-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
93 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
# ai_security/utils/data_preprocessing.py | ||
|
||
import pandas as pd | ||
import numpy as np | ||
from sklearn.preprocessing import StandardScaler, OneHotEncoder | ||
from sklearn.impute import SimpleImputer | ||
from sklearn.compose import ColumnTransformer | ||
from sklearn.pipeline import Pipeline | ||
from sklearn.model_selection import train_test_split | ||
import logging | ||
|
||
# Set up logging | ||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | ||
|
||
class DataPreprocessor: | ||
def __init__(self, numerical_features, categorical_features): | ||
"""Initialize the DataPreprocessor. | ||
Args: | ||
numerical_features (list): List of numerical feature names. | ||
categorical_features (list): List of categorical feature names. | ||
""" | ||
self.numerical_features = numerical_features | ||
self.categorical_features = categorical_features | ||
self.pipeline = self.create_pipeline() | ||
logging.info('DataPreprocessor initialized.') | ||
|
||
def create_pipeline(self): | ||
"""Create a preprocessing pipeline for numerical and categorical features. | ||
Returns: | ||
sklearn.pipeline.Pipeline: The preprocessing pipeline. | ||
""" | ||
numerical_transformer = Pipeline(steps=[ | ||
('imputer', SimpleImputer(strategy='mean')), | ||
('scaler', StandardScaler()) | ||
]) | ||
|
||
categorical_transformer = Pipeline(steps=[ | ||
('imputer', SimpleImputer(strategy='most_frequent')), | ||
('onehot', OneHotEncoder(handle_unknown='ignore')) | ||
]) | ||
|
||
preprocessor = ColumnTransformer( | ||
transformers=[ | ||
('num', numerical_transformer, self.numerical_features), | ||
('cat', categorical_transformer, self.categorical_features) | ||
] | ||
) | ||
return preprocessor | ||
|
||
def fit_transform(self, X, y=None): | ||
"""Fit the pipeline to the data and transform it. | ||
Args: | ||
X (pd.DataFrame): The input features. | ||
y (pd.Series, optional): The target labels. | ||
Returns: | ||
np.ndarray: The transformed features. | ||
""" | ||
transformed_X = self.pipeline.fit_transform(X) | ||
logging.info('Data preprocessing completed.') | ||
return transformed_X | ||
|
||
def transform(self, X): | ||
"""Transform the data using the fitted pipeline. | ||
Args: | ||
X (pd.DataFrame): The input features. | ||
Returns: | ||
np.ndarray: The transformed features. | ||
""" | ||
transformed_X = self.pipeline.transform(X) | ||
logging.info('Data transformation completed.') | ||
return transformed_X | ||
|
||
def split_data(self, X, y, test_size=0.2, random_state=42): | ||
"""Split the data into training and testing sets. | ||
Args: | ||
X (pd.DataFrame): The input features. | ||
y (pd.Series): The target labels. | ||
test_size (float): The proportion of the dataset to include in the test split. | ||
random_state (int): Random seed for reproducibility. | ||
Returns: | ||
tuple: Split data (X_train, X_test, y_train, y_test). | ||
""" | ||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state) | ||
logging.info('Data split into training and testing sets.') | ||
return X_train, X_test, y_train, y_test |