Skip to content

KNITDeveloperClub/face-attendence

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

69 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FACE ATTENDENCE WITH AWS REKOGNITION

forthebadge made-with-python GPLv3 license star this repo fork this repo

BUILD IN DJANGO WITH MYSQL DATABASES

Video Click to play

video

USE

INSTALLATION

1. Install awscli in your system and configure:

MAC LINUX OR UNIX

 rizwan@ubuntu$ sudo apt-get install awscli
 /* FIND YOUR ACCESS KEY AND SECRET KEY FROM AWS IN SECUIRTY CREDENTIALS */
 rizwan@ubuntu$ aws configure
 
 enter details of access key and secret key
 
                          or
                          
 rizwan@ubuntu$ export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE 
 rizwan@ubuntu$ export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY 
 rizwan@ubuntu$ export AWS_DEFAULT_REGION=us-west-2

WINDOWS

    C:\> setx AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
    C:\> setx AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
    C:\> setx AWS_DEFAULT_REGION=us-west-2

2. Import knit.sql DB

Mysql CommandLine

  mysql>create database db_name;
  mysql> use db_name;
  mysql> source knit.sql;

Terminal

  mysql -u username -p password db_name < knit.sql

Windows Command Prompt

 mysql -p -u [user] [database] < knit.sql

PowerShell

  C:\> cmd.exe /c "mysql -u root -p db_name < knit.sql" 

3. Add Databases in Django Project

Go to face-attendence/web/web/settings.py

 Replace NAME,USER,PASSWORD with your credentials
 
 
  DATABASES = {
  'default': {
'ENGINE': 'django.db.backends.mysql',
'NAME': 'db_name',
'HOST': '127.0.0.1',
'PORT': '3306',
'USER': 'username',
'PASSWORD': 'password',
 }}

4. Add your S3 name and path

Go to face-attendence/web/face/views.py in upload function

 Replace s3,object key name, with your credentials

5. Activate virtual environment

Go into web directory

 source env/bin/activate

5. Run server

python3 manage.py runserver

Take class images and Upload it on our website-

class faceclass

We are taking this photo as example

example

we stored images of student in s3 you can do it locally on your server

s3_images

Both images analyzing and detect faces and crop them

output

Cropping face

cropping-student

cropping-class

Now Matches face

matching

WebApp

Home,Student Register,Teacher Login,Student Login

web

Manual Attendance with single click

manual

Face Attendance Single Image required

face

Student Dashboard Attendance Report

student

About

Face Attendance (AWS rekognition)

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 65.3%
  • JavaScript 18.9%
  • CSS 14.2%
  • TSQL 1.6%