
writer.add_scalar(dataset_name + '/LearningRate', lr, epoch)
#self.run.log_scalar("LearningRate", lr, epoch)
def test(self, epoch, dataset_name, dataset_config, model=None, extra_name=""):
logger.info('Testing on ({}) epoch {}:'.format(dataset_name + extra_name, epoch))
if model is None:
model = self.model
scheduler = self.scheduler
optimizer = self.optimizer
optim_config = self.config.optim_config
model_config = self.config.model_config
if self.config.tensorboard:
writer = self.writer
# training mode
model.eval()
loss_meter = AverageMeter()
correct_meter = AverageMeter()
accuracy_meter = AverageMeter()
metrics_meter = DictAverageMeter()
start = time.time()
test_loader = self.data_loaders[dataset_name]
dataset_name = dataset_name + extra_name
for step, (data, _, targets) in enumerate(test_loader):
if self.config.tensorboard_test_images:
if epoch == 0 and step == 0:
image = torchvision.utils.make_grid(
data, normalize=True, scale_each=True)
writer.add_image(dataset_name + '/Image', image, epoch)
if self.config.use_gpu:
data = data.cuda()
targets = targets.cuda()
with torch.no_grad():
outputs = model(data)
if model_config.binary_classifier:
targets = targets.float() # https://discuss.pytorch.org/t/data-type-mismatch-in-loss-function/34860
loss = self.criterion(outputs, targets)
# if data_config['use_mixup']:
# _, targets = targets.max(dim=1)
if model_config['multi_label']:
preds = (outputs > model_config['prediction_threshold']).float()
elif model_config.binary_classifier:
if model_config.sigmoid_output:
preds = outputs > 0.5
else:
preds = outputs > 0.
elif model_config.regression:
preds = outputs
else:
_, preds = torch.max(outputs, dim=1)
loss_ = loss.item()
if model_config.binary_classifier:
targets_binary = targets > 0.5 # accounting for smoothed labels
correct_ = preds.eq(targets_binary).sum().item()
elif model_config.regression:
# in regression accuracy is L1 loss
correct_ = torch.abs(preds - targets).sum().item()
else:
correct_ = preds.eq(targets).sum().item()
if model_config['multi_label']:
num = data.size(0) * model_config['n_classes']
else:
num = data.size(0)
if model_config['multi_label']:
total_num = len(test_loader.dataset) * model_config['n_classes']
else:
total_num = len(test_loader.dataset)
eval_metrics = {}
for ef in dataset_config._mapping.get("evaluations", []):
ev_func = get_evaluation(ef["name"])
if epoch % ef.get("frequency", 1) == 0:
eval_metrics = {**eval_metrics, **ev_func(outputs, targets, eval_args=ef.get("eval_args", {}))}
metrics_meter.update(eval_metrics, num)
loss_meter.update(loss_, num)
correct_meter.update(correct_, 1)
accuracy = correct_meter.sum / total_num
accuracy_meter.update(accuracy, num)
if step % ((len(test_loader) + 10) // 10) == 0:
print('\x1b[2K', 'Test[{}]{}: Step {}/{} '
'Loss {:.4f} ({:.4f}) '
'Accuracy {:.4f} ({:.4f})'.format(
epoch, dataset_name,
step + 1,
len(test_loader),
loss_meter.val,
loss_meter.avg,
accuracy_meter.val,
accuracy_meter.avg), end="\r")
print('\x1b[2K', 'Test[{}]{}:Step {}/{} '
'Loss {:.4f} ({:.4f}) '
'Accuracy {:.4f} ({:.4f})'.format(
epoch, dataset_name,
step + 1,
len(test_loader),
loss_meter.val,
loss_meter.avg,
accuracy_meter.val,
accuracy_meter.avg), end="\r")
elapsed = time.time() - start
logger.info('Elapsed {:.2f}'.format(elapsed))
logger.info('avg metrics: {}'.format(str(metrics_meter.avg)))
eval_metrics = {"loss": loss_meter.avg, "accuracy": accuracy}
for ef in dataset_config._mapping.get("total_evaluations", []):
ev_func = get_total_evaluation(ef["name"])
eval_metrics = {**eval_metrics,
**ev_func(metrics_meter, model=model, data_loader=test_loader, config=self.config,
current_dataset_config=dataset_config,
eval_args=ef.get("eval_args", {}))}
logger.info('total metrics: {}'.format(str(eval_metrics)))
#self.run.info.setdefault("last_metrics", {})[dataset_name] = eval_metrics
# for k, v in eval_metrics.items():
# self.run.log_scalar(dataset_name + "." + k, v, epoch)
if self.config.tensorboard:
writer.add_scalar(dataset_name + '/Loss', loss_meter.avg, epoch)
writer.add_scalar(dataset_name + '/Accuracy', accuracy, epoch)
