-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMultiOpt_KO_PickVal.py
137 lines (112 loc) · 4.19 KB
/
MultiOpt_KO_PickVal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import torch
import pandas as pd
import numpy as np
from numpy import random
from sklearn.model_selection import train_test_split
from datasets import DatasetDict, Dataset
from transformers import AutoTokenizer, AutoModelForMultipleChoice, TrainingArguments, Trainer
from transformers.tokenization_utils_base import PreTrainedTokenizerBase, PaddingStrategy
from dataclasses import dataclass
from typing import Optional, Union
# Global Para
model_checkpoint = "bert-base-uncased"
batch_size = 16
# Load the TOEFL data
df = pd.read_csv('Vocab440.csv', index_col='ID')
df.Ans = [ ord(x) - 65 for x in df.Ans ]
## Extracting the keyword in the question
df['Keya'] = df['Question'].str.extract(r'((?<=").*(?="))')
df['Keya'][258] = 'counterpart'
# init Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)
# Filter data by tokenizer into train and test
flag = df['Keya'].map(lambda x: len(tokenizer(x)['input_ids'])==3)
df_pick = df[flag]
def f(x):
var = ['Opt1', 'Opt2', 'Opt3', 'Opt4']
if len(tokenizer(x[var[x['Ans']]])['input_ids'])!=3:
return False
return True
flag = df_pick.apply(f, axis=1)
df_pick = df_pick[flag]
random.seed(123)
flag = random.choice(df_pick.index, replace=False, size=137)
test = df.iloc[flag,:]
train = df.drop(flag, axis=0)
# Load into Dataset
dataset = DatasetDict({
'train': Dataset.from_pandas(train),
'test': Dataset.from_pandas(test)})
dataset = dataset.rename_column("Ans", "label")
# Define Tokenizer method
var_names = ["Opt1", "Opt2", "Opt3", "Opt4"]
def Tokenize(df):
first = [[context]*4 for context in df['Keya']]
third = [[df[i][j] for i in var_names] for j in range(len(df["Context"]))]
first2 = sum(first, []) # keywords
third2 = sum(third, []) # options
tokenized = tokenizer(first2, third2, truncation=True, add_special_tokens=True)
# Un-flatten
return {k: [v[i:i+4] for i in range(0, len(v), 4)] for k, v in tokenized.items()}
# Tokenize
encoded_datasets = dataset.map(Tokenize, batched=True, batch_size=20)
# Load raw model
model = AutoModelForMultipleChoice.from_pretrained(model_checkpoint)
# Set parameters for Trainer
model_name = model_checkpoint.split("/")[-1]
args = TrainingArguments(
"test-glue",
evaluation_strategy = "epoch",
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=8,
weight_decay=0.01,
seed=123,
logging_steps=10
)
# Custom data_collator_for_multiple_choice
@dataclass
class DataCollatorForMultipleChoice:
"""
Data collator that will dynamically pad the inputs for multiple choice received.
"""
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
def __call__(self, features):
label_name = "label" if "label" in features[0].keys() else "labels"
labels = [feature.pop(label_name) for feature in features]
batch_size = len(features)
num_choices = len(features[0]["input_ids"])
flattened_features = [[{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features]
flattened_features = sum(flattened_features, [])
batch = self.tokenizer.pad(
flattened_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
# Un-flatten
batch = {k: v.view(batch_size, num_choices, -1) for k, v in batch.items()}
# Add back labels
batch["labels"] = torch.tensor(labels, dtype=torch.int64)
return batch
# Calculate the accuracy during training
def compute_metrics(eval_predictions):
predictions, label_ids = eval_predictions
preds = np.argmax(predictions, axis=1)
return {"accuracy": (preds == label_ids).astype(np.float32).mean().item()}
# Trainer
trainer = Trainer(
model,
args,
train_dataset=encoded_datasets["train"],
eval_dataset=encoded_datasets["test"],
tokenizer=tokenizer,
data_collator=DataCollatorForMultipleChoice(tokenizer),
compute_metrics=compute_metrics,
)
trainer.train()