writer.add_scalar(dataset_name + '/Time', elapsed, epoch)
writer.add_scalars(dataset_name + "/AvgMetrics", metrics_meter.avg, epoch)
writer.add_scalars(dataset_name + "/TotalMetrics", eval_metrics, epoch)
return eval_metrics
def init_loggers(self):
shared_globals.logger = logging.getLogger('')
while len(shared_globals.logger.handlers):
shared_globals.logger.handlers.pop()
shared_globals.logger.setLevel(logging.INFO)
fh = logging.FileHandler(self.config.out_dir + "/info.log")
fh.setLevel(logging.INFO)
fh.setFormatter(
logging.Formatter(fmt='%(asctime)s %(name)-5s %(levelname)-.1s %(message)s', datefmt='%m-%d %H:%M'))
shared_globals.logger.addHandler(fh)
# prevent multioutput when creating multiple trainer instances!
if shared_globals.console is None:
console = logging.StreamHandler(sys.stdout)
console.setLevel(logging.INFO)
# set a format which is simpler for console use
formatter = logging.Formatter('%(levelname)-.1s: %(message)s')
# tell the handler to use this format
console.setFormatter(formatter)
# add the handler to the root logger
logging.getLogger('.console').addHandler(console)
shared_globals.console = logging.getLogger('.console')
shared_globals.console.info("for detailed run info use \n " + shared_globals.bcolors.FAIL +
"tail -f " + self.config.out_dir + "/info.log" + shared_globals.bcolors.ENDC)
global logger
logger = shared_globals.logger
def update_state(self, testing_result, epoch):
state = self.state
state['epoch'] = epoch
state['metrics'] = testing_result
state['state_dict'] = self.bare_model.state_dict()
model_path = os.path.join(self.config.out_dir, "models", 'last_model_{}.pth'.format(epoch))
if epoch > 250 and epoch % 5 == 0:
print("saving at ", model_path)
torch.save(state, model_path)
selection_config = self.config["optim_config"].get("model_selection", {
"metric": "accuracy",
"validation_set": "val",
"patience": 30
})
# update best accuracy
is_it_the_newbest_model = testing_result[selection_config['validation_set']][selection_config['metric']] > \
state[
'best_metric_value']
if selection_config.get("select_min", False):
is_it_the_newbest_model = testing_result[selection_config['validation_set']][selection_config['metric']] < \
state[
'best_metric_value']
if is_it_the_newbest_model:
state['state_dict'] = self.bare_model.state_dict()
state['optimizer'] = self.optimizer.state_dict()
state['best_metric_value'] = testing_result[selection_config['validation_set']][selection_config['metric']]
state['best_epoch'] = epoch
shared_globals.console.info("Epoch {}, found a new best model on set '{}', with {} {}".format(
epoch,
selection_config['validation_set'], state['best_metric_value'], selection_config['metric']))
state['best_metrics'] = testing_result
state['patience_rest_epoch'] = epoch
#self.run.info['best_metrics'] = testing_result
#self.run.info['best_epoch'] = epoch
model_path = os.path.join(self.config.out_dir, "models", 'model_{}.pth'.format(epoch))
best_model_path = os.path.join(self.config.out_dir, "models", 'model_best_state.pth')
torch.save(state, model_path)
torch.save(state, best_model_path)
#self.run.info['best_model_path'] = best_model_path
#self.run.info['best_metric_value'] = state['best_metric_value']
#self.run.info['best_metric_name'] = selection_config['validation_set'] + "." + selection_config['metric']
else:
# logger.info(
# "Model didn't improve {} for {} on validation set '{}', patience {} of {} (Best so far {} at epoch {} )".format(
# selection_config['metric'], global_run_unique_identifier,
# selection_config['validation_set'], str(global_patience_counter),
# str(selection_config['patience']), str(state['best_metric_value']), str(state['best_epoch'])))
patience = selection_config['patience'] - epoch + state['patience_rest_epoch']
if patience <= 0:
lr_min_limit = self.config["optim_config"].get("model_selection", {}).get(
"lr_min_limit", None)
if (lr_min_limit is None) or shared_globals.current_learning_rate > lr_min_limit:
shared_globals.current_learning_rate *= self.config["optim_config"].get("model_selection",
{}).get(
"lr_decay_factor", 1.)
if selection_config.get("load_optimizer_state"):
raise NotImplementedError()
else:
if self.use_swa:
shared_globals.console.warning("SWA doesn't support LR decay via patience")
optim_config = self.config['optim_config']
optim_config['base_lr'] = shared_globals.current_learning_rate
self.optimizer, self.scheduler = create_optimizer(self.model.parameters(),
self.config.optim_config)
else:
self.config["optim_config"]['model_selection']['no_best_model_reload'] = True
best_model_path = os.path.join(self.config.out_dir, "models", 'model_best_state.pth')
best_epoch_to_reload = "no_reload"
if not self.config["optim_config"].get("model_selection", {}).get(
"no_best_model_reload", False):
checkpoint = torch.load(best_model_path)
self.bare_model.load_state_dict(checkpoint['state_dict'])
best_epoch_to_reload = state['best_epoch']
state['patience_rest_epoch'] = epoch
shared_globals.console.info("Patience out({}), Loaded from epoch {}, lr= {} ".format(
epoch,
best_epoch_to_reload, shared_globals.current_learning_rate))
def load_best_model(self):
shared_globals.console.info("Loading best model...")
best_model_path = os.path.join(self.config.out_dir, "models", 'model_best_state.pth')
checkpoint = torch.load(best_model_path)
self.bare_model.load_state_dict(checkpoint['state_dict'])
def save_model(self, epoch):
model_path = os.path.join(self.config.out_dir, "models", 'swa_model_{}.pth'.format(epoch))
torch.save(self.state, model_path)
def save_loadable_model(self, config):
# TODO: create directory if it does not exist
import pickle
model = self.model
experiment_path, model_name = config['experiment_path'], config['model_name']
model_path = os.path.join(experiment_path, model_name + '_state_dict.pth')
config_path = os.path.join(experiment_path, model_name + '_config.pkl')
torch.save(model.state_dict(), model_path)
pickle.dump(config, open(config_path, 'wb'))
def evaluate(self):
model = self.model
# TODO: compute predictions in this function (similar to train, test...)
# this allows use "evaluations" in addition to "total_evaluations"
# keep track inside a metrics_meter (so tp, fp, ... does not need to be computed in the eval function)
for dataset_name in self.config.datasets:
dataset_config = AttrDefault(lambda: None, self.config.datasets[dataset_name])
if dataset_config.evaluating:
print("evaluate on ", dataset_name)
# TODO: do not allow "evaluations" because this is not called after every batch
data_loader = self.data_loaders[dataset_name]
eval_metrics = {}
for ef in dataset_config._mapping.get("total_evaluations", []):
ev_func = get_total_evaluation(ef["name"])
eval_metrics = {**eval_metrics,
**ev_func(None, model=model, data_loader=data_loader, config=self.config,
current_dataset_config=dataset_config,
eval_args=ef.get("eval_args", {}))}
# logger.info('total metrics: {}'.format(str(eval_metrics)))
shared_globals.console.info("evaluation " + dataset_name + ":\n" + str(eval_metrics))
# if self.config.tensorboard:
# writer = self.writer
# writer.add_scalar(dataset_name + '/RunningLoss', loss_, shared_globals.global_step)
# writer.add_scalar(dataset_name + '/RunningAccuracy', accuracy,
# shared_globals.global_step)
# writer.add_scalars(dataset_name + "/RunningMetrics", eval_metrics,
# shared_globals.global_step)
def predict(self, name_extra=""):
import helpers.output_writers as ow
model = self.model
for name in self.config.datasets:
dataset_config = AttrDefault(lambda: None, self.config.datasets[name])
if dataset_config.predicting:
sid, out = self.do_predict(name, dataset_config, model)
for owriter_name in dataset_config.writers:
owcnfg = dataset_config.writers[owriter_name]
ow.__dict__[owcnfg['name']](sid, out, self, name + name_extra, owriter_name, **owcnfg['args'])
if self.use_swa:
model = self.swa_model
for name in self.config.datasets:
dataset_config = AttrDefault(lambda: None, self.config.datasets[name])
if dataset_config.predicting:
sid, out = self.do_predict(name, dataset_config, model)
for owriter_name in dataset_config.writers:
owcnfg = dataset_config.writers[owriter_name]
ow.__dict__[owcnfg['name']](sid, out, self, name, owriter_name + "_swa", **owcnfg['args'])
def do_predict(self, dataset_name, dataset_config, model=None):
logger.info('Predicting on ({}) :'.format(dataset_name))
if model is None:
model = self.model
scheduler = self.scheduler
optimizer = self.optimizer
optim_config = self.config.optim_config
model_config = self.config.model_config
if self.config.tensorboard:
writer = self.writer
# training mode
model.eval()
loss_meter = AverageMeter()
correct_meter = AverageMeter()
metrics_meter = DictAverageMeter()
start = time.time()
test_loader = self.data_loaders[dataset_name]
acc_sids = []
acc_out = []
for step, (data, sids, _) in enumerate(test_loader):
if self.config.tensorboard_test_images:
image = torchvision.utils.make_grid(
data, normalize=True, scale_each=True)
writer.add_image(dataset_name + '/Image', image, 0)
if self.config.use_gpu:
data = data.cuda()
with torch.no_grad():
outputs = model(data).cpu()
acc_sids += sids
acc_out.append(outputs)
if step % (len(test_loader) // 10) == 0:
print('\x1b[2K', 'Predicting Step {}/{} '.format(
step + 1,
len(test_loader),
), end="\r")
elapsed = time.time() - start
logger.info('Elapsed {:.2f}'.format(elapsed))
return acc_sids, torch.cat(acc_out, 0)
def ERF_generate(self, dataset_name="testing", dataset_config="", model=None, extra_name=""):
logger.info('ERF_generate on ({}) :'.format(dataset_name + extra_name))
if model is None:
config = dict(self.config.model_config)
config['stop_before_global_avg_pooling'] = True
model = load_model(config, self.experiment)
model.cuda()
best_model_path = os.path.join(self.config.out_dir, "models", 'model_best_state.pth')
checkpoint = torch.load(best_model_path)
model.load_state_dict(checkpoint['state_dict'])
# testing mode
model.eval()
loader = self.data_loaders[dataset_name]
counter = 0
accum = None
for step, (data, _, targets) in enumerate(loader):
data = data.cuda()
data.requires_grad = True
outputs = model(data)
grads = torch.zeros_like(outputs)
grads[:, :, grads.size(2) // 2, grads.size(3) // 2] = 1
outputs.backward(grads)
me = np.abs(data.grad.cpu().numpy()).mean(axis=0).mean(axis=0)
if accum is None:
accum = me
else:
accum += me
counter += 1
torch.save({"arr": accum, "counter": counter}, os.path.join(self.config.out_dir, 'ERF_dict.pth'))
ERF_plot(accum, savefile=os.path.join(self.config.out_dir, 'erf.png'))
self.experiment.add_artifact(os.path.join(self.config.out_dir, 'erf.png'), "erf.png", {"dataset": dataset_name})
return True
# def do_train_epoch(epoch, model, optimizer, scheduler, train_criterion,
# train_loaders, config, writer, state):
# for train_loader in train_loaders:
# if not train_loader["config"].get("no_default_train", False):
# train(epoch, model, optimizer, scheduler, train_criterion,
# train_loader["loader"], config, writer, train_loader["config"])
# return